
www.free-ebooks-download.org

AA GGuuiiddee ttoo tthhee LLeeaaddiinngg RReeppoorrttiinngg PPllaattffoorrmm

Applied Microsoft SQL Server 2008
Reporting Services

Teo Lachev

Prologika Press

www.free-ebooks-download.org

Applied Microsoft SQL Server 2008
Reporting Services

Published by:
Prologika Press
info@prologika.com
http://www.prologika.com

Copyright © 2008 Teo Lachev

All rights reserved. No part of this book may be reproduced, stored, or transmitted in any form or by any
means, without the prior written permission of the publisher. Requests for permission should be sent to
info@prologika.com.

Trademark names may appear in this publication. Rather than use a trademark symbol with every occur-
rence of a trademarked name, the names are used strictly in an editorial manner, with no intention of
trademark infringement. The author has made all endeavors to adhere to trademark conventions for all
companies and products that appear in this book, however, he does not guarantee the accuracy of this in-
formation.

The author has made every effort during the writing of this book to ensure accuracy of the material. How-
ever, this book only expresses the author’s views and opinions. The information contained in this book is
provided without warranty, either express or implied. The publisher, author, resellers and distributors, shall
not be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Printed in the United States of America
ISBN 13, print edition 978-0-9766353-1-4
ISBN 10, print edition 0-9766353-1-3
First printing 2008

Author Teo Lachev
Technical editor Heidi Steen
Copyeditor Deborah Dinzes
Technical reviewers Alexzander Nepomnjashiy
 Andy Potter
Cover design Zamir Creations

The manuscript of this book was prepared using Microsoft Word 2007. Screenshots were captured using
TechSmith SnagIt 8.2. The video demos were captured using TechSmith Camtasia Studio 5.1. Diagrams
were produced with Microsoft Visio 2007.

iii

contents
 preface xi
 acknowledgements xii
 about the book xiii
 source code xiv

 about the author xvi

PART 1 INTRODUCTION 1

1 Introducing Reporting Services 3
1.1 Understanding Reporting Services 3

Understanding Reporting Services Reports 4 Why Use Reporting Services? 4
A Short History of Reporting Services 8 What's New in Reporting Services 2008 9
Reporting Services and the Microsoft Business Intelligence Platform 13

1.2 Overview of Reporting Services 17
Understanding the Reporting Services Components 17 Report Authoring 19
Report Management 21 Report Delivery 23

1.3 The Reporting Services Architecture 25
Understanding the Report Server Hosting Model 25 Understanding the Reporting
Services Applications 27 Understanding Report Processing 29

1.4 Applied Reporting Services 30
Introducing Adventure Works Sales Reporting System 31 Your First Report 32

1.5 Summary 39
1.6 Resources 39

2 Installing Reporting Services 40
2.1 Planning for a Reporting Services Installation 40

Planning Hardware and Software 40 Planning a Deployment Topology 42
Planning Service Accounts 45

2.2 Performing a New Installation 47
Performing Initial Setup Steps 47 Installing a New SQL Server Installation 49

2.3 Upgrading Reporting Services 53
Planning the Upgrade Process 53 Working with the SQL Server 2008 Upgrade
Advisor 55 Upgrading a Reporting Services Installation 57

2.4 Performing Initial Configuration 58
Testing the Reporting Services Installation 58 Configuring Reporting
Services URLs 61 Additional Configuration Steps 67

2.5 Summary 72
2.6 Resources 73

CONTENTS iv

PART 2 THE REPORT DESIGNER 75

3 Report Design Fundamentals 77
3.1 Designing for Report Design 77

Understanding the Report Authoring Cycle 77 Understanding Report Designers 80
3.2 Working with Report Server Projects 83

Business Intelligence Development Studio vs. Visual Studio 83
Performing Project Tasks 83

3.3 Authoring a Basic Report 88
Getting Started in Report Designer 88 Working with Data 92 Working with
Report Parameters 96 Understanding Report Items 97 Understanding
Expressions 99 Understanding Collections 101 Understanding Functions 105
The Anatomy of a Textbox 106 Designing the Report Layout109

3.4 Auto-generating Report Definitions 117
Using the Report Wizard 117 Importing Reports from Microsoft Access 120

3.5 Summary 121
3.6 Resources 121

4 Designing Data Access 122
4.1 Understanding Data Access 122

Understanding Data Architecture 122 Understanding Data Providers 124
4.2 Connecting to Data 126

Working with Shared Data Sources 126 Working with Report-Specific Data
Sources 131 Using Transactions 134

4.3 Working with Datasets 136
Understanding the Dataset Definition 137 Using the Generic Query Designer 137
Using the Graphical Query Designer 140 Filtering Datasets 142
Working with Stored Procedures 143

4.4 Working with Report Parameters 147
Understanding Report Parameters 147 Designing a Parameterized Report 149
Securing Reports with Parameters 156

4.5 Working with Other Data Sources 157
Using Microsoft Access 157 Working with XML Data 159 Retrieving Data from
Integration Services 161 Using a .NET Framework Data Provider 163

4.6 Summary 165
4.7 Resources 166

5 Designing Tablix Reports 167
5.1 Designing Tabular Reports 167

The Anatomy of a Table Region 167 Designing a Stepped Report169 Working
with Advanced Grouping Options 177 Implementing a Balance Sheet Report 180

5.2 Designing Crosstab Reports 182
The Anatomy of the Matrix Region 183 Working with Dynamic Column
Groups185 Working with Static Groups and Totals186
Implementing Adjacent Groups189

CONTENTS v

 5.3 Designing Freeform Reports 191

The Anatomy of the List Region 192 Designing Freeform Layout193
Working with Subreports 195 Implementing Multicolumn Reports 197

5.4 Implementing Interactive Reports 199
Understanding Report Interactivity 199 Implementing Toggled Visibility 200
Implementing Hyperlink Actions 202 Implementing Interactive Sorting 207
Implementing a Document Map 211

5.5 Summary 212
5.6 Resources 212

6 Designing for Data Visualization 213
6.1 Designing Chart Reports 213

Understanding the Chart Region 213 The Anatomy of a Chart Region 215
Designing a Column Chart218 Designing a Line Chart223

6.2 Working with Chart Types 225
Histogram Charts 226 Pareto Charts 227 Three-Dimensional Column Charts 228
Bar Charts 230 Shape Charts 232 Area Charts 234 Range Charts 236
Scatter Charts 237 Polar Charts 239

6.3 Designing Gauge Reports 240
Understanding the Gauge Region 241 Implementing a Radial Gauge242
Implementing a Linear Gauge 246 Combining Charts and Gauges 248
Implementing Sparklines 249

6.4 Summary 252
6.5 Resources 252

7 Advanced Report Design 253
7.1 Designing For Rich Formatting 253

Understanding Rich Formatting 253 Implementing Mail Merge Reports 255
7.2 Designing For Report Output 257

Understanding Report Renderers 257 Working with Report Renderers 260
7.3 Extending Reports with Custom Code 265

Understanding Custom Code 266 Working with Embedded Code 267 Working
with External Code 271 Securing Custom Code 275 Debugging Custom Code 280

7.4 Report Design Challenges and Solutions 282
Working with Variables 282 Working with External Images 285 Passing
Multivalued Parameters to Stored Procedures 288 Localizing Reports 289
Generating RDL Programmatically 293

7.5 Summary 294
7.6 Resources 295

PART 3 THE REPORT BUILDER 297

8 Building Report Models 299
8.1 Understanding Report Builder 1.0 299

The Report Builder Architecture 299 Understanding Report Models 301
Comparing Report Models and UDM 303

CONTENTS vi

8.2 Implementing Report Models 305
Working with Data 306 Generating the Raw Model 313

8.3 Refining Report Models 318
Working with Entities and Fields 318 Advanced Report Modeling 326
Dealing with Changes 332 Deploying Report Models 335

8.4 Working with Analysis Services Models 335
Generating Report Models from Analysis Services 336 Understanding Analysis
Services Limitations 337

8.5 Summary 338
8.6 Resources 338

9 Authoring Ad Hoc Reports 339
9.1 Understanding Report Builder 1.0 Client 339

Understanding Features 339 Deploying Report Builder 1.0 Client 341
9.2 Designing Ad Hoc Reports 343

Authoring Table Reports 343 Authoring Matrix Reports 352 Designing Chart
Reports 356 Authoring OLAP Reports 358

9.3 Advanced Ad Hoc Reporting 360
Working with Filters and Formulas 360 Working with Report Model Data Sources 365
Implementing Custom Drillthrough Reports 368 Capturing Native Queries 370

9.4 Securing Report Builder Models 372
Granting Report Builder Access 372 Implementing Model Item Security 374
Implementing Data Security 375

9.5 Summary 377
9.6 Resources 377

10 Previewing Report Builder 2.0 378
10.1 Understanding Report Builder 2.0 378

Introducing Report Builder 2.0 Environment 379 Understanding Report Builder 2.0
Features 381

10.2 Authoring an OLAP Report 383
Getting Started with Report Builder 2.0 384 Configuring the Report Data 385
Designing the Report 387

10.3 Authoring a Relational Report 392
Configuring the Report Data 393 Designing the Report Layout 395

10.4 Summary 398
10.5 Resources 398

PART 4 MANAGEMENT 399

11 Management Fundamentals 401
11.1 Understanding Report Management 401

Understanding Report Management Tools 401 Understanding the Report Server
Service 405 Managing the Report Server 406

CONTENTS vii

11.3 Managing Report Server Content 411
Understanding Report Server Content 411 Managing Folders 412
Managing Data Sources 415 Managing Reports 418

11.4 Managing Security 422
Understanding Report Server Security 422 Granting Administrator Access 424
Granting User Access 427 Viewing Security Policies 428

11.5 Summary 430
11.6 Resources 430

12 Managing Report Execution and Subscriptions 431
12.1 Managing Report Execution 431

Understanding Report Execution Options 431 Managing Execution Sessions 432
Managing Cache Snapshots 434 Managing Execution Snapshots 438
Managing Report Execution Timeouts 442

12.2 Managing Subscriptions 443
Understanding Subscriptions 443 Managing Standard Subscriptions 445
Managing Data-Driven Subscriptions 452

12.3 Summary 457
12.4 Resources 457

13 Advanced Report Management 458
13.1 Programming Report Management 458

Understanding the Management API 458 Tracing Web Methods 460 Programming
Management Tasks 462 Scripting Management Tasks 467
Using the WMI Provider 469

13.2 Monitoring Reporting Services 472
Understanding the Reporting Services Log Files 472 Working with the
Execution Log 472 Working with the Trace Log 474 Working with the
HTTP Log 477 Monitoring Server Performance 478

13.3 Configuring Memory Utilization 480
Understanding Memory Zones 480 Understanding Memory Configuration Settings 481

13.4 Managing the Report Server Database 482
Installing the Source Database 482 Changing the Report Server Catalog 483

13.5 Summary 485
13.6 Resources 486

PART 5 INTEGRATION 487

14 Integration Fundamentals 489
14.1 Understanding Reporting Services Integration 489

Understanding Integration Options 490 Choosing an Integration Approach 492
14.2 Working with URL Access 493

Understanding URL Syntax 493 Requesting Catalog Items 494
Requesting Reports 496 Working with Device Information Settings 497

14.3 Working with the Report Server Web Service 501
Getting Started in Report Server Web Service 501 Rendering Reports 503

CONTENTS viii

14.4 Putting It All Together 507
Programming Report Server Web Service 507 Programming URL Access 510

14.5 Summary 512
14.6 Resources 512

15 Reporting For .NET Clients 513
15.1 Understanding Embedded Reporting 513

Understanding the ReportViewer Controls 513 Understanding Report
Processing Modes 516

15.2 Reporting for Windows Forms Clients 518
Getting Started with the ReportViewer Windows Forms Control 518 Working with
Remote Processing Mode 520 Working with Local Processing Mode 525

15.3 Reporting for Web Clients 533
Understanding the ReportViewer Web Server Control 533 Embedding Reports
in Web Applications 535

15.4 Reporting for Rich Internet Applications 540
Understanding Microsoft Silverlight 541 Implementing the User Interface 543
Report-enabling Silverlight Applications 547

15.5 Summary 551
15.6 Resources 551

16 Integrating with Analysis Services 552
16.1 Understanding Analysis Services 552

Understanding OLAP 552 Understanding Data Mining 556 Historical and Trend
Reporting 557 Introducing Analysis Services and Reporting Services Integration 560

16.2 Authoring OLAP Reports 564
Authoring a Basic Report 564 Working with Filters and Parameters 569 Working
with Calculated Members 575 Working with Server Aggregates 577 Implementing
Detailed Reports 579 Working with the OLE DB Provider for Analysis Services 581
Working with Parent-Child Hierarchies 584

16.3 Extending Reports with End-User Features 586
Working with Extended Properties 586 Working with Reporting Actions 589
Localizing Reports with Translations 591

16.4 Authoring Data Mining Reports 595
Understanding the Targeted Mailing Data Mining Model 595 Implementing
"Smart" Reports 597

16.5 Summary 600
16.6 Resources 600

17 Integrating with SharePoint 601
17.1 Understanding SharePoint Integration 601

Understanding SharePoint Products and Technologies 601 Understanding Partial
Integration 603 Understanding Full Integration 607

17.2 Configuring SharePoint Integration 612
Performing Initial Installation 612 Configuring Reporting Services
Integration Settings 615

CONTENTS ix

17.3 Managing Report Content 618
Uploading Reports 619 Viewing Reports 623
Working with SharePoint Document Management Features 624

17.4 Implementing Web Part Pages 626
Implementing Dashboard Pages 626 Implementing Report Navigation 630
Working with Filter Web Parts 631

17.5 Summary 634
17.6 Resources 634

PART 6 EXTENSIBILITY 635

18 Extending Data Access 637
18.1 Understanding Custom Data Processing Extensions 637

Choosing a Data Integration Approach 638 Introducing the Dataset Custom Data
Processing Extension 639

18.2 Using Custom Dataset Extensions with Reports 640
Using the Extension at Design Time 640 Understanding Runtime Interaction 644

18.3 Implementing Custom Data Processing Extensions 645
Understanding the Classes and Interfaces 645 Implementing the Dataset
Query Designer 649

18.4 Deploying and Debugging 651
Design-time Deployment 652 Report Server Deployment 653 Debugging Custom
Data Processing Extensions 653

18.5 Summary 655
18.6 Resources 655

19 Customizing Security 656
19.1 Introducing Custom Security 656

When to Use Custom Security 656 Understanding Custom Security Extensions 658
Understanding Runtime Interaction 659

19.2 Implementing Custom Security Extensions 660
Introducing the Adventure Works Web Reporter 661 Implementing the
Authentication Extension 662 Implementing Authorization Extension 664
Implementing Logon Pages 666 Deploying Custom Security Extensions 667
Working with the Custom Security Extension 670

19.3 Implementing Role Membership 672
Understanding Role Membership 672 Implementing Database Schema 673
Implementing Role Authentication 673 Implementing Role Authorization 674

19.4 Integrating Custom Security 677
Custom Security vs. Trusted Subsystem 677 Integrating Custom Security 678

19.5 Troubleshooting Custom Security 679
Debugging the Custom Security Extension 680 Troubleshooting Tips 680

19.6 Summary 683
19.7 Resources 683

CONTENTS x

20 Extending Report Delivery 684
20.1 Understanding Custom Subscription Delivery 684

Understanding Custom Delivery Extensions 685 Introducing the Web Service
Delivery Extension 687

20.2 Implementing Custom Report Delivery 691
Implementing the Custom Delivery Extension 691 Implementing the
Web Control 695

20.3 Deploying Custom Delivery Extensions 696
Deploying to the Report Server 696 Deploying to Report Manager 697
Debugging Custom Delivery Extensions 697

20.4 Summary 699
20.5 Resources 699

21 Implementing Custom Report Items 700
21.1 Understanding Custom Report Items 700

What is a Custom Report Item? 700Understanding the Design-Time Component 701
Understanding the Run-Time Component 703 Introducing the Progress Tracker
Custom Report Item 704

21.2 Implementing Custom Report Items 706
Implementing the Windows Control 706 Implementing the
Design-Time Component 709 Implementing the Run-Time Component 715

21.3 Working with Progress Tracker 718
Deploying Progress Tracker 718 Debugging Progress Tracker 721

21.4 Understanding Custom Data Regions 722
Understanding the CustomData Object 722 Using CustomData at Design Time 722

21.5 Summary 724
21.6 Resources 724

22 Customizing Report Definitions 725
22.1 Understanding Report Definition Customization Extensions 725

What is a Report Definition Customization Extension? 725
Understanding Programming Interfaces 727

22.2 Working with the Extension Sample 728
Implementing a Report Definition Customization Solution 729
Deploying and Testing 732

22.3 Summary 735

 master resource list 736

 index 738

xi

preface
Reporting Services is cool! "What's so cool about a technology so mundane?" you may ask. To
me, the most exciting part about Reporting Services is that it can bring dormant data back to
life easily. To this extent, you can think of Reporting Services as the magic wand on the book
front cover. With a few flicks (OK, mouse clicks), you can turn raw data into a cool report
that conveys an important message. Another aspect I like about Reporting Services is its flexi-
ble and open architecture which helped me implement solutions where other "mature" report-
ing tools fell short.

I have to admit I've always been fascinated with technologies that facilitate data manage-
ment and analytics. When I studied database systems in my university years, data could fit on
a 360K floppy diskette, so it wasn't that difficult to make sense of it. Today, it's not uncom-
mon for organizations to accumulate gigabytes, if not terabytes, of data. So, the real issue be-
comes not capturing the data but presenting it efficiently in a format that is easy to digest.

This is where Microsoft Reporting Services and the Microsoft Business Intelligence Plat-
form could help. By letting you organize your data assets and build an efficient reporting layer
on top of them, they help you to get out what was put in. As a result, you spend less time
searching for information and have more time to act upon it and make decisions.

Over the past four years, I've worked with Reporting Services extensively and designed
business intelligence solutions that used Reporting Services in one form or another. I've been
also heavily involved in helping the technical communities to get up to speed with this tech-
nology through discussion lists, events, training classes, and publications. It was evident that
there are a myriad of ways in which report authors, database administrators, and developers
are using Reporting Services. Many of you are eager to push this technology to its limits and
customize it to your needs.

I decided to write this book to share with you the knowledge I harvested from my work
with Reporting Services and help you use it efficiently. As its name suggests, the main objec-
tive of Applied Microsoft SQL Server 2008 Reporting Services is to teach you the practical skills
you need to implement Reporting Services-centric business intelligence solutions. I worked
closely with the Reporting Services team to provide an authoritative yet independent view of
the technology. OK, I'll admit my little claim to fame… I secretly hope that I contributed at
least a tiny bit to what is now Reporting Services.

Although this book is designed as a comprehensive guide to Reporting Services, it is likely
that you may have questions that go beyond what the book covers. As with my previous
books, I am committed to help my readers with book-related questions via the book discus-
sion list on my personal web site www.prologika.com.

In archeology, the Rosetta Stone was the key that solved the mysteries of Egyptian hierog-
lyphics. I hope that Reporting Services, code-named Rosetta, will give you the tool you need
to unlock the secret of data and unleash the power hidden within. Happy reporting!

Teo Lachev
Atlanta, GA

PREFACE xii

acknowledgements
Writing this book has been a lot of fun and a lot of work. It would not have been a reality
without the help of many people to whom I am thankful. First and foremost, I would like to
thank my family for their ongoing support. They had to tolerate my long absence and put up
with more than they had to. To my family I owe my greatest thanks.

Here is how my 5-year old son,
Martin, and 8-year old daughter,
Maya, portray their absent father
during his book writing project. I
can assure you that I wasn't
smiling all the time…

I've been privileged to enjoy close relationships with the Reporting Services team for the past
five years. If it wasn't for their support, this book wouldn't have been a reality. Not only did
they not mind my constant pestering but were even more eager to help me understand the
"dark side" of Reporting Services! Special thanks to Alex Gorev, Brian Hartman, Brian Welck-
er, Chris Baldwin, Prash Shirolkar, and Robert Bruckner for reviewing selected parts of the
book and ensuring that it is as technically accurate as possible.

Writing a technical book while the product is still in development is like trying to hit a
moving target because the technology is constantly evolving. Kudos to my technical reviewer,
Alexzander Nepomnjashiy (Alex), for meticulously reviewing the manuscript consistency and
code accuracy. As with my previous book, Alex helped me tremendously in transitioning the
book from the early builds of Reporting Services to its final release. Thanks to Andy Potter
from Solid Quality Mentors for reviewing chapter 17 "Integrating with SharePoint".

Many thanks to my fellow Reporting Services MVP, Bruce Loehle-Conger, for reading the
book manuscript and providing valuable feedback and encouragement. Bruce helped me im-
prove the book quality by sharing his extensive experience and suggestions for improvement.

Thanks to my editor, Heidi Steen, from the SQL Server User Education team for not losing
faith that my incoherent readings could turn into something readable. Thank you for taking
an extra mile and going beyond just checking the grammar. Your commitment and work was
outstanding! My copyeditor, Deborah Dinzes, did a great job in polishing the manuscript.
Thank you for delivering the final edit on time despite the brutal schedule!

Finally, thank you for purchasing this book! I sincerely hope that you will find it as enjoy-
able to read as it has been for me to write!

PREFACE xiii

about the book
The book doesn't assume any prior experience with Microsoft Reporting Services. It is de-
signed as an easy-to-follow guide for navigating safely the most intricate aspects of the tech-
nology.

Part 1, Introduction, provides a panoramic overview of Microsoft SQL Server 2008 Report-
ing Services. Chapter1, Introducing Reporting Services, discusses the Reporting Services feature
set and how it fits into the Microsoft Business Intelligence Platform. Chapter 2, Installing Re-
porting Services, explains how to install and upgrade Reporting Services from previous releases.

Part 2, The Report Designer, teaches report authors how to design reports with Report De-
signer, which is Microsoft's premium report authoring tool. Chapter 3, Report Design Funda-
mentals, introduces you to the report design tools and walks you through the steps of
designing basic reports. In chapter 4, Designing Data Access, you'll learn different ways to inte-
grate Reporting Services with a variety of data sources. Chapter 5, Designing Tablix Reports,
shows you how to leverage the innovative Tablix region to author tabular, crosstab, and free-
form reports. In chapter 6, Designing for Data Visualization, you'll be introduced to the new
charting enhancements that can help you jazz up your reports with charts and gauges. Chap-
ter 7, Advanced Report Designer, demonstrates how you can enhance your reports with custom
code and provides practical solutions to common design challenges.

Part 3, The Report Builder, shows you how to empower business users to create their own
reports. Chapter 8 gives you the necessary technical background to build Report Builder mod-
els that abstract data sources. In chapter 9, Authoring Ad Hoc Reports, you'll use Report Builder
client to author simple reports from these models. Chapter 10, Previewing Report Builder 2.0,
provides a preview of the next-generation designer for ad hoc reporting.

Part 4, Management, teaches report administrators the ropes of managing the report server.
Chapter 11, Management Fundamentals, introduces you to common management tasks, includ-
ing managing and securing the report catalog. Chapter 12, Managing Report Execution and Sub-
scriptions, shows you how to optimize report execution and deliver reports via subscriptions.
In chapter 13, Advanced Report Management, you'll learn how to program management tasks
and monitor the report server.

Part 5, Integration, shows developers how to integrate Reporting Services with external ap-
plications. Chapter 14, Integration Fundamentals, explains the two options for integrating Re-
porting Services—URL access and Web service. Chapter 15, Reporting for .NET Clients,
provides code examples for report-enabling Windows Forms and web-based applications.
Chapter 16, Integrating with Analysis Services, shows you how to implement OLAP reports. In
chapter 17, Integrating with SharePoint, you'll learn how to integrate Reporting Services with
SharePoint to build dashboard pages and report portals.

Part 6, Extensibility, teaches developers how to extend Reporting Services to meet more
advanced reporting requirements. In chapter 18, Extending Data Access, you'll implement a
custom data extension to bind reports to application datasets. Chapter 19, Customizing Securi-
ty, shows you how to replace the default Windows-based security with custom solution for
authenticating and authorizing users. Chapter 20, Extending Report Delivery, demonstrates ex-
tending the report server to deliver reports to a Web service. In chapter 21, Building Custom
Report Items, you'll implement a custom progress tracker report item. Finally, chapter 22, Cus-
tomizing Report Definitions, shows you how to change the report definition at run time.

PREFACE xiv

source code
Table 1 lists the software requirements to run all the code samples included in the book.

Table 1 Software requirements for working with the book source code

Software Purpose

SQL Server 2008 Developer or Enterprise Edition Both editions are feature-complete. The only difference is that the Developer
Edition is not licensed for production deployments.

Microsoft Visual Studio 2008 To work with the code samples in chapters 7, 13, 14, 15, 18, 19, 20, 21, and 22.

Microsoft SharePoint 3.0 To implement SharePoint integration in chapter 17.

Microsoft Excel 2007 To browse the Adventure Works cube in chapter 16.

Microsoft Silverlight 2.0 Beta 1 and Expression Blend 2.5 To work with the Silverlight Reporter demo in chapter 15.

The code samples can be downloaded from the book web page at http://prologika.com/Books/-
0976635313/Book.aspx. After downloading the zip file, extract it to any folder on your hard
drive and you'll see a folder for each chapter that contains the source code for that chapter.

NOTE The data source settings of the sample reports in this book assume that all SQL Server 2008 services are
installed on the default instance (MSSQLSERVER) on your local computer. If your setup is different, such as you in-
stalled SQL Server or a named instance, you need to update all data sources to reflect your specific connection details.

 Installing the AdventureWorks databases
The book sample reports use the AdventureWorks2008 and AdventureWorksDW2008 data-
bases, which are available on codeplex.com. After installing SQL Server 2008 (see chapter 2),
download and install the AdventureWorks databases as follows:

1. Open the Sample Databases for Microsoft SQL Server 2008 webpage
(http://tinyurl.com/5j25lx).

2. Click the appropriate installer link to download and install the AdventureWorks2008 database
for the targeted hardware platform. For example, to install the 32-bit version of the Adventu-
reWorks2008 database, click SQL2008.AdventureWorks_OLTP_DB_v2008.x86.msi.By de-
fault, the setup program installs the database backup file (AdventureWorks2008.BAK) in
\Program Files\Microsoft SQL Server\100\Tools\Samples\AdventureWorks 2008 OLTP\.

3. On the Microsoft SQL Server Product Samples Database webpage for SQL Server 2008, click
the appropriate installer link to download and install the AdventureWorksDW2008 database
based on the targeted hardware platform. For example, to install the 32-bit version of Adven-
tureWorksDW2008, click the SQL2008.AdventureWorks_DW_BI_v2008.x86.msi link. By
default, the setup program installs the database backup file (AdventureWorksDW2008.BAK)
in the \Program Files\Microsoft SQL Server\100\Tools\Samples\AdventureWorks 2008 Data
Warehouse folder.

4. Open the SQL Server 2008 Database Product Samples webpage (http://www.codeplex.com/-
MSFTDBProdSamples). Scroll down to the bottom of the page and you will see Details links

PREFACE xv

next the AdventureWorks2008 and AdventureWorksDW2008 databases. Follow the instruc-
tions in the Details page for each database to restore the database backup file.

The Report Builder chapters (8 and 9) use the SQL Server 2005 AdventureWorks database,
which you can install as follows:

5. Go to the SQL Server 2005 SP2a webpage (http://tinyurl.com/2xzkf)7and click the Adventu-
reWorksDB.msi link to install the AdventureWorks database.

6. Open SQL Server Management Studio and connect to your SQL Server instance.
7. In Object Explorer, expand the Databases folder. You should see AdventureWorks, Adventu-

reWorks2008 and AdventureWorksDW2008 databases, as shown below:

SQL Server Management Studio
shows the SQL Server databases
you need to run the report samples.

 Installing the AdventureWorks reports
Several report management practices reference the Adventure Works sample reports provided
by Microsoft. Follow these steps to install these reports:

1. Navigate to the AdventureWorks Sample Reports folder in the book source code and double-
click the AdventureWorks Sample Reports.sln solution file to open it in the SQL Server 2008
Business Intelligence Studio.

2. In Solution Explorer, right-click the AdventureWorks Sample Reports project node and click
Properties.

3. In the Property Pages dialog box, verify that the default TargetServerURL setting
(http://localhost/reportserver) matches your Report Server Web service URL. If you are not
sure what the Report Server Web service URL is, open Reporting Services Configuration Man-
ager from the Microsoft SQL Server 2008 Configuration Tools program group and click the
Web Service URL tab. Update the TargetServerURL setting if needed.

4. Close the Property Pages dialog box. In the Solution Explorer, right-click the AdventureWorks
Sample Reports project node and click Deploy to deploy the reports to the report server.

NOTE Microsoft is working on an updated version of the AdventureWorks Sample Reports that use the Adventure-
Works2008 database. The updated samples will be available for download on http://www.codeplex.com/-
MSFTRSProdSamples. The updated reports should be able to run side by side with the sample reports included in the
book source code. If you decide to use the SQL Server 2008 samples, you may find that the practice steps differ
somewhat from your setup. For example, the data source name will be AdventureWorks2008 instead of Adventure-
Works. To avoid this, use the AdventureWorks Sample Reports project included in the book source code.

 Installing the AdventureWorks cube
Several report samples integrate with the Adventure Works Analysis Services cube. Follow
these steps to install the cube:

PREFACE xvi

1. When you install the AdventureWorksDW2008 database, the setup program installs the cube
source code in the \Program Files\Microsoft SQL Server\100\Tools\Samples\AdventureWorks
2008 Analysis Services Project\ folder. Below this folder, you will find Standard and Enterprise
folders. Use the appropriate folder depending on the SQL Server 2008 edition you have.

2. Open the Adventure Works solution (Adventure Works.sln) in Business Intelligence Devel-
opment Studio. In the Solution Explorer, right-click the project node and choose Properties.

3. In the Property Pages dialog box, click the Deployment tab. In the Server field, enter the Anal-
ysis Services instance to which the project will be deployed, such as localhost, if you have in-
stalled Analysis Services on the default instance on your local server. Click OK.

4. In Solution Explorer, right-click the project node and click Deploy to deploy the project.
5. To verify that the Adventure Works cube is operational, open SQL Server Management Studio

and connect to the Analysis Services instance you specified in step 3. Expand the Databases
folder. You should see the Adventure Works DW 2008 Analysis Services database.

 About the video demos
Report authoring is UI-intensive. I captured video demos to help you stay on track when a
picture is worth more than a thousand words. The video demos are bonus material to the
book. The play symbol () next to a section title indicates that there is a video demo for this
section. Video demos are provided for a subset of the report authoring practices and are not
intended to exactly match the practice steps included in the book.

The book web page (http://prologika.com/Books/0976635313/Book.aspx) provides a link to the
video demos, which you can view online.

 Reporting errors
This book has no bugs! We both know that this statement is overambitious to say the least.
Please submit bug reports to the book discussion list on www.prologika.com. Confirmed bugs
and inaccuracies will be published in the book errata document. A link to the errata document
is provided in the book web page.

about the author
Teo Lachev is a developer, author, and mentor who has been working with Reporting Services
since its early beta days. He currently works as a technical architect for a leading financial in-
stitution where he designs and implements Business Intelligence solutions for the banking
industry. Teo has been a Microsoft SQL Server MVP since 2004 for his contribution to the
technical community. Teo is also a Microsoft Certified Solution Developer (MCSD) and Micro-
soft Certified Trainer (MCT). He is the author of Applied Microsoft Analysis Services 2005.

Your purchase of Applied Microsoft SQL Server 2008 Reporting Services includes free access
to a web forum sponsored by the author, where you can make comments about the book, ask
book-related technical questions, and receive help from the author and the community. The
author is not committed to a specific amount of participation or successful resolution of the
questions posted and his participation remains entirely voluntary. You can subscribe to the
forum from the author’s personal website www.prologika.com.

1

 Introduction
If you are new to Reporting Services, welcome! This part of the book provides the essential
fundamentals to introduce you to Reporting Services and help you understand its capabilities
and features. Veteran Reporting Services users should benefit from it too as it discusses impor-
tant enhancements in the product architecture and how to upgrade from previous versions.

Now in its third release, Reporting Services has evolved into a mature and versatile report-
ing tool. Organizations can leverage Reporting Services and the Microsoft Business Intelligence
Platform to implement a variety of reporting solutions, including enterprise reporting, Internet
reporting, ad hoc reporting, and embedding reports in custom applications.

Reporting Services 2008 brings important tool and architectural changes. Microsoft has
redesigned Report Designer to make it more powerful and intuitive. A brand new tablix region
was introduced to help you create flexible tabular, crosstab, and free-form reports. The chart
region has undergone a complete overhaul to add more features and chart types. The textbox
report item has been extended to support multiple bands of text and rich formatting. On the
architecture side of things, Reporting Services is no longer dependent on IIS. Microsoft has
redesigned the report processing and rendering engine to make Reporting Services more scal-
able and feature-rich.

Reporting Services 2008 ships as a feature component of SQL Server 2008. Chapter 2
provides the necessary background to help you perform a new installation of Reporting Ser-
vices or upgrade from previous releases.

PP AA RR TT

3

CChhaapptteerr 11

Introducing Reporting Services

1.1 Understanding Reporting Services 3
1.2 Overview of Reporting Services 17
1.3 The Reporting Services Architecture 25

1.4 Applied Reporting Services 30
1.5 Summary 39
1.6 Resources 39

I like to think about reporting as the last and most important stage of the long and arduous
process for collecting, storing, transforming, and manipulating data. It is the presentation layer
business users rely on to quickly make sense of the mountains of data that piles up every day.
If you think of reporting like I do, then you can probably agree that a report is much more
than a pretty face to data. Reports play a critical role in helping a company understand its cus-
tomers, markets, and performance.

Now in its third major release, Microsoft SQL Server 2008 Reporting Services has evolved
into a sophisticated reporting platform that gives information workers a powerful means to
present and analyze data consistently, quickly, and reliably. Reporting Services is the "magic
wand" you need to turn enterprise data into meaningful reports that can be shared easily with
co-workers, customers, and partners.

This chapter gives you a panoramic view of Microsoft SQL Server 2008 Reporting Servic-
es. I'll start by introducing you to this tool and explaining how it fits into the Microsoft Busi-
ness Intelligence stack. Then, I'll take you on a tour of the Reporting Services features and
tools. I'll help you understand the product architecture and programming interfaces so that
you have the necessary technical background to tackle the more advanced features later on in
this book. Finally, I'll walk you through a hands-on lab that will demonstrate how you can use
Reporting Services to author, manage, and deliver reports.

1.1 Understanding Reporting Services
The processes of collecting and analyzing information assets to derive knowledge from data
are typically referred to as business intelligence, or BI for short. Simply put, Reporting Services
can be viewed as a business intelligence tool for authoring, managing, and delivering reports.

DEFINITION Reporting Services is a server-based reporting platform for the creation, management, and delivery of
standard and ad hoc reports. Reporting Services ships as a component of SQL Server.

There are several terms in this definition that may be unfamiliar to readers who are new to
Reporting Services, so let's take a closer look at each part of the definition. First, Reporting
Services is server-based. This means that you install Reporting Services on a dedicated server
which handles report requests from clients. A client can be an end user using a browser to
view a report or an application that requests reports from the server.

Reporting Services is also a platform, which means you can build custom solutions, appli-
cations, and extensions on top of a programmatic layer. All of the tools and applications that

CHAPTER 1 4

Reporting Services provides out of the box are created using public APIs that are available to
anyone. Reporting Services includes tools to let developers, power users, and business users
author reports. Deployed reports can be centrally managed on the server. Finally, end users
can view the reports on demand or via subscriptions.

1.1.1 Understanding Reporting Services Reports
Now, let's clarify what a Reporting Services report really is. At this point, you might be think-
ing, "Come on, everybody knows what a report is." Indeed, reports are so common that Wiki-
pedia doesn't even include a definition of a software report. However, not all reports are equal,
so it makes sense to clarify this term right from the start.

 What is a Reporting Services report?
Here is my unassuming definition of a Reporting Services report.

DEFINITION A Reporting Services report is a predefined, read-only, system-generated view of data which is human
readable and addresses a specific data analytics need.

What a mouthful of a definition! Let's parse it one bit at the time. First, Reporting Services
reports have a predefined schema. What I mean by this is that the report presentation is al-
ways bound to the report definition that the author has designed. True, some export formats
(HTML for instance) support interactive features, such as drilling through a field to jump to
another report, conditional visibility to expand hidden sections, interactive sorting, and so on.
However, for the most part, the report presentation is fixed. To modify it, you need to open
the report in design mode, make the required layout changes, and re-deploy the report.

Reporting Services reports contain read-only data. This means that Reporting Services
doesn't natively support writing back to the database to update the underlying data. For ex-
ample, after reviewing a report and realizing that a sales figure is wrong, you cannot update it
directly from within the report.

Reporting Services reports are system-generated. When you request a report, Reporting
Services extracts data from the data source, combines data with the report layout, and renders
the report. Unlike Excel, it is almost never possible to reference arbitrary cells in a Reporting
Services report. For example, you cannot reference the grand total amount in one section from
another section in the report. This is because in Reporting Services the "cells" on the report are
not known at design time. Remember this when you are asked to convert an Excel report to
Reporting Services. This may not be easy because these two tools are vastly different.

Finally, Reporting Services reports must be human readable and address a specific data
analytics need. For example, a business analyst may need to analyze how product sales change
over time. To meet this requirement, the report author can design a standard report that ex-
tracts data from the sales system and presents it in a human readable form, such as in a table
or a chart.

1.1.2 Why Use Reporting Services?
Reporting Services can help you implement a wide variety of reporting scenarios. For example,
Reporting Services can address two of the most pervasive reporting needs in every organiza-
tion: standard reporting and ad hoc reporting.

INTRODUCING MICROSOFT REPORTING SERVICES 2008 5

 Standard reporting
A standard report is a predefined (canned) report whose layout is not meant to be changed by
end users. Sales by Product marketing reports and Balance Sheet financial reports are good
examples of standard reports. Standard reports can be rather sophisticated. For instance, the
Adventure Works Sales report (see Figure 1.1) features a standard report that has multiple
table and chart sections.

Standard reports are usually authored by developers and power users who are familiar with
the database schema and know how to create queries and expressions. Standard reports are
usually deployed to a web portal, such as a SharePoint portal, or ship with custom applica-
tions.

 Ad hoc reporting
Ad hoc reporting empowers business users to create their own reports. Since standard reports
take significant time and effort to produce, many organizations are looking for ways to let end
users create specific, customized reports.

Reporting Services provides ad hoc reporting features that address the business reporting
needs of less technically savvy users. End users can build simple reports without prior know-
ledge of the underlying database schema or query language. For example, Figure 1.2 shows a
crosstab report which I authored quickly using the Report Builder 1.0 component of Report-
ing Services.

This report shows the sales order data broken down by product category on rows and by
years on columns. In comparison with standard reports, ad hoc reports typically have simpler
report layouts. End users would typically author such reports for private use, although Report-
ing Services lets users share reports if needed.

Figure 1.1 Reporting
Services reports can dis-
play multiple sections side
by side and each section
can be bound to a differ-
ent dataset.

CHAPTER 1 6

Figure 1.2 Business users can
create ad hoc reports that address
their specific data analytics needs.

Besides standard and ad hoc reporting, Reporting Services can help you implement other re-
porting solutions. Let's mention some of the most popular ones.

 Enterprise reporting
Suppose that your company would like to implement an enterprise-wide reporting system
where reports are centrally managed and available to anyone on the corporate intranet who is
authorized to view them. Because Reporting Services is a server-based platform, report authors
can deploy reports to a designated report server.

The report administrator would then define security policies that enforce restricted access
to these reports as needed. Authorized users can request the reports on demand, analyze their
data, and make decisions. Users can also automate report delivery by subscribing to reports on
a schedule. For example, a sales manager can subscribe to a Monthly Sales report to receive it
on a monthly basis via e-mail. When the schedule event occurs, Reporting Services processes
and e-mails the report to the sales manager.

 Digital dashboards and portals
Many organizations build digital dashboards and web-based portals to gauge business perfor-
mance and let users collaborate online. Information workers can use Microsoft Windows
SharePoint Services or Microsoft Office SharePoint Server to assemble such solutions by creat-
ing personalized dashboard pages consisting of web parts.

Suppose that your organization would like to deploy strategic reports to the corporate
SharePoint-based portal. You can configure Reporting Services to integrate seamlessly with
SharePoint. From an end-user perspective, reports appear just like any other documents dep-
loyed to the portal. For example, users can upload a report, check the report in or out, version
reports, change report parameters and execution properties, and so on. Users can click a re-
port to view the report on demand.

With a few clicks, you can assemble a SharePoint dashboard page with multiple report
views. For example, Figure 1.3 shows a dashboard page that displays two reports side-by-side.
The left report shows the company sales as a chart. The right report shows the value of the
Product Gross Profit Margin KPI. Dashboard pages are very powerful as they help the execu-
tive management team quickly understand the company business by just glancing at the page.

INTRODUCING MICROSOFT REPORTING SERVICES 2008 7

Figure 1.3 A dashboard page can help the executive management quickly understand the company business.

 Web-based reporting
In keeping with the fast pace of the Internet age, everyone wants to have up-to-date informa-
tion by accessing the latest data in real time over the web. Reporting Services reports are web-
enabled by default. Consequently, end users can view a report by requesting its URL in the
browser.

Suppose that Bob, a Vice President of Sales in your company, is frequently on the road and
would like to access the latest sales report from his Pocket PC device. Bob can add the report

Figure 1.4 Reporting Services reports
are web-enabled and can be accessed by
any web-capable device, including com-
pact devices, such as Pocket PC.

CHAPTER 1 8

URL to the Internet Explorer Favorites and request it each time he needs the most current ver-
sion of the report. Figure 1.4 shows the Company Sales report (one of the Reporting Services
sample reports) rendered with the Visual Studio Pocket PC 2003 SE Emulator. In real life, the
report URL may look like this:
http://reports.adventure-works.com/ReportServer?/Sales Reports/Company Sales&rc:Toolbar=false&rc:Zoom=Page Width

The above URL assumes that Reporting Services is deployed on the company's web server and
it is configured for Internet access. Since compact devices have small screens, the report URL
instructs Reporting Services to hide the standard report toolbar and fits the report to the page
width.

 Embedded reporting
Almost all applications require some sort of reporting capability. For example, you may have a
desktop application used to produce operational reports. Or, your company may need to en-
hance its web portal to let online users view reports, such as a report that shows the customer
order history.

Thanks to the Reporting Services open programming interfaces, any web-based applica-
tion can integrate with Reporting Services irrespective of the targeted programming language
and operating system. As noted, a custom application can simply request the report by URL.
Alternatively, developers can use the Report Server Web service if more programmatic control
is needed. Furthermore, adding reporting features to .NET applications is even easier because
Microsoft has provided ReportViewer Windows Forms and Web server controls in Visual Stu-
dio.

1.1.3 A Short History of Reporting Services
Reporting Services has a short but eventful history. Figure 1.5 tracks in chronological order
the major events that have shaped Reporting Services. The black milestones represent the re-
porting technologies that Microsoft acquired to enhance Reporting Services.

Initial development began in 2000. Realizing the need for a modern reporting tool, Micro-
soft quietly formed a team of about 30 members to work on the first release of Reporting Ser-
vices. Almost eight years later, the team has grown to more than 100 members and the
product is widely used as a business reporting solution.

Figure 1.5 The Reporting Services history at a glance.

INTRODUCING MICROSOFT REPORTING SERVICES 2008 9

 Reporting Services 2000
Originally, Microsoft was planning to include Reporting Services as a release feature of SQL
Server 2005. However, due to popular demand, Reporting Services 2000 (code-named Roset-
ta) shipped as a post-release add-on to SQL Server 2000 and it was officially named SQL Serv-
er 2000 Reporting Services.

The product made quick inroads in the business intelligence market and enjoyed wide
adoption and acceptance. However, Reporting Services 2000 was more developer-oriented
and didn't include ad hoc reporting capabilities to let business users author their own reports.
In April 2004, Microsoft acquired a privately-owned company called ActiveViews whose ad
hoc reporting technology later became the bedrock of Report Builder 1.0 technology.

In June 2004, Microsoft released Reporting Services 2000 Service Pack 1, which included
feature and performance improvements, such as the ability to reference external images and
data caching in report preview mode. Reporting Services 2000 Service Pack 2 followed in
April 2005, and brought Report Explorer and Report Viewer SharePoint 2.0 web parts, as well
as an ActiveX print control that provided a rich client-side printing experience.

 SQL Server 2005
The second major release of Reporting Services was bundled with SQL Server 2005 (code
name "Yukon") and it was released in November 2005. It delivered two major enhancements.
Report Builder 1.0 empowered business users to author ad hoc reports from pre-defined
models. Microsoft Visual Studio 2005, which launched at the same time as SQL Server 2005,
introduced the ReportViewer controls to help developers report-enable .NET applications.

SQL Server 2005 Service Pack 1, which followed a few months later, was primarily a
maintenance release. SQL Server 2005 Service Pack 2, however, brought in major architectur-
al enhancements. Realizing the growing popularity of SharePoint-based solutions, Microsoft
extended Reporting Services to support deep integration with Windows SharePoint Services
3.0 and Microsoft Office SharePoint Server 2007.

In May 2007, Microsoft acquired the OfficeWriter technology from SoftArtisans to let us-
ers embed reports inside Microsoft Office 2007 documents. Unfortunately, this feature didn't
make the SQL Server 2008 timeframe and it is slated for a future release. Shortly after, Micro-
soft acquired the Dundas data visualization technology, which provides the basis for new data
visualization features in SQL Server 2008. As a result, SQL Server 2008 Reporting Services
supercharged its graphical presentation capabilities with full-featured charts and gauge con-
trols.

Microsoft unveiled SQL Server 2008 in August 2008. This third major release of Reporting
Services includes several important enhancements which I will discuss next.

1.1.4 What's New in Reporting Services 2008
Due to time constraints, Microsoft couldn't deliver all of the originally planned improvements
in Reporting Services 2008. Nevertheless, the enhancements that did make it should warrant
your interest. A list of the most important enhancements in SQL Server 2008 Reporting Ser-
vices is in order. Don't worry if some of the technical terms are not immediately clear. I will
explain them in detail later on in this chapter.

CHAPTER 1 10

 Tablix data region
Reporting Services 2008 introduces a new report control called Tablix. I dare to predict that
many organizations will upgrade to Reporting Services 2008 just to get this control. Tablix lets
you author versatile table-style reports with multiple row groups and column groups. Tablix
brings in features that were either not supported or difficult to implement in previous releases.

Figure 1.6 The Tablix data region supports stepped layout and side-by-side dynamic column groups.

The Product Sales By Year and Territory report shown in Figure 1.6 demonstrates some of
these features. The report has two dynamic column groups that provide a cross-tab view of
sales by year and territory. The row groups are nested within a single column. By contrast,
Reporting Services 2005 supported only cross-tab reports with row groups that occupied sep-
arate columns. More importantly, row and column groups can now have independent totals. If
you were frustrated by the cross-tab limitations in the previous releases, you will undoubtedly
appreciate the simplicity and flexibility of the Tablix data region. No more green triangles and
InScope hacks in cross-tab reports!

NOTE In previous releases, the Report Designer would display a green triangle in the right top corner of a total
field in a cross-tab (matrix) report. Many developers, including myself, were frustrated because cross-tab totals
supported minimal customization through the InScope function and were limited to the Sum aggregation function
only. With the Tablix data region these limitations simply disappear.

 End-user design enhancements
In this release, Microsoft took a step back and reflected on how to improve the report author-
ing experience. Consequently, Microsoft built a new designer layout surface that simplifies the
report authoring process. Novice users will especially benefit from the new design enhance-
ments, some of which are illustrated in Figure 1.7. This figure shows the report designer that
is included in the SQL Server Business Intelligence Development Studio, which comes with
SQL Server 2008.

INTRODUCING MICROSOFT REPORTING SERVICES 2008 11

Figure 1.7 End-user improvements in the BIDS Report Designer facilitate report authoring.

Report items, such as built-in fields, report parameters, images, data sources, and datasets, are
now conveniently located in a single place—the Report Data window. You can create row and
column groups easily, thanks to the Grouping pane. For example, glancing at the report
shown in Figure 1.7, you can immediately see that the report has two row groups that group
data by product category and subcategory. Creating a new group is a matter of dragging a field
from the Report Data pane and dropping it on the appropriate group pane.

 Improved data visualization
The data visualization technology that Microsoft acquired from Dundas Software has been
used to overhaul the charting capabilities. The scaled-down Dundas chart component that was
included in the previous releases was upgraded to the full-featured Dundas chart. As a result,
report authors can now implement charting features that were not possible before.

Figure 1.8 demonstrates some of the new charting capabilities. This column chart has two
axes that show Sales and Profit. Profit is plotted on the secondary axis that is shown on the
right of the chart. Previous releases didn’t support a secondary chart axis. In addition, the
Sales axis has a scale break to prevent the Bikes sales from eclipsing the sales for other catego-
ries. The chart component is interactive at design time (not shown). For example, you can
reposition the chart legend by dragging it to a new location. Or, you can select an axis to set
its properties.

Another addition to the Reporting Services toolset is the Dundas Gauge component used
for displaying gauge indicators, such as circular gauges, linear gauges, angular gauges, and

CHAPTER 1 12

thermometer gauges. Other Dundas controls, such as the Dundas Map and Dundas Calendar,
will be added in a future release.

Figure 1.8 The Reporting
Services 2008 chart compo-
nent adds many desirable
features, such as secondary
axes and axis breaks.

 Enhancements for text and rich formatting
Another big leap in report design is the enhanced textbox report item. Previously, if you
wanted to mix static and dynamic expression-based text, you either needed multiple textboxes
or a Visual Basic expression to concatenate strings together. The first approach led to textbox
"explosion". The disadvantage of the second approach was that you couldn't format string
fragments inside the same textbox independently.

Figure 1.9 The textbox report item now sup-
ports multiple bands of text and each band can
be formatted independently.

In Reporting Services 2008, the textbox report item has been redesigned to support multiple
bands of text. Take a look at Figure 1.9, which shows a report title of a Sales Order report. In
the past, you would need two textboxes (or three if you wanted different formatting for the
sales order number). You may be surprised to find that the entire title is implemented as a sin-
gle textbox with two paragraphs!

The second paragraph combines static text (Order #:) with dynamic text ([SalesOrder-
Number]), which defines a placeholder for a dataset field value. Each element can have its
own format settings. Thanks to these enhancements, you'll find that by moving to Reporting
Services 2008, you need fewer textboxes and you need to write fewer expressions that conca-
tenate text. Moreover, the new textbox lets you implement report solutions, such as mail
merge, that were difficult or impossible to implement with previous releases.

Many report authors will appreciate that the textbox report item now supports a subset of
HTML tags for formatting the text content. You can import static HTML text or bind the text-
box to a dataset field. For instance, if the dataset field includes HTML tags, such as
SO50750, you can configure the textbox to interpret these tags and display the sales
order number in bold.

 Robust report platform
To improve product manageability and deployment, Microsoft also removed the dependency
on Internet Information Services (IIS) and implemented a new hosting model that I will dis-
cuss in more detail in section 1.3. This was done for three main reasons:

INTRODUCING MICROSOFT REPORTING SERVICES 2008 13

 Easier configuration—IIS is used by many applications, some of which conflict with Re-
porting Services. For example, the default SharePoint setup is known to take over the IIS
default web site and thus leave Reporting Services non-functional. By removing the IIS
dependency, Microsoft isolated Reporting Services from other web applications.

 Better resource management—Reporting Services 2008 has a new on-demand processing
model to ensure that report executions will not run out of memory. When it is under
memory stress, Reporting Services pages and releases allocated memory to disk. This fea-
ture would have been very difficult to implement using the IIS hosting model. In addition,
eliminating the IIS dependency made possible consolidating the former IIS-dependent
Web service and Windows service into one Windows service.

 Simplified deployment and adoption—Many organizations have strict policies for instal-
ling IIS. Windows Vista and Windows Server 2008 aggravated the situation even further
by locking down many of the IIS features that Reporting Services required.

What does removing the dependency on IIS mean to you? Simply put, it means you don't
have to install IIS just to get Reporting Services running. Even if IIS didn't cause you any
problems in the past, removing the IIS dependency is one less thing to worry about.

 Enterprise scale reporting engine
Processing and rendering inefficiencies in previous releases of Reporting Services were causing
scalability issues with large reports. To a large extent, this was because reports were memory-
bound and the report server would load the entire report in-memory. To improve scalability,
Microsoft completely redesigned the report processing engine. As a result, large reports load
incrementally, which means they consume much less memory and may execute faster. I will
discuss the new report processing architecture in more detail later on in this chapter.

On the report rendering side, the rendering extensions that are used to export reports
have been rewritten to ensure consistent layout and repagination. The CSV renderer has been
redesigned to provide Excel and CSV-compliant modes. The Excel renderer has been en-
hanced to support nested report sections and subreports. Many scalability and performance
improvements have been implemented, such as improving the time to render the first page of
the report and to provide constant page-to-page response times.

1.1.5 Reporting Services and the Microsoft Business Intelligence Platform
Reporting Services is not the only business intelligence product that Microsoft provides. It is
an integral part of the Microsoft Business Intelligence Platform that was initiated in early 2004
with the powerful promise to “bring BI to the masses”.

DEFINITION The Microsoft Business Intelligence Platform is a multi-product offering that addresses the most press-
ing data analytics and management needs that many organizations encounter every day.

Figure 1.10 clarifies the building blocks of the Microsoft Business Intelligence Platform and
how Reporting Services fits in. Microsoft SQL Server forms the foundation of the Microsoft
Business Intelligence Platform. It includes four services that I like to think of as four pillars of
the platform: Database Engine, Reporting Services, Integration Services, and Analysis Services.
This is a great value proposition since a single SQL Server license covers all services installed
on the box.

CHAPTER 1 14

 Database Engine
The Database Engine is the core service for storing, processing, and securing data. You can use
the Database Engine to create relational databases for online transaction processing (OLTP) or
online analytical processing (OLAP) data. While discussing all enhancements of the Database
Engine in SQL Server 2008 is outside the scope of this book, I'd like to mention a couple that
may be applicable to your Reporting Services and BI projects.

Figure 1.10 The Microsoft
Business Intelligence Plat-
form provides valuable ser-
vices and tools that address
various data analytics and
management needs.

Data compression
New row and page compression formats were implemented to provide efficient storage for
fixed and variable length columns. This can be useful when optimizing data storage of large
databases. The row compression format reduces the storage space of fixed length types, such
as integer, money and datetime, as well as NULL. Page compression reduces duplicate values
in a page by storing the most common duplicate column values.

Change Data Capture
Another interesting new feature is Change Data Capture (CDC). CDC is designed to capture
insert, update, and delete activity on a SQL table and place the changed data into a separate
relational table. It uses an asynchronous capture mechanism that reads the transaction logs
and populates the table with the row data that has changed. ETL processes can leverage CDC
to quickly resolve data changes.

 Integration Services
Today’s enterprise IT shop is often required to maintain an assortment of data sources and
technologies. These include desktop databases, legacy mainframe systems (that no one dares
to touch), relational database management systems (RDBMS), and so on. For example, order
tracking data could reside in a SQL Server database, HR data could be stored in an Oracle da-
tabase, and manufacturing data could be located in a mainframe database. Integrating dispa-
rate and heterogeneous data sources presents a major challenge for many organizations.

Integration Services helps you address this challenge. It is typically used for Extracting,
Transforming, and Loading (ETL) processes for data integration. For example, you can build
an Integration Services data flow pipeline which extracts data from the source systems,

INTRODUCING MICROSOFT REPORTING SERVICES 2008 15

cleanses it, and loads it to your company data warehouse. New features in the 2008 release
include enhanced performance for lookup transformations, new ADO.NET source and desti-
nation components, and a new script environment that integrates with the Microsoft Visual
Studio Tools for Applications (VSTA) and lets you use Visual Basic.NET or C# for writing
scripts.

From a Reporting Services perspective, you can use an Integration Services package as a
data source to a report. When the report is run, it executes the package that retrieves its data,
and presents the data in the layout you defined. By using a package as a data source, you can
manipulate the data before it is displayed in the report. For example, your package can apply
data mining rules to the raw data to return a list of potential buyers.

 Analysis Services
Analysis Services is a multidimensional database which is optimized for fast querying and re-
porting. It provides OLAP and data mining services. Organizations typically use Analysis Ser-
vices for trend and historical reporting. For example, you can build an Analysis Services cube
that helps business users analyze numeric data (measures) from different perspectives (dimen-
sions).

You can integrate Reporting Services with Analysis Services to build synergetic business
intelligence solutions. For example, you can use an Analysis Services cube as a data source for
standard and ad hoc reports. You can also implement reports that leverage the Analysis Ser-
vices data mining capabilities to display prediction results, such as forecasted sales.

I covered Analysis Services 2005 in detail in my book Applied Microsoft Analysis Services
2005 (see the Resources section at the end of the chapter). Most of what I wrote in that book
still applies to the SQL Server 2008 release of Analysis Services. The newest release of Analysis
Services introduces incremental changes, such as faster query performance and a better design
and manageability experience.

There are other SQL Server components that you may find more or less relevant to your
business intelligence projects. These may include Replication Services to clone data and Ser-
vice Broker to raise event notifications. Notification Services is no longer included as a com-
ponent of SQL Server 2008. However, Reporting Services and Service Broker cover some of
the functionality formerly provided by Notification Services. The long term direction is to in-
corporate the Notification Services functionality into Reporting Services.

 The Presentation Layer
Data by itself is useless if there is no way to make it available to the people who need it. Be-
sides disseminating data via Reporting Services reports, the Microsoft Business Intelligence
platform supports other data presentation channels, such as Microsoft Office, Microsoft
SharePoint Products and Technologies, Microsoft PerformancePoint Server and third-party
applications.

Microsoft Office
Microsoft significantly broadened the business intelligence features in the Microsoft Office
2007 suite of products. Microsoft positioned the ubiquitous Microsoft Excel as a premium
client for Analysis Services. For example, business users can use Excel to connect to a cube
and build interactive PivotTable reports that let the user slice the cube data. With a few mouse
clicks, the user can change the report and view data from different angles.

CHAPTER 1 16

SharePoint Products and Technologies
As noted, organizations can use SharePoint to build business intelligence portals and dash-
boards that contain Reporting Services reports and Excel reports connected to Analysis Servic-
es cubes. The Excel Services components of Microsoft Office SharePoint Server lets you deploy
and process Excel spreadsheets on the server and view them via a web browser or download
them to the desktop.

PerformancePoint Server
Microsoft unveiled PerformancePoint Server in 2007. As its name suggests, an organization
can use this product to monitor, analyze, and plan its performance. The monitoring compo-
nent, which builds upon the former Microsoft Business Scorecard Manager (BSM), provides
KPI and scorecard capabilities. For example, you can assemble a scorecard that displays key
performance indicators defined in an Analysis Services cube.

The ProClarity technology, which Microsoft acquired in 2006, provides guided and con-
textual analysis by letting users slice and dice Analysis Services multidimensional data to gain
further understanding about the performance metrics. Finally, the planning component, for-
merly known as Biz#, incorporates planning and budgeting capabilities. For example, a busi-
ness analyst can use the planning component to set up a workflow for submission and
approval of the company's budget for next year.

Other applications
Reporting Services provides open programming interfaces that developers can utilize to extend
its features and report-enable custom applications. This book includes several chapters that
demonstrate how you can leverage this open architecture to extend Reporting Services to meet
more advanced requirements and integrate it with custom applications.

 Visual Studio
Finally, developers can use Visual Studio to work with Business Intelligence projects. If you
don’t have the full-blown version of Visual Studio (or you are not willing to purchase a li-
cense), the SQL Server 2008 setup program gives you an option to install a scaled-down ver-
sion of Visual Studio called Business Intelligence Development Studio (BIDS).

BIDS supports only business intelligence projects, such as Analysis Services, Reporting
Services, and Integration Services projects. It gives you the power of the Visual Studio Inte-
grated Development Environment at no additional cost. However, if you have the full-blown
Visual Studio installed, the SQL Server setup program integrates the BI project templates in
your current Visual Studio installation. Consequently, developers can use Visual Studio to
work with solutions that include both code projects and BI projects.

NOTE Unfortunately, BIDS 2008 supports only SQL Server 2008 BI projects. If you target SQL Server 2005, you need
to keep BIDS 2005 around as well. Similarly, you will need to remove your SQL Server 2005 BI projects from Visual
Studio 2008 solutions because they will get upgraded to the SQL Server 2008 format and you will no longer be able to
deploy to SQL Server 2005.

Now that we have reviewed the components of the Microsoft BI Platform, let’s turn our atten-
tion back to Reporting Services.

INTRODUCING MICROSOFT REPORTING SERVICES 2008 17

1.2 Overview of Reporting Services
By now, you should have a good understanding of what Reporting Services can do and how it
fits into the rest of the Microsoft Business Intelligence stack. Let's now discuss the Reporting
Services major components and how they can help you handle the report lifecycle.

1.2.1 Understanding the Reporting Services Components
Let's start by a high-level overview of the Reporting Services components and understand how
custom tools fit into the overall design. As veteran Reporting Services users will quickly notice,
the Reporting Services component architecture remains unchanged from the previous release.
Figure 1.11 shows the Reporting Services logical architecture.

 Report Server
At the heart of the Reporting Services architecture is the report server, a web-based middle-tier
layer that receives incoming report requests and generates reports. The diagram shows a sim-
plified logical view of the report server. In section 1.3, I will expand on it and show you how
the report server is physically implemented.

To facilitate integration with external client applications, the report server provides two
communication interfaces: URL access and a Web service (not shown on the diagram). Conse-
quently, both off-the-shelf and custom tools can communicate with the report server via
HTTP or SOAP. The Report Processor component of the report server is responsible for
processing the reports at run time. When a report is requested, the Report Processor extracts

Figure 1.11 This diagram shows the major Reporting Services components.

CHAPTER 1 18

the report data, combines data with the report layout, and renders the report in the requested
export format.

One of my favorite Reporting Services features is its modularized and extensible architec-
ture. Each of the services listed outside the report server box in Figure 1.11 is performed by
specialized modules called extensions. When the standard extensions are not enough, develop-
ers can extend Reporting Services capabilities by plugging in custom extensions. For example,
out of the box, reports can draw data from popular databases like SQL Server, Oracle, Analysis
Services, and other OLE DB-compatible data sources. But what if the data is not stored in a
database, or is stored in an application dataset or XML file? In this case, a developer can write
a custom data extension to retrieve data from virtually any data source.

Similarly, users can export reports to several popular formats, such as Microsoft Excel,
Microsoft Word, Adobe Acrobat PDF, HTML, CSV, and image formats. If the built-in export
formats are not enough, vendors can write custom rendering extensions to export reports to
other formats.

By default, the report server is configured for Windows security. This means that it au-
thenticates and authorizes the user based on the user's Windows identity. However, when
Windows security is not an option, a developer can plug in a custom security extension that
uses a different security mechanism. For example, if you want to report-enable an Internet-
facing application, you can create and deploy a custom security extension to use Forms Au-
thentication for user authentication and authorization.

 Report Server Database
In Reporting Services, report definitions and properties are saved in the report server database.
The report server database is implemented as two SQL Server databases that get installed
when you configure the report server. The ReportServer database stores the report definitions
and management settings. For example, when you upload a report, Reporting Services saves
its definition in the ReportServer database. The second database, ReportServerTempDB, stores
temporary information about the report execution.

DEFINITION The report server database is a logical term for two physical databases: ReportServer and ReportSer-
verTempDB. The ReportServer database hosts the report catalog. The ReportServerTempDB stores temporary data.
I will use the terms report server database and report catalog interchangeably throughout this book.

It is important to note that no persistent report-related information is stored in the file system.
Consequently, a web farm of report servers can share the report catalog by connecting to the
same report server database. By default, if you are installing a report server in the default con-
figuration, the SQL Server setup program installs the report server database on the same com-
puter as the report server. However, if needed, you can host the report server database on
another SQL Server 2005 or 2008 server.

 Introducing deployment modes
Reporting Services supports two deployment modes.
 Native mode (default)—The report server as a stand-alone application server that provides

all processing and management capability exclusively through Reporting Services compo-
nents.

 SharePoint mode—The report server is integrated with Windows SharePoint Services or
Microsoft Office SharePoint Server. Report viewing and management happens inside the
SharePoint portal.

INTRODUCING MICROSOFT REPORTING SERVICES 2008 19

The two deployment modes are mutually exclusive but you can switch the deployment mode
at any time by reconfiguring the server with the caveat that you'll need to redeploy your report
definitions and management settings.

 Understanding the report lifecycle
The term “report lifecycle” refers to the range of events or activities that pertain to a report,
starting with how it is created. The term provides a useful context for discussing the Reporting
Services tools. As Figure 1.12, the report lifecycle spans report authoring, management, and
delivery stages.

In the report authoring stage, the report author lays out the report using one of the Microsoft-
provided report designers. For example, you can use the report designer included in the Busi-
ness Intelligence Development Studio to author a standard report.

Once the report is ready, the report author can upload the report to the server so it is
available to end users. In the management stage, the administrator configures the deployed
reports and the report environment. For example, the administrator can use Report Manager
to organize reports in folders and set up security policies to let users view those reports.

Once the report is configured, it can be viewed by end users or custom applications. Re-
port clients can request reports on demand, such as by typing the report URL address. Alter-
natively, users can subscribe to reports on a schedule. When a schedule event is received, the
report server processes the report and sends it to the recipients via a desired delivery channel,
such as e-mail.

1.2.2 Report Authoring
The Reporting Services story sometimes reminds me about the servant who had many masters.
It seems that every application out there, including those provided by Microsoft and custom
applications built by third parties, wants to integrate with Reporting Services. Examples of
Microsoft applications that leverage Reporting Services in one form or another include SQL
Server Management Studio, Microsoft Operations Manager, PerformancePoint, Microsoft Dy-
namics CRM, Visual Studio, and so on. This range of clients creates a demand for flexible re-
port authoring, management, and delivery features.

 About Report Definition Language
Reporting Services reports are described in an open XML-based schema, called Report Defini-
tion Language (RDL).

DEFINITION Report Definition Language (RDL) is an XML-based schema for defining reports. RDL is an open stan-
dard proposed by Microsoft to promote interoperability of commercial reporting products.

Microsoft off-the-shelf and third-party report designers that target Reporting Services produce
report definition files as described in RDL. The Reporting Services 2008 RDL specification can
be downloaded from the Microsoft web site (see Resources).

Figure 1.12 The
report lifecycle con-
sists of authoring,
management, and
delivery stages.

CHAPTER 1 20

 Introducing report designers
A report designer is a tool that the report author uses to define report data and layout at de-
sign time. Since the technical skills of the report authors may vary greatly, it is not easy to
build a single report designer that satisfies all report authoring needs. You probably will be
surprised to learn that Microsoft provides three report designers and soon will add a fourth
designer to let you author Reporting Services reports. Table 1.1 lists these report designers
and explains their target audience and capabilities.

Table 1.1 Microsoft provides four report designers

Designer Audience Capabilities

BIDS Report Designer Developers, power users Full-featured reports

Report Builder 1.0 Business users Basic ad hoc reports

Report Builder 2.0 Power users Full-featured reports outside Visual Studio

Visual Studio Report Designer Developers RDL 2005-compatible local reports

It is important to note that all report designers produce Report Definition Language (RDL).
Some of the tools support a subset of RDL, losing some report functionality but gaining an
easier to use design tool. The first three designers are components of Reporting Services. The
last one, Visual Studio Report Designer, ships with Visual Studio.

BIDS Report Designer
This is the original report designer and it is included in the Microsoft Business Intelligence
Development Studio (see again Figure 1.7). In this release, Microsoft revamped the layout sur-
face of the BIDS Report Designer so it becomes more intuitive to both experienced and novice
report authors. Welcome end-user enhancements, such as the Report Data window, snap-to
lines, zooming, the grouping pane, and improved dialogs, debuted in this release.

The BIDS Report Designer supports all report authoring features. Since BIDS is a scaled-
down version of Visual Studio, the BIDS Report Designer targets mainly developers who are
familiar with the Visual Studio IDE.

Report Builder 1.0
As noted, SQL Server 2005 introduced Report Builder 1.0 to let business users author simple
template-based ad hoc reports. In marked contrast with the other report authoring tools, Re-
port Builder 1.0 shields the end user from the technicalities of the underlying database and
query syntax by way of a predefined model. Report Builder 1.0 auto-generates the query at
run time using a predefined model that abstracts the data source. Report Builder 1.0 remains
unchanged from the 2005 release of Reporting Services.

Report Builder 2.0
Microsoft will soon release a new report designer for standard and ad hoc reporting outside
the Visual Studio environment. Similar to the BIDS Report Designer, Report Builder 2.0 will
provide the full spectrum of report authoring features. This designer features the Microsoft
Office 2007 ribbon interface, as shown in Figure 1.13. In this case, I've open the Product Sales
by Year and Territory report (see again Figure 1.6) in Report Builder 2.0 to demonstrate that
you can use Report Designer and Report Builder 2.0 interchangeably.

INTRODUCING MICROSOFT REPORTING SERVICES 2008 21

Unfortunately, due to time constraints, Microsoft couldn't ship the Report Builder 2.0 in
the box with the rest of Reporting Services 2008. However, when Report Builder 2.0 does
ship, power users should definitely consider using it for full-featured standard and ad hoc re-
porting. I'll preview the pre-released version of Report Builder 2.0 in chapter 10.

Visual Studio Report Designer
To let .NET developers include basic report functionality without all the bells and whistles of
the report server, Microsoft bundled a scaled-down report designer with Visual Studio 2005
and 2008 to use with the redistributable Report Viewer controls that also ship in Visual Stu-
dio. I will call this designer the Visual Studio Report Designer. As it stands, the Visual Studio
Report Designer remains unchanged from its Visual Studio 2005 release.

1.2.3 Report Management
In a typical enterprise environment there are usually three different groups of users who get
involved in the different phases of the report lifecycle. Report authors focus on report design
and programming. Administrators are concerned with managing the report server. End users
run reports. Reporting Services provides several tools for addressing various management
tasks, but the ones you will use the most are Report Manager, SQL Server Management Studio,
and the Reporting Services Configuration Manager.

You can use Report Manager to carry out day-to-day management activities, such as up-
loading content and setting up security policies. SQL Server Management Studio lets you
manage system properties, enable features, and set up the shared schedules and role defini-

Figure 1.13 Report Builder 2.0 supports all report authoring features.

CHAPTER 1 22

tions that you want to roll out on your server. You can use the Reporting Services Configura-
tion Manager to manage the Reporting Services configuration properties, such as the connec-
tion string to the report server database.

 Introducing Report Manager
Report Manager is the main tool for managing a report server that runs in native mode. Report
Manager is implemented as a web-based application that supports two main features: report
management and report delivery. Administrators can use Report Manager to manage the re-
port catalog, such as to create folders, upload reports, set up data sources, manage subscrip-
tions, define security policies, and schedule report processing.

Organizations can also leverage Report Manager as a reporting tool for viewing reports on de-
mand. For example, Figure 1.14 shows the Sales Crosstab by Product report displayed in
HTML format inside Report Manager. The HTML Viewer control, which the Report Manager
uses for rendering the report, includes a handy toolbar that provides the user with easy access
to common reporting functions. For instance, the end user can expand the Export drop-down
list to export the report in one of the supported export formats, such as Excel.

Figure 1.14 You can use Report Manager for report management and delivery.

INTRODUCING MICROSOFT REPORTING SERVICES 2008 23

 Introducing SharePoint management
As noted, a report server can be configured for SharePoint integration mode. In this scenario,
SharePoint supersedes Report Manager. In SharePoint integration mode, the administrator can
perform all management activities inside the SharePoint portal.

Figure 1.15 In SharePoint integration mode, you can use the SharePoint portal for all management tasks.

For example, as Figure 1.15 shows, Reporting Services reports appear just like other docu-
ments uploaded to a SharePoint library. You can click on the report name to view the report.
You can expand the report drop-down list to manage various report settings.

1.2.4 Report Delivery
Reporting Services supports flexible report delivery options. Users can request reports on de-
mand or via subscriptions. On-demand report delivery is the most common option. In this
case, the user explicitly requests the report that he or she wants to view. Users can also sub-
scribe to reports that they want to see on a regular basis.

 Introducing on-demand report delivery
In the simplest scenario, a user can request a report on demand by clicking on the report link.
You can make report links available in the Report Manager Home page or in folders. In more
complex programmatic scenarios, developers can use the Report Server Web service to enable
on demand reporting in custom applications. Thanks to the excellent Visual Studio Report-

CHAPTER 1 24

Viewer controls, integrating .NET Windows Forms and Web Forms applications with Report-
ing Services is easy. This is because these controls shield developers from Report Server Web
service technicalities.

Figure 1.16 The Visual
Studio ReportViewer controls
facilitate report-enabling .NET
Windows Forms and Web
Forms applications.

Figure 1.16 demonstrates how you can configure the Window Forms ReportViewer control at
design time. You can use the control Task Panel to specify the report server URL and report
path. Besides rendering server reports, the ReportViewer controls support generating local
reports. In this scenario, the custom application supplies data and parameters to the report.
For example, a custom application can bind an ADO.NET dataset to the report.

NOTE The ReportViewer controls support both Reporting Services 2005 and 2008 for viewing published reports.
Unfortunately, the release version of SQL Server 2008 does not upgrade the ReportViewer controls to support RDL
2008 definitions in local mode. Similar to the Visual Studio Report Designer, the plans are to upgrade the controls in
the next major release of Visual Studio or via a web release.

What if your application is not written in .NET or you cannot use the ReportViewer controls?
Rest assured, any Web-service capable client can integrate with the Report Server Web service.
Here is what it takes to generate the Company Sales report (see again Figure 1.4) using C#.
ReportExecutionService rs = new ReportExecutionService();
rs.Credentials = System.Net.CredentialCache.DefaultCredentials;
rs.Url = "http://myserver/reportserver/ReportExecution2005.asmx";

// Render arguments
byte[] result = null;
string reportPath = "/AdventureWorks Sample Reports/Company Sales";
string format = "PDF";
DataSourceCredentials[] credentials = null;
string showHideToggle, encoding, mimeType, extension, devInfo, historyID = null;
Warning[] warnings = null;
ParameterValue[] reportHistoryParameters = null;
string[] streamIDs = null;
result = rs.Render2(format, devInfo, PageCountMode.Estimate, out extension, out encoding,
 out mimeType, out warnings, out streamIDs);

This C# code calls down to the Report Server Web service to export the report in Adobe PDF
format. In this case, the Company Sales report doesn't take report parameters. Besides declar-
ing the method arguments, rendering the actual report is accomplished with a single Web me-

INTRODUCING MICROSOFT REPORTING SERVICES 2008 25

thod call. Since the report server renders the report definition as a byte array, additional code
is needed to present the report in human-readable format or save it to disk.

 Introducing subscribed report delivery
End users can also subscribe to reports to receive them automatically. When the subscription
is triggered, the report server generates the report and delivers it to the recipients who sub-
scribed to the report. Reporting Services subscriptions let you meet various requirements for
automating report distribution. For example, a sales manager can subscribe to a sales sum-
mary report to receive it at the end of each month. Or, an e-commerce organization can auto-
matically send a notification report to a customer when the order status has changed.

Reporting Services supports two subscription types: standard subscriptions and data-
driven subscriptions. Standard subscriptions are created and managed by individual users. For
example, an end user can set up a standard subscription to receive an updated report every
month. Data-driven subscriptions are on a different plane altogether. This powerful feature is
used to deliver a report to a dynamic list of destinations with customized content for each des-
tination. For example, imagine a web application that collects from the user his or her prefe-
rences for report delivery, export format, parameters, and so on. The application would save
this information in a user profile table. Then, the administrator would set up a data-driven
subscription that queries the user profile table for subscription data, generates the reports, and
sends them to each recipient.

Out of the box, Reporting Services can deliver reports via e-mail, save them as files in
Windows folders, or deliver them to SharePoint document libraries (if the report server is con-
figured in SharePoint integration mode). Developers can extend the Reporting Services deli-
vering capabilities by plugging in custom delivery extensions to send a report to other
destinations, such as a Web service or a printer.

Now that I have introduced you to the Reporting Services components and its logical ar-
chitecture, let's drill down to the Reporting Services physical architecture to understand the
new Reporting Services hosting model.

1.3 The Reporting Services Architecture
Although Reporting Services hasn't changed its logical architecture from the previous release,
the removal of the IIS dependency has brought radical changes to the Reporting Services phys-
ical architecture. Working with Reporting Services requires a solid grasp of the new changes.
The next section discusses the new Reporting Services hosting model.

1.3.1 Understanding the Report Server Hosting Model
Previous releases of Reporting Services were hosted in IIS. IIS handled HTTP requests and
provided network interfaces, authentication, and other services. Now that Reporting Services
2008 is no longer dependent on IIS, it has a new hosting model and new components that
replace the "lost" IIS features. Figure 1.17 shows the Reporting Services 2008 architecture.

CHAPTER 1 26

Understanding the Reporting Services Windows Service
The server components of Reporting Services 2008 are hosted in a single Windows service
process. This is similar to the service model of Analysis Services and Integration Services. You
can see the Reporting Services Windows service in the Windows Services console application,
as follows:

1. Open the Windows Control Panel and double-click Administrative Tools to go the Adminis-
trative Tools program group.

2. Double-click Services to open the Services console application.
3. Scroll down the services list until you locate the SQL Server Reporting Services Windows ser-

vice.

The Reporting Services Windows service is implemented almost entirely in managed .NET
code.

Understanding network interfaces
With previous releases of Reporting Services, IIS was responsible for handling client requests.
Now that Reporting Services has parted ways with IIS, it implements its own network inter-
face. Specifically, Reporting Services includes service network interfaces (SNI) that monitors
incoming requests from HTTP.SYS.

Figure 1.17 The Report-
ing Services Service hosts
the three report server appli-
cations: Report Manager,
Report Server Web Service,
and Background Processor.

INTRODUCING MICROSOFT REPORTING SERVICES 2008 27

NOTE HTTP.SYS is a kernel-mode HTTP driver that listens for requests and routes them to the appropriate re-
quests queue. HTTP.SYS was introduced in Windows Server 2003 to improve the performance of IIS 6.0. Windows
XP Service Pack 2 and Windows Vista include HTTP.SYS as well. For more information about HTTP.SYS, read the
Web and Application Server Infrastructure - Performance and Scalability paper (see Resources). To learn how .NET
applications can host HTTP.SYS outside IIS, read the "Run ASMX Without IIS" article by Aaron Skonnard (see the
Resources section).

As part of configuring Reporting Services, you must specify the URL addresses (HTTP end-
points) of the report server and Report Manager. Interestingly, in Windows Vista and Win-
dows Server 2003 or above, you can have multiple applications listening on the same port.
Consequently, Reporting Services and IIS can run side by side and they can both listen on
port 80. In fact, when SQL Server detects these operating systems, it defaults the report server
and Report Manager URLs to use port 80.

The default report server URL is http://<servername>/ReportServer and the default Report
Manager URL is http://<servername>/Reports. However, IIS 5.0 in Windows XP doesn't use
HTTP.SYS and cannot share the same port with Reporting Services. This is why the SQL Serv-
er setup program uses port 8080 for the HTTP endpoints on Windows XP, such as
http://<servername>:8080/ReportServer.

The Reporting Services team had to implement additional features that were previously
provided by IIS, such as user authentication. As it turned out, SQL Server already provided
the same services so Reporting Services 2008 "borrowed" some of the SQL Server internal
components. Specifically, Reporting Services uses SQL OS, SQL CLR, and SQL Network Inter-
face. However, this doesn’t mean that you must install the SQL Server 2008 relational engine
to get the shared components. Reporting Services includes these components internally.

In summary, Reporting Services 2008 preserved most of the IIS settings, such as host
headers, multiple ports, SSL certificates, NTLM, Kerberos, Negotiate, and Basic authentication.
The only IIS features that didn't get migrated from IIS are support for ISAPI applications and
some authentication options, including Anonymous Authentication, Digest Authentication,
and Client Certificates. These authentication options are not supported in Reporting Services
2008.

1.3.2 Understanding the Reporting Services Applications
The Reporting Services Windows service hosts three server applications: Report Manager, Re-
port Server Web service, and Background Processor. Behind the scenes, the service creates
three .NET application domains to host these applications.

The Report Manager and Report Server Web service domains are ASP.NET domains. Conse-
quently, they are managed by the ASP.NET runtime with the exception that the Reporting
Services Windows service manages the memory settings and process health of all applications
as a whole. For example, both the Report Manager and Report Server Web service applications
have web.config configuration files that contain ASP.NET-specific configuration settings.

NOTE In .NET, application domains are typically used to isolate running applications. A single Windows process can
host several application domains. Application domains are created and manipulated by run-time hosts, such as the
ASP.NET runtime or a .NET executable.

CHAPTER 1 28

 Report Manager
As I explained, Report Manager is an ASP.NET web application that provides report manage-
ment and viewing capabilities for a Reporting Services instance configured in native mode.
You can view Report Manager as a client application that integrates with the report server.

Report Manager provides a number of ASP.NET pages which are installed by default in
the \Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Servic-
es\ReportManager folder. Thanks to the consolidated hosting model, the configuration settings
of Report Manager and the Report Server Web service are stored in a single configuration file
(rsreportserver.config).

Report Manager can accommodate some UI extensions. Specifically, if you develop a cus-
tom delivery extension, you can configure the Report Manager to host its web control so the
user can configure the extension when setting up a subscription.

 Report Server Web Service
The Report Server Web service handles on-demand report processing. For example, when you
request a report by typing its URL in the browser, the Report Server Web service receives the
request, processes the report, and returns the exported report to the client. To facilitate inte-
gration with different types of report clients, the Report Server Web service provides URL and
SOAP integration options. The URL interface handles HTTP GET requests, such as
http://<servername>/ReportServer?/AdventureWorks Sample Reports/Company Sales.

The Report Server Web service is the primary programmatic interface for custom applica-
tions that integrate with Reporting Services. The Report Server Web service provides four Web
service endpoints that expose the Reporting Services feature set to external clients. ReportSer-
vice2005.asmx is the management endpoint for a Reporting Services instance configured for
native mode. ReportService2006.asmx is the management endpoint for a Reporting Services
instance running in SharePoint mode. Developers can utilize the ReportExecution2005.asmx
endpoint for report rendering and execution. Finally, the ReportServiceAuthentication.asmx
endpoint is provided to authenticate users against a report server in SharePoint integration
mode when SharePoint is configured for Forms Authentication

In comparison with the previous release, Reporting Services 2008 doesn’t introduce new
Web service endpoints. The Reporting Services 2000 endpoint (ReportService.asmx) is no
longer supported and you need to upgrade legacy applications that use it to the new end-
points.

 Background Processor
The Background Processor application is responsible for handling all tasks that run in an unat-
tended mode. For example, when a subscription event is received, the Background Processor
handles the subscription and distributes the report to its final destination. The Background
Processor is what the Reporting Services Windows service was in previous releases.

Similar to the Report Server Web service, the Background Processor is responsible for
processing reports. However, the Background Processor doesn't communicate with the Report
Server Web service. Instead, both applications make in-process internal calls to the Report
Processor. To make things simpler, I will use the term report server from now on as a unifying
logical name that includes both the Report Server Web service and the Background Processor.

INTRODUCING MICROSOFT REPORTING SERVICES 2008 29

1.3.3 Understanding Report Processing
A significant effort has been made to improve Reporting Services scalability and performance.
In previous releases, reports were memory-bound, which means that the memory usage con-
sumed by the report was proportional to the report size. Consequently, large reports were
known to cause out-of-memory exceptions. This was particularly problematic when exporting
reports to Adobe Acrobat PDF and Microsoft Excel.

 How report processing works
To address scalability issues with large reports, Microsoft redesigned the report processing
engine in Reporting Services 2008. Specifically, the new Report Processor doesn't store the
entire report presentation in memory but processes the report on demand, as Figure 1.18
shows.

When the Report Processor handles a new report request, it extracts the report data,
merges the data into the report layout, and produces the report intermediate format. Then, the
Report Processor saves the raw report in the report server database. However, unlike the old
processing engine, which processed the report as a snapshot, the Report Processor pre-
computes and stores only certain report invariants, such as grouping, sorting, filtering, and
aggregates.

During the report rendering phase, the Report Processor constructs a Rendering Object
Model (ROM) object and forwards it to the rendering extension. Textbox values and calcula-
tions are calculated on-demand every time the containing page is rendered. This significantly
reduces the in-memory presentation of the report.

Just how much memory does the new processing engine save? I tested print preview with
an existing 1,270-page report processed by SQL Server 2005 and 2008 versions of Reporting
Services and I listed the results in Table 1.2.

Figure 1.18 Reporting Ser-
vices 2008 includes a new
processing engine that
processes reports on demand.

CHAPTER 1 30

Table 1.2 The new report engine should produce significant memory savings

Version Metrics Time (sec) Memory (MB)

SQL Server 2005 TFP 262 240

 TLP 610 312

SQL Server 2008 TFP 218 95

 TLP 430 95

The TFP metric stands for Time to First Page and measures the number of seconds it took the
report server to render the first page in print preview mode. TLP (Time to Last Page) measures
the number of seconds required to repaginate the entire report and render the last page. I used
the Windows Task Manager on the server to track the memory utilization of the Reporting
Services process. The result was remarkable. Thanks to the new processing improvements,
Reporting Services 2008 consumed about 70% less memory.

 Understanding rendering changes
Microsoft also redesigned the rendering extensions to improve further report processing. Pre-
viously, rendering was performed entirely on the server and the report clients, such as the Re-
portViewer and printer controls, were implemented as "thin" clients. They didn't do much
processing since they were responsible only for presenting the rendered report to the user. In
Reporting Services 2008, the rendering work can be distributed between the server and the
clients.

A new RPL (Report Page Layout) renderer was introduced to generate a streamable output
format, which is an independent representation of report layout and data. For example, the
ReportViewer Web server control included in Report Manager uses this renderer and performs
the final stage of report rendering on the client by translating RPL to HTML. The RPL format
also lays the foundation for increased interactivity within the ReportViewer controls in future
releases.

Another change that took place was unifying the page repagination logic across all render-
ers. In the past, users complained about getting incorrect page counts when previewing re-
ports in different export formats. Reporting Services 2008 brings consistency to layout and
repagination.

1.4 Applied Reporting Services
The short hands-on lab that follows will give you a taste of the report lifecycle and the Micro-
soft Business Intelligence Platform. Before we start, let’s introduce an imaginary company
called Adventure Works Cycles. Adventure Works Cycles is a large, multinational manufactur-
ing company. It manufactures and sells bicycles to individuals and resellers in the North
American, European and Asian commercial markets.

INTRODUCING MICROSOFT REPORTING SERVICES 2008 31

1.4.1 Introducing Adventure Works Sales Reporting System
The Adventure Works management has decided to implement a BI reporting solution to get
more insight into company performance. And, as you probably guessed, Adventure Works has
hired you to lead the design and implementation of the Adventure Works Intelligent Report-
er—the next generation reporting solution for standard and ad hoc reporting.

 Analyzing the current system
Adventure Works has already made a significant effort to implement data logistics processes
that facilitate reporting, as shown in Figure 1.19.

Sales representatives use an intranet application to capture orders placed through the resale
channel. Individual customers purchase Adventure Works products online through the Ad-
venture Works web site. In both cases, the sales ordering data is captured in a SQL Server
2008 OLTP database called AdventureWorks2008.

Adventure Works has also built a data warehouse that archives the sales data. Integration Ser-
vices data flow tasks periodically extract, transform, and load the data in the data warehouse
database, which is physically implemented as a SQL Server 2008 AdventureWorksDW2008
database. Adventure Works has implemented an Analysis Services Unified Dimensional Model
(UDM) layer on top of the data warehouse database for historical and trend reporting. This
layer is realized as the Adventure Works multidimensional cube.

There are several advantages in using a cube as a data source for reports. First, perfor-
mance will be greatly improved because Analysis Services is designed to store and query data
efficiently. Second, useful business calculations, such as KPIs, can be easily implemented in
the cube. Besides OLAP capabilities, Analysis Services also offers data mining features that can
help users discover hidden data patterns, such as which products customers tend to buy to-
gether, who are the most likely buyers for a given product, sales forecasting, and more. Final-
ly, in addition to Reporting Services, many other Microsoft and third-party software products
can integrate with Analysis Services. Examples include Microsoft Excel for historical and trend
reporting, PerformancePoint for monitoring KPIs and deconstructing data, Dundas charts for
presenting OLAP data graphically, and so on.

However, given that most reporting solutions retrieve source data from relational databas-
es, I will use Analysis Services sparingly in this book. That said, I strongly encourage you to

Figure 1.19 The Adven-
ture Works reporting system.

NOTE The AdventureWorks2008 database simulates an OLTP sales order database, while Adventure-
WorksDW2008 imitates a data warehouse database. Once you download and install the databases (see the book
front matter for instructions), you'll find Visio database schema diagrams in the installation folders. As you can see by
browsing its seventy tables, the AdventureWorks2008 database is inherently more complex than FoodMart or other
SQL Server sample databases that you may have encountered in the past.

CHAPTER 1 32

consider Analysis Services for your real world solutions, especially when you need to address
historical and trend reporting requirements.

 Understanding reporting challenges
Currently, the Adventure Works reporting processes are subject to several deficiencies, includ-
ing:
 Inability to share and disseminate reports—Reports are embedded in business applica-

tions and not easily accessible. At the same time, there is a need to publish strategic re-
ports to the company's intranet where they can be viewed by authorized users.

 Assorted reporting technologies and tools—Information workers use a variety of reporting
tools to produce reports. The Adventure Works management is looking for ways to reduce
the Total Cost of Ownership for supporting and licensing these tools and standardize on a
single reporting platform.

 Inadequate reporting experience—Business users complain that they cannot easily author
ad hoc reports and share these reports with other users.

 Difficult integration with custom applications—Developers find it challenging to report-
enable custom applications.

 Inadequate integration with SharePoint—Adventure Works is building a SharePoint portal
and is looking for ways to let users run reports within the portal.

To address the current report deficiencies, you’ve decided to use Reporting Services 2008 as a
one-stop reporting platform for addressing these report authoring, management, and delivery
needs. Specifically, you will use Reporting Services to author operational reports from the Ad-
ventureWorks2008 database, standard reports from the AdventureWorksDW2008 database,
and historical and trend reports from the Adventure Works cube. Business users will leverage
the Reporting Services Report Builder technology to create their own ad hoc reports.

1.4.2 Your First Report
In this practice, you will use Reporting Services to author, publish, and view a report. The
Sales by Country report retrieves source data from the Adventure Works cube and displays it
in a chart format. This practice walks you through the following tasks:
 Authoring a chart report
 Using Report Manager to manage the report
 Requesting the report on demand

Complete the instructions in the book front matter to install the Adventure Works cube before
starting the practice. Figure 1.20 illustrates the finished report. This is a chart report that
shows the Adventure Works Internet and reseller sales broken down by product category for a
given sales territory that the user can enter as a report parameter.

INTRODUCING MICROSOFT REPORTING SERVICES 2008 33

Figure 1.20 The Sales by
Country report shows the Ad-
venture Works sales data in a
chart format.

 Report authoring
You will use Report Designer included in Business Intelligence Development Studio to author
and test the report.

Creating a project
Start by creating a Report Server project in Business Intelligence Development Studio.

1. Open Business Intelligence Development Studio from the Microsoft SQL Server 2008 program
group.

2. Click File New Project menu to create a new Report Server project. A Report Server
project contains data source and report definitions that you can work with and deploy togeth-
er.

3. In the New Project dialog box, select the Report Server Project template. Name the project
Reports, choose a location for the new project and click OK. BIDS creates a Report Server
project and project folders in the Solution Explorer pane.

4. In the Solution Explorer pane, right-click on the Reports project node and choose Add
New Item.

5. In the Add New Item dialog box, click the Report template. Name the report Sales by Country
and click OK.

BIDS adds the Sales by Country.rdl report definition and opens it in the Report Designer, as
shown in Figure 1.21. The Report Designer includes Design and Preview tabs. The Design tab
lets you lay out the report by dragging items from the Toolbox and dropping them to the re-
port body. You can use the Preview tab to test the report and see how the data looks in the
layout you defined.

Creating a data source
As a first step for authoring a report, you need to create a data source. A data source
represents a connection to a database.

6. In the Report Data window, expand the New menu drop-down, and click Data Source.

CHAPTER 1 34

7. In the Data Source Properties dialog box, rename the data source to AdventureWorksAS2008.
8. Expand the Type drop-down list and select the Microsoft SQL Server Analysis Services data

provider used to connect to Analysis Services cubes.
9. Click the Edit button to configure the data source.

10. In the Connection Properties dialog, enter (local) for the server name to connect to your local
Analysis Services instance. Expand the Select or Enter a Database Name drop-down list and

Figure 1.21 The BIDS Report Designer is hosted inside the Visual Studio IDE.

Figure 1.22 The Data Source
Properties lets you configure a
connection to a data source.

INTRODUCING MICROSOFT REPORTING SERVICES 2008 35

select the Adventure Works DW Analysis Services database. Report Designer generates the
following connection string (see Figure 1.22):
Data Source=(local);Initial Catalog="Adventure Works DW 2008"

11. Click OK.

Report Designer adds the AdventureWorksAS2008 data source to the Report Data window.

Generating the report query
Next, you'll set up a report dataset. A report dataset represents the report data. It includes a
query that retrieves data from the data source.

12. In the Report Data window, right-click the AdventureWorksAS2008 data source and click
Add Dataset.

13. In the Dataset Properties dialog box that follows, click the Query Designer button.
Because you've selected an Analysis Services data source, Report Designer opens the MDX
Query Designer. This is one of the built-in query designers that ship with Reporting Services.
The MDX Query Designer features a graphical interface that auto-generates the query as you
drag and drop metadata objects.

14. In the Metadata pane, expand the Sales Territory dimension. Drag the Sales Territory Country
attribute and drop it on the Data pane, as shown in Figure 1.23.

15. Expand the Product dimension. Drag the Category attribute and drop it next to Sales Territory
Country in the Data pane.

16. Scroll to the top of the Metadata pane. Expand the Measures folder and the Internet Sales
measure group under it. Drag the Internet Sales Amount measure next to Category in the Data
pane. The MDX Query Designer executes the query and shows the results in the Data Pane.

17. Expand the Reseller Sales measures group. Drag the Reseller Sales Amount measure and drop
it next to Internet Sales Amount.

18. To filter by territory, drag again the Sales Territory Country attribute of the Sales Territory
dimension from the Metadata pane to the Dimension column in the Filter pane.

Figure 1.23 The MDX Query Designer lets you drag and drop cube metadata and preview query results.

CHAPTER 1 36

19. Expand the Filter Expression drop-down list and select United States so the report shows data
for United States by default.

20. In the Filter pane, check the Parameters checkbox to create a report-level parameter, as shown
in Figure 1.24.

21. Click OK to close the MDX Query Designer. Back to the Dataset Properties dialog box, click
OK to close the dialog box and return to Report Designer.

Report Designer adds the DataSet1 dataset to the Report Data window (press Ctrl+Alt+D to
open it the Report Data window is closed).

Configuring the chart report
Now that you have set up the data structures you want to use, you are ready to design the re-
port.

22. Drag the Chart report item from the Toolbox pane (press Ctrl+Alt+X to open it if it is closed)
and drop it on the design area.

23. In the Select the Chart Type dialog box that follows, leave the default Column chart type se-
lected, and click OK. The Report Designer adds a chart to the report body.

24. Click inside the chart to put it in edit mode, as shown in Figure 1.25. The chart shows addi-
tional areas (called adorner frames) that let you drop dataset fields to configure the chart.

Figure 1.25 You can configure the chart by dragging and dropping dataset fields.

25. If the Report Data window is not shown, press Ctrl-Alt-D to open it.

Figure 1.24 Use the Select
the Data Source dialog to con-
figure a database connection.

INTRODUCING MICROSOFT REPORTING SERVICES 2008 37

The Report Data window contains various objects that are useful at design time, such as para-
meters, data sources, and datasets. For example, it includes the AdventureWorksAS2008 data
source that you've just created. If you expand the AdventureWorksAS2008 data source, you'll
see the DataSet1 dataset you created in the MDX Query Designer.

26. Expand the DataSet1 node. Drag the Category field and drop it on the Drop Categories Fields
Here chart area to group the chart data by this field.

27. Drag the Internet_Sales_Amount field and drop it on the Drop Data Fields Here area.
28. Drag the Reseller_Sales_Amount field and drop it on the Drop Data Fields Here area.
29. Click the report body outside the chart and enlarge the chart by dragging its bottom right

corner, such as to a width of 6" and height of 3.5". You can right-click on an empty area out-
side the report body and select View Ruler to show a ruler that can help you size the chart.

One of my favorite features of the Reporting Services 2008 chart item is that you can configure
it interactively. This saves you time because the chart item is very complex and has many
properties.

30. Click the chart and click the chart title to select it. Click the title one more time to put it in
edit mode. Change the title to Sales by Country.

31. Click the chart legend to put it edit mode. Chart legends can be moved to different locations.
The contents of the legend will adjust to fit the available space. Click the resize handle and
drag the chart legend below the chart to free up more horizontal space for the chart data.

32. Preview the report by clicking the Preview tab.

Notice that Bikes sales far exceed the other categories. You can enable scale breaks to prevent
very high values from eclipsing low values.

33. Click the Design tab to go back to design mode.
34. Right-click the numbers in the vertical axis and choose Axis Properties (see Figure 1.26).

Figure 1.26 Use the
Value Axis Properties di-
alog box to configure the
chart axis.

CHAPTER 1 38

35. In the Value Axis Properties dialog box, check the Enable Scale Breaks property.
36. Select the Labels page and clear the Labels Can be Offset property.
37. Click the Number page and format the axis labels as currency without decimal places. Click

OK.
38. Rename the vertical axis title in place to Dollar Amount and the horizontal axis title to Product

Category.
39. Preview the report. It should now look like the one shown in Figure 1.20.
40. Click the Save All toolbar button to save your changes.
41. Right-click the Sales by Country.rdl report definition in the Solution Explorer and click View

Code. Notice that the report is described in XML-based report definition language (RDL).

You will probably never have to view or edit the RDL directly, but if you are curious about the
underlying definition, the View Code command provides an easy way to look under the hood.

 Report management
Once you are done authoring a report, you can deploy it to the server to share it with other
users. Recall that Report Manager is a web application provided by Microsoft for managing
and viewing reports. You can deploy the report directly from BIDS by configuring the report
properties and choosing Build Deploy. However, to demonstrate report management fea-
tures, let's use Report Manager to upload the Sales by Country report to your local report
server.

1. In Internet Explorer, type the Report Manager URL, such as http://localhost/reports or
http://localhost:8080/reports (Windows XP).

2. In the Report Manager Home page, click the Upload File button, as shown in Figure 1.27. It’s
okay if your Home page has different items or folders.

3. In the Upload File page, click the Browse button and navigate to the Sales by Country.rdl
report definition file. Click OK to upload the report.

The Report Manager uploads the Sales by Country report to Home folder.

 Viewing the report
As noted, organizations can use the Report Manager to both view and manage reports. In the
next few steps, you will see how easy it is to view a report on demand.

Figure 1.27 Use the Report
Manger to manage the report
catalog and view reports.

INTRODUCING MICROSOFT REPORTING SERVICES 2008 39

1. Click the Sales by Country report link to view the report.

The Report Manager renders the report on the screen. It includes a report toolbar at the top of
the report. This toolbar is on by default. You can use it to navigate pages, search for text in the
report, or export it to a different format.

2. Optionally, try out a few report features, such as changing the report parameters, exporting
the report, printing it, and so on.

This practice demonstrated how you can use the Reporting Services tools to execute the report
lifecycle, which consists of report authoring, management, and delivery stages.

1.5 Summary
This chapter has been a whirlwind tour of Reporting Services and its features. By now, you
should view Reporting Services 2008 as a sophisticated server-based reporting platform that
meets a variety of reporting requirements. You've learned about the history of Reporting Ser-
vices and the new features in the 2008 release. You’ve also seen how Reporting Services fits
into the Microsoft Business Intelligence initiative.

In this chapter, we took a close look at the Reporting Services logical architecture and the
report lifecycle, which consists of report authoring, management, and delivery stages. You
learned how the tools support each stage of the lifecycle. During the report authoring stage,
you use one of the Microsoft built-in report designers to lay out the report. In the manage-
ment stage, you upload the report to the server and use Report Manager to configure report
settings. You also learned that Report Manager supports the delivery stage by servicing on de-
mand requests for viewing a report and creating subscriptions for automatic, scheduled deli-
very.

We also discussed the Reporting Services physical architecture and how the new hosting
model provides native support for ASP.NET and HTTP.SYS without IIS. We also learned how
the new processing engine improves Reporting Services performance. Finally, you completed a
practice that demonstrated how to use the Report Designer to author a chart report from an
Analysis Services cube and Report Manager to upload and view the report.

Having laid the foundation, we are ready to put our knowledge to use. Let’s continue our
journey by learning more about how to install, configure, and upgrade Reporting Services.

1.6 Resources
Applied Microsoft Analysis Services 2005 by Teo Lachev

(http://www.prologika.com/Books/0976635305/Book.aspx).
Report Definition Language Specification

(http://www.microsoft.com/sql/technologies/reporting/rdlspec.mspx).
Web and Application Server Infrastructure—Performance and Scalability

(http://tinyurl.com/3oqj4)—Learn how HTTP.SYS improves the IIS performance.
Run ASMX Without IIS by Aaron Skonnard

(http://tinyurl.com/64lrqg)—Learn how to host ASP.NET outside IIS.

40

CChhaapptteerr 22

Installing Reporting Services

2.1 Planning for a Reporting Services Installation 40
2.2 Performing a New Installation 47
2.3 Upgrading Reporting Services 53

2.4 Performing Initial Configuration 58
2.5 Summary 72
2.6 Resources 73

Reporting Services 2008 ships as a feature component of SQL Server 2008. The SQL Server
2008 setup program makes it simple to perform a new installation or upgrade an existing in-
stallation. However, before you insert the setup disk, it makes sense to take the “think before
you leap” approach and spend some time planning your deployment.

I will start this chapter by providing the necessary background to help you plan your Re-
porting Services deployment. Next, I'll walk you through the steps to perform a new installa-
tion of Reporting Services. If you have a previous version of Reporting Services, I'll show you
how to upgrade to the 2008 release. Finally, I'll discuss additional post-deployment setup
steps to finalize a Reporting Services installation.

2.1 Planning for a Reporting Services Installation
Recall from the previous chapter that Reporting Services is a server-based platform. While it’s
fine to install the SQL Server Database Engine and Reporting Services together on the same
computer for development or evaluation purposes, you will probably want to do some tho-
rough planning if you are installing Reporting Services in a production environment.

2.1.1 Planning Hardware and Software
To plan successfully your Reporting Services deployment, you will need to know about the
Reporting Services editions, hardware and software requirements, operational and scalability
constraints, and integration scenarios. Let's start by reviewing the Reporting Services editions
and licensing requirements.

 Understanding editions and licensing
As with its predecessors, Reporting Services 2008 follows the SQL Server pricing and licensing
model. To address different user needs, Reporting Services is available in the three core SQL
Server 2008 editions (Enterprise, Developer, and Standard,) and three specialized editions
(Workgroup, Web, and Express Advanced), as shown in Table 2.1. Reporting Services is not
available with the SQL Server 2008 Compact and Express editions. For more information
about how Reporting Services editions compare, read the document Features Supported by
the Editions of SQL Server 2008 (see Resources section).

INSTALLING REPORTING SERVICES 41

Table 2.1 Reporting Services is available in six editions

Edition Choose when

Enterprise You need all Reporting Services features and your solution must be highly scalable.

Developer You design and develop full-featured Reporting Services solutions on your local development machine. As with the
Enterprise Edition, the Developer Edition supports all features but it is not licensed for production use.

Standard You plan to install Reporting Services on a single server with moderate report loads. The Standard edition doesn't
support data-driven subscriptions or the infinite drillthrough feature of Report Builder 1.0.

Workgroup You want to distribute Reporting Services as a part of your solution that targets desktop deployments and you
need more features than the Express Advanced edition provides.

Web You are a web hosting provider and you want to offer low cost, highly scalable hosting for your clients.

Express Advanced You need the most lightweight Reporting Services edition at no cost. The Express Advanced edition is free to
download, free to redistribute, and free to embed.

The Reporting Services licensing model is simple. Basically, you can think of each of the SQL
Server feature components as SQL Server. Therefore, you need a SQL Server license on the
machine where Reporting Services is installed. For example, suppose your operational re-
quirements call for installing Reporting Services on a separate server from your database serv-
er. In this case, you will need two SQL Server licenses: one for the Reporting Services
installation and another one for the SQL Server Database Engine. What if you decide to use
SQL Server 2005 to host your data and the report catalog but you want to use Reporting Ser-
vices 2008? Again, you need separate SQL Server 2005 and SQL Server 2008 licenses.

As far as pricing, Microsoft didn't change the pricing model of SQL Server 2008 from the
previous release. The pricing details are available on the SQL Server 2008 home page
(http://www.microsoft.com/sqlserver/2008).

 Hardware and software recommendations
The minimum hardware and software requirements for installing SQL Server 2008 are docu-
mented in SQL Server 2008 Books Online (see Resources). Table 2.2 lists two example hard-
ware and software recommendations for local and production server installations respectively.
Use the Development column when planning to install Reporting Services locally on your ma-
chine for design and development.

Table 2.2 Recommended local and server configurations

Configuration Development Server

OS Windows XP with Service Pack 2 or Windows Vista Windows Server2003 Standard or Enterprise Edition

SQL Server 2008 Developer Edition Standard or Enterprise Edition

Example configuration Dell Precision 490 Dell PowerEdge 2900

RAM 2 GB 8GB

CPU 1 Dual-Core Xeon Processor 2 Quad-Core x64 Intel Xeon Processors

Since deployment topologies and reporting loads may vary greatly between organizations,
choosing a server configuration is a function of many variables. As a guideline, the Server col-
umn lists a real-life server configuration for a solution that served the reporting needs of about

CHAPTER 2 42

one hundred deployed users. This was a single-server deployment model, where the SQL
Server Database Engine, Reporting Services, Analysis Services, Integration Services and Share-
Point were installed on the same server.

One thing to note when planning the server configuration is that Reporting Services is a
very processor-intensive application so the more CPU power you can afford, the better. This is
especially true if Reporting Services shares the box with the other SQL Server services, such as
the SQL Server Database Engine or Analysis Services.

 Planning an integration mode
Reporting Services supports native and SharePoint integration modes. These two modes are
mutually exclusive. If you don't plan to deploy reports to a SharePoint portal, configure Re-
porting Services for native mode in the default configuration. In this case, the report server
will be configured as a stand-alone application server that provides all processing and man-
agement functionality through the Reporting Services components. For example, in native
mode, you use the built-in Report Manager application to manage the report catalog.

If you need to integrate Reporting Services with Windows SharePoint Services or Micro-
soft Office SharePoint Server, choose SharePoint integration mode. In this case, report viewing
and management happens inside the SharePoint portal. This integration mode is discussed in
more details in chapter 17.

While you can use the Reporting Services Configuration Manager to switch between the
two integration modes later on, I recommend you make a decision upfront because the two
report catalog types are not compatible. For example, you cannot switch from a native mode
to a SharePoint mode and use the same report catalog. Instead, you have to create a new re-
port server database for a report server that runs in SharePoint integration mode. Needless to
say, you will need to redeploy the report content. Reporting Services doesn't provide a way to
move content between the different catalog types.

2.1.2 Planning a Deployment Topology
When you plan hardware and software requirements, you need to consider your deployment
topology. For example, you need to decide whether to install all SQL Server components on a
single server or spread them on multiple servers. SQL Server 2008 supports flexible deploy-
ment scenarios that let you achieve a compromise between cost and performance.

Figure 2.1 With single-
server deployment, all SQL
Server services are installed
on the same machine.

INSTALLING REPORTING SERVICES 43

 Single-server deployment
The single-server deployment is easy because you install all required services on the same
server, as you would on your development machine. Suppose that your reports retrieve source
data from an Analysis Services cube. As Figure 2.1 shows, in this deployment mode, you
would install Reporting Services and Analysis Services on the same server. If the cube retrieves
source data from a SQL Server database, you would install the SQL Server relational engine
and possibly Integration Services on that server as well. Since all SQL Server installed services
on the same box are covered by the same SQL Server license, this configuration is also cost-
effective.

Security is simpler on a single-server deployment too. Suppose that you need to flow the
user Windows identity from the client all the way to the database server that is configured for
Windows Integrated security. With single-server deployments, there is only one hop (from the
client to the server). This is something the Windows NTLM authentication protocol is de-
signed to handle, so impersonating the user succeeds. For example, if Bob logs on to his ma-
chine as aw\bob and requests a report, the report server will see the request coming under
Bob's identity. Since the report server is configured to impersonate the user, the report server
can pass Bob's identity successfully to the database server on the same machine.

Because of its simplicity and cost benefits, you should consider a single-server deployment
wherever possible. Independent software vendors (ISVs) and small to mid-size deployments
will undoubtedly benefit from single-server deployments.

 Multi-server deployment
Operational and performance requirements may outgrow a single-server deployment. For ex-
ample, you may already have a dedicated OLAP server that hosts an Analysis Services cube
and the administrator may be unwilling to let you install Reporting Services on the same serv-
er.

Figure 2.2 Multi-server
deployments present se-
curity challenges because
NTLM doesn't support
delegation.

Security gets trickier with the multi-server deployment mode because Windows doesn't sup-
port user delegation by default. As Figure 2.2 shows, the first hop is the same as with a single-
server deployment because the report server sees the report request coming from Bob. How-
ever, to pass Bob's identity to another server, you need more than impersonation. You need
the report server to delegate Bob's request so the call to Analysis Services happens as if Bob
queried the cube directly. However, since the report server doesn't have the Bob's password, it
cannot delegate the call and the request fails. The issue manifests itself with a rather obscure
error message when viewing a report:
Cannot create a connection to data source '<data source name>'. (rsErrorOpeningConnection)

CHAPTER 2 44

The solution to this predicament is to use Kerberos security (with delegation enabled). In fact,
by default, the report server is configured to use Windows Negotiation which attempts Kerbe-
ros first and falls back on NTLM if the client doesn't support Kerberos. However, Kerberos
necessitates additional steps for configuring the report server to delegate the call. These steps
will require some assistance from your Active Directory administrator since you will need do-
main administrator rights to make changes to the Active Directory. The Troubleshooting Ker-
beros Delegation paper (see Resource) is a great read to get you started with configuring and
troubleshooting the Kerberos security.

Of course, if the data source uses standard security (stored user name and password), you
don't need to worry about delegation and Kerberos. However, when standard security is used,
the data source will not be able to differentiate users.

 Scale-out deployment
As your BI solution gathers momentum, it will attract more users and you may reach the limits
of scaling up a single server. Or, your operational requirements may call for a fault-tolerant
reporting system. To meet these requirements, consider scaling out the report server, as
shown in Figure 2.3.

Figure 2.3 You can
scale out Reporting Ser-
vices to meet scalability
or fault tolerance re-
quirements.

A scale-out deployment consists of multiple report servers that share the same report server
database. The report servers (nodes) are configured in a load-balanced cluster, also called a
web farm. When a user submits a report request, the load balancer redirects the request to the
least-utilized server. The load balancer could be a hardware device, such as a Cisco router, or
it could be software-based. For example, Windows Server operating systems include Network
Load Balancing (NLB) services that use a software algorithm to track the server utilization and
redirect the incoming requests. The Windows Server 2003 Deployment Kit (see Resources)
provides information about how to configure NLB.

The report server database should be installed on a dedicated SQL Server. You should also
plan a SQL Server failover cluster to make the report server database fault-tolerant. Scale-out
deployment is supported in SQL Server Enterprise edition only and requires manual setup for
Reporting Services (Install, but Don't Configure the Report Server setup option). Once the
setup has completed, you need to use the Reporting Services Configuration Manager to create
the report server database and join the report servers to the web farm.

 Instance deployment
SQL Server has been supporting multiple instances on the same machine since version 2000.
An instance is a named SQL Server installation consisting of one or more SQL Server services
that listen on the same port. The SQL Server Browser service listens for incoming requests and
redirects them to the appropriate instance.

INSTALLING REPORTING SERVICES 45

For example, as Figure 2.4 shows, you may have an application that uses SQL Server 2005
and you may be unwilling to upgrade it to SQL Server 2008. At the same time, you may need
to install SQL Server 2008 on the same box for a new project. Or, you may want to use the
same test server to test different versions of SQL Server. You can meet such deployment re-
quirements by having SQL Server 2005 and 2008 running side-by-side by installing them on
separate instances.

Figure 2.4 You can install
multiple SQL Server instances
on the same server.

If you don't have existing SQL Server installations, you can install SQL Server on the default
instance whose pre-defined name is MSSQLSERVER. Consequently, you can connect to any of
the services on the default instance by just using the server name or IP address. If the setup
program detects any existing SQL Server instances, it will let you upgrade these instances or
install SQL Server 2008 as a separate named instance. To connect to a named instance, ap-
pend a backslash to the server name. For example, if the server name is MILLENNIA and the
instance name is SQL2008, you can connect to any of the services of the SQL2008 instance by
entering MILLENNIA\SQL2008.

TIP You can use the Services console application in Administrator Tools to identify the installed SQL Server services
and instances. For example, SQL Server Reporting Services (MSSQLSERVER) means that the server is running Report-
ing Services that is installed as the default instance. Integration Services is not instance-aware and doesn't support mul-
tiple instances.

You can mix services and instances. Suppose that the server is running only Reporting Servic-
es 2000. You can install SQL Server 2008 Database Engine as the default instance and install
Reporting Services 2008 as a named instance.

You should try to minimize the number of instances installed on the server for cost and
performance reasons. Each new instance requires a separate SQL Server license (unless it is a
SQL Server Express edition) and the instances will be competing for server resources. For ex-
ample, if you are installing Windows SharePoint Services on a server which already has SQL
Server 2008 installed, run the SharePoint setup in advanced mode so you could connect to the
existing SQL Server 2008 instance instead of creating a new SQL Server Express instance .

2.1.3 Planning Service Accounts
Before running the setup program, you need to decide what Windows accounts Reporting
Services and the other installed SQL Server services will run under. The SQL Server setup
program lets you configure the service accounts independently for each service. You can
choose a built-in system account or a custom account, such as a domain or local account.

CHAPTER 2 46

 Understanding system accounts
Windows includes system accounts that you can use for startup accounts for the SQL Server
services. These system accounts are listed in Table 2.3.

Table 2.3 Built-in system accounts

Account Privilege Level Network Credentials

NT AUTHORITY\System High

NT AUTHORITY\Network Service Low

NT AUTHORITY\Local Service Low

The NT AUTHORITY\System account is a very powerful account. If a hacker compromises a
service running under the System account, the hacker can gain unrestricted access to the ma-
chine. Therefore, you should use this account with caution.

The Network Service and Local Service accounts are low privileged accounts and have the
same rights as the members of the Windows User group. Similar to the System account, the
Network Service account can access network resources under the computer's domain account.
For example, let's say you configure Reporting Services on a server called MILLENNIA in the
adventure-works domain to run under the Network Service. If custom code in a report tries to
access a network resource, such as file, located on server B, the request will go out under ad-
venture-works\MILLENNIA$. If MILLENNIA isn't in a domain, no network credentials will be
assigned to it and the call will fail.

The Local Service account is that most restricted because it doesn't have rights to access
network resources. In other words, it is limited to accessing resources on the local machine
only. The SQL Server 2008 setup program doesn't include the Local Service account in the
pre-populated drop-down list of system accounts, so if you want to use it, you have to enter it
in manually.

 Understanding custom accounts
You can choose to run a service under a custom account to further isolate its surface area. For
example, suppose that both ASP.NET and Reporting Services run under the Network Service
account. If a hacker gains access to a web application, the attacker will get permissions to
access the report server database. Another scenario that may favor a custom account is when a
service needs to access a network resource under a designated domain account. For example,
Analysis Services lets you synchronize databases between servers. However, the service ac-
count of the target server (the one that needs to be updated) must have administrator access to
the source database. If the Analysis Services service runs under a domain account, you can
grant this account the required permissions to the source server.

In the case of Reporting Services, there are limited scenarios where a custom account
could be useful. One of them could be when a report custom code needs to access a network
resource. For example, custom code may need to open a connection to an Analysis Services
cube that requires a designated Windows account. Another scenario is SharePoint integration
mode where the report server and the SharePoint databases are on one machine and the
SharePoint Web application is on another machine. In this case, SharePoint will block any
application that runs under a local machine account from accessing its remote databases. To
work around this, you would have to configure the report server to run as a domain user ac-
count.

INSTALLING REPORTING SERVICES 47

In general, you should avoid running the Reporting Services under a domain account for
reasons that are not immediately obvious. First, built-in machine accounts, such as Network
Service, have predefined Service Principal Names (SPN) in the Windows Active Directory.
These predefined SPNs are used to identify services on computers in the network. In contrast
with built-in machine accounts, a domain account may not have a registered Service Principal
Name (SPN) in the Windows Active Directory for a particular service. As a result, under Nego-
tiated Kerberos authentication, the service will be unknown in the Active Directory database
and no tickets will be granted to access it.

Consequently, due to the authentication failure, the report server will keep on prompting
you for Windows credentials even if you supply correct credentials when you connect to the
server. As a work-around, you can disable Windows Negotiate by disabling it in the report
server configuration file (rsreportserver.config), as follows:
 <Authentication>
 <AuthenticationTypes>
 <!--RSWindowsNegotiate/-->
 <RSWindowsNTLM/>
 </AuthenticationTypes>
 </Authentication>

If you need to use Kerberos, such as to delegate user credentials to a database server, the net-
work administrator can register an SPN for the domain account in the Active Directory by ex-
ecuting the following two commands:
setspn -A HTTP/<servername> <domain\account>
setspn -A HTTP/<FQDN> <domain\account>

This will work as long as Reporting Services is the only service on the box that uses HTTP. As
Microsoft Knowledge Base Article 871179 explains, an SPN for a service can only be asso-
ciated with one account. This means that if you have IIS running on the box, all applications
that are hosted by IIS (and consequently run in the HTTP service) must also run under the
domain user identity you established for HTTP service on your computer. If you do not use
the same account, accessing a web application hosted by IIS will now prompt for credentials
and then fail the connection. As noted, built-in accounts don't have this issue because they
have SPNs registered in the directory already.

In summary, when choosing an account for Reporting Services, I recommend you stick to
the built-in accounts, such as Network Service. You can always change the account later on if
needed.

2.2 Performing a New Installation
Now that you have planned your Reporting Services deployment, you are ready to start the
setup process. The instructions that follow demonstrate a “happy” installation path that as-
sumes that you are installing the server components on a clean machine. For the purposes of
this practice, I'll demonstrate installing SQL Server Developer Edition on Windows Vista.

2.2.1 Performing Initial Setup Steps
Launch the SQL Server setup program by inserting the first SQL Server 2008 setup CD. The
SQL Server setup program should start momentarily. If Autoplay doesn't work, run the setup
manually by double-clicking setup.exe found in the root folder on the first CD. If not in-

CHAPTER 2 48

stalled, the setup program will prompt you to install .NET Framework 3.5 with Service Pack 1
and Windows Installer version 4.5. Once these prerequisites are installed, the setup program
opens the SQL Server Installation Center.

Figure 2.5 The
Planning page lets
you prepare for the
installation.

The SQL Server Installation Center is a central point for planning, installing, and upgrading
SQL Server. The left menu includes links that organize features into logical pages. Use the re-
sources in the Planning page (see Figure 2.5) to plan your new installation or upgrade. The
Installation page lets you perform the actual deployment. Use the Maintenance page to up-
grade your SQL Server edition, repair an existing instance, or remove a node from a cluster.

The Tools page includes links to several utilities, such as a utility that checks your confi-
guration for a set of conditions that may prevent a successful installation. The Resources page
provides links to useful resources, including the Books Online and the SQL Server 2008 sam-
ples. The Advanced page lets you perform advanced installation tasks, such as adding a node
to a SQL Server cluster. Finally, you can use the Options page to specify the processor type,
such as x86 or x64, and the installation media root directory.

Please feel free to explore the wealth of resources available in the SQL Server Installation
Center. Once you are ready to proceed with the deployment, click the Installation link to open
the Installation page, which is shown in Figure 2.6. You can use the Installation page to per-
form various installation tasks, such as performing a new installation, upgrading an existing
installation, or adding new features to an existing SQL Server 2008 installation.

The setup program executes the Setup Support Rules step that checks certain rules which
may prevent installing the SQL Server setup files, such as minimum operating system version
check, local administrator rights, restart required, and so on.

1. Assuming all rules have checked successfully, click OK.
2. In the Setup Support Files dialog box, click the Install button to install the components by the

setup wizard.

INSTALLING REPORTING SERVICES 49

2.2.2 Installing a New SQL Server Installation
The setup wizard installs a new installation in several steps. First, the wizard performs a sys-
tem configuration check to ensure that the target machine meets the hardware and software
requirements. If a requirement fails the check, setup cannot continue. For example, if SQL
Server 7.0 is installed, the wizard will flag the Unsupported SQL Server Products requirement
as Failed and disable the Next button.

If you have an existing SQL Server instance installed, the setup wizard will show the Installa-
tion Type page to let you choose between performing an existing installation or adding fea-
tures to an existing named instance. If you have an existing instance, such as SQL Server 2005
on the default instance, and you want to install SQL Server 2008 side by side, leave the New

Figure 2.6 Use the In-
stallation page to carry out
installation tasks, such as
installing a new instance
or upgrading an existing
instance.

Figure 2.7 The Feature Se-
lection step lets you select
instance-specific and shared
features.

CHAPTER 2 50

Installation option selected and click Next. In the Product Key step, enter your product key or
choose to evaluate SQL Server. In the License Terms page, read and accept the license terms
and click Next.

 Selecting features
The Feature Selection step, which is shown in Figure 2.7, lets you select SQL Server 2008 in-
stance-specific and shared features that will be shared among all SQL Server 2008 instances.
You can highlight a feature to see its description in the Description pane. As you check in-
stance features, additional steps required to configure the selected feature are added to the left
pane. You can also overwrite the component directory where the features will be installed. The
default path is C:\Program Files\Microsoft SQL Server\.

1. Assuming a full installation, click the Select All button and click Next.

The wizard advances to the Instance Configuration step.

 Configuring the instance
In the Instance Configuration step (see Figure 2.8), the wizard discovers any existing SQL
Server instances and shows them in the Installed Instances grid. At this point, you need to
decide whether to install SQL Server on the default or a named instance. You can use the De-
fault instance option only if no previous SQL Server installations exist on the machine. Oth-
erwise, you need to specify a named instance by selecting the Named Instance option.
As a part of configuring a named instance, you need to specify the instance name which
clients will use to connect to the instance. For example, if you name the instance SQL2008
and the server name is MILLENNIA, the clients will connect to the instance as MILLEN-
NIA\SQL2008.

Figure 2.8 Use the
Instance Configuration
step to install SQL Server
on a default or a named
instance.

You must also specify an instance identifier. The setup program uses this identifier to define
the installation paths. The predefined identifier for the default instance is MSSQLSERVER.
Consequently, the Reporting Services installation directory will be C:\Program Files\Microsoft

INSTALLING REPORTING SERVICES 51

SQL Server\MSRS10.MSSQLSERVER. For a named instance, the default instance identifier is
the same as the instance name.

1. Accept the default values unless you have a good reason to change them and click Next.
2. In the Disk Space Requirements step, the wizard calculates the disk space required by the

selected options. Click Next.

 Configuring service accounts
The Server Configuration step lets you specify the service accounts. The SQL Server Browser
and SQL Server Integration Services are pre-configured to run under system accounts and
cannot be changed. You can configure the service accounts for the rest of the services inde-
pendently or use one account for all services. You can use system or custom accounts. If you
are unsure what accounts to select, consider configuring all services to run under the Network
Service system account and changing the accounts later on if needed.

1. Click the Use the Same Account for All SQL Server Services button.
2. In the dialog box that follows, expand the Account Name drop-down list and select NT AU-

THORITY\NETWORK SERVICE, as shown in Figure 2.9. Click OK.

The wizard configures the rest of the services to run under the Network Service account. You
can use the Server Configuration step to specify the service startup type. For example, if you
are not planning to use SQL Server Analysis Services immediately, set its startup type to Ma-
nual or Disabled to conserve system resources. The Collation type lets you specify the colla-
tion type for the SQL Server Database Engine and Analysis Services.

The next two steps, Database Engine Configuration and Analysis Services Configuration,
let you configure these services if you have selected them in the Feature Selection page. For
example, you can use the Database Engine Configuration step to specify the authentication
option for connecting to the SQL Server Database Engine service, such as Windows authenti-

Figure 2.9 Use the
Server Configuration
step to set up the ser-
vice accounts.

CHAPTER 2 52

cation only or a mixed mode. Both steps require you specify an existing Windows user as an
administrator. You can press the Add Current User button to add yourself as an administrator.

 Configuring Reporting Services
The Reporting Services Configuration page, which is shown in Figure 2.10, lets you configure
the report server integration mode. Choose the Install the Native Mode Default Configuration
option to let the wizard create a report server database configured for native mode. Choose the
Install the SharePoint Mode Default Configuration option only if you plan to integrate Report-
ing Services with SharePoint (requires server operating system, such as Windows Server
2003). Note that you will need to perform additional steps after setup is finished to finalize
the integration with SharePoint.

Figure 2.10 Use the
Reporting Services Confi-
guration step to specify
basic Reporting Services
configuration options.

If you don't want to initialize the report server, choose the Install but Do Not Configure the
Report Server option. This option is useful when you need more control over the configura-
tion process, such as when you need to add a report server to a web farm or if you want to use
a remote SQL Server Database Engine to host the report catalog. The Install but Do Not Con-
figure the Report Server option will be the only available option if you didn't select the SQL
Server 2008 Database Engine Services in the Feature Selection page. This is because the setup
performs the first two options by installing the report database on the local default SQL Server
instance. Assuming native mode, leave the first option selected and click Next.

 Performing the remaining setup steps
The Error and Usage Reporting step lets you send error information and anonymous usage
data to Microsoft. Microsoft captures and analyzes this data on a regular basis. Consider leav-
ing the two options selected to help Microsoft improve SQL Server. The Ready to Install step
gives you a last chance to review the setup tasks. The Installation Progress step performs the
actual installation. Finally, the Complete steps informs you about the setup status and suggests

NOTE Because the AdventureWorks2008 database demonstrates the filestream feature (new with SQL Server 2008).
I recommend you enable filestream during setup. To do so, in the Database Engine Configuration step, click the FILE-
STREAM tab, check the two Enable Filestream options, and accept the default share name.

INSTALLING REPORTING SERVICES 53

further steps if needed. It also includes a link to the SQL Server setup log so you could inspect
it in case you encounter a setup error. The default SQL Server setup log folder is \Program
Files\Microsoft SQL Server\100\Setup Bootstrap\Log.

2.3 Upgrading Reporting Services
If you are using a previous release of Reporting Services, you can upgrade to Reporting Servic-
es 2008 to take advantage of the new features. Of course, one option is not to upgrade at all
but to run versions side by side on separate instances. With this approach, you can keep lega-
cy reporting solutions intact and use Reporting Services 2008 for new projects. On the down-
side, you will need a separate SQL Server license for each instance.

If you decided to upgrade, the SQL Server setup program can upgrade an existing Report-
ing Services 2000 or 2005 installation. In addition to the information I provide in this section,
I recommend you review the Upgrading Reporting Services topic in the product documenta-
tion. For the purposes of this practice, I'll demonstrate upgrading from SQL Server 2005 run-
ning on Windows Server 2003.

2.3.1 Planning the Upgrade Process
As noted in chapter 1, the Reporting Services architecture and processing engine have
changed significantly in this version. Therefore, when planning your upgrade, you need to
understand what exactly will be upgraded. Microsoft has done a great job maintaining back-
ward compatibility wherever possible, but there are a few breaking changes that prevent some
upgrade paths.

 Understanding upgrade scenarios
Reporting Services can be used in a variety of integration scenarios. Table 2.4 lists the most
common scenarios and the support statement for each scenario.

Table 2.4 Upgrade scenarios

Scenario Support Statement

Report server database hosted in SQL Server 2005 Supported

Report server database hosted in SQL Server 2000 Not supported

RDL 2000 and 2005 Can publish but cannot edit in the new designers

SharePoint Integration in 2005 Service Pack 2 Supported

SharePoint version 2 web parts Supported

Applications built for version 2005 Supported

Applications built for version 2000 The 2000 endpoint (ReportService.asmx) is not supported; URL access will work

Visual Studio 2005 ReportViewer Controls Supported

Custom report items RDL 2005 reports will work. RDL 2008 reports require upgrading custom report items

Custom rendering extensions Need to be rewritten

CHAPTER 2 54

Let's explain briefly each upgrade scenario. Hosting the report server database in a SQL Server
2005 database is supported, but you cannot use SQL Server 2000 to host the report server
database. Consequently, you need to have at least SQL Server 2005 Database Engine to host
the report server database.

You can publish legacy report definitions to the report server and although they will run,
they will not get upgraded. In other words, whatever you publish is what you will get back.
This is because the report server processes 2005 report definitions with the 2005 processing
engine. For example, if you upload a 2005 report definition that contains a table or matrix,
the definition won't be upgraded automatically to the new tablix data region. Backward com-
patibility support extends to tools. Specifically, legacy reporting clients will not be affected if
you upgrade Reporting Services to version 2008 because they can publish and read the legacy
report definitions that run on the 2008 report server.

One catch to all this great backward compatibility support is that you won't be able to edit
the legacy report definitions in the BIDS 2008 Report Designer and Report Builder 2.0. These
tools support RDL 2008 only and will ask you to upgrade your report definitions. This is a
one-way conversion and you won't be able to downgrade your reports to previous versions of
RDL. What this means to you is that you have to keep BIDS 2005 around if you need to pub-
lish to SQL Server 2005 Reporting Services.

If you have a Report Server 2005 integrated with SharePoint, it will be upgraded in-place.
However, the setup program doesn't include the 2008 version of the Reporting Services for
SharePoint add-in. Therefore, as a post-installation step, you must download the 2008 version
of the Reporting Services for SharePoint add-in and install it. Detailed installation steps are
provided in chapter 17. You don't need to remove the 2005 version of the add-in because the
setup program for the 2008 version of the add-in will upgrade the old version in place. You
can continue using the Report Explorer and Report Viewer SharePoint web parts which were
included in the release version of Reporting Services 2005.

Custom applications that target Reporting Services 2005 will continue to work unaffected.
Custom applications that integrate with the Reporting Services 2000 Web Service endpoint
will not work since this endpoint is not supported. Custom .NET applications that use the
Visual Studio 2005 ReportViewer controls will not be affected when you upgrade to Reporting
Services 2008.

If you use custom report items, RDL 2005 reports will continue to work unaffected
through backward compatibility interfaces. For example, you can still deploy and run RDL
2005 reports that include the Dundas Chart for Reporting Services 2005, which is imple-
mented as a custom report item. You can use BIDS 2005 to edit these reports as before. If you
upgrade the report definitions to RDL 2008, legacy custom report items won't work. If you
have the code, you can upgrade custom report items by referencing the new interfaces, which
I’ll discuss in chapter 21. Due to major changes in the report processing and rendering archi-
tecture, custom rendering extensions need to be rewritten.

 Upgrading the report server
SQL Server setup will only upgrade from the latest service pack of a major release. This means
that if you are upgrading Reporting Services 2000 or 2005, you must have the latest SQL
Server service pack applied.

When upgrading an existing Reporting Services installation, the SQL Server setup will up-
grade its settings and copy configuration state from IIS. Unsupported scenarios, such as host-
ing the report server database in SQL Server 2000, will block the upgrade process. Therefore,
it is important to install and run the SQL Server Upgrade Advisor to discover incompatible

INSTALLING REPORTING SERVICES 55

scenarios and plan your upgrade process accordingly. For example, as a result of the major
changes to the Report Processor, custom rendering extensions need to be updated to work
with the new rendering object model. The SQL Server Upgrade Advisor will detect and flag
such scenarios.

The setup program will update the report server database automatically. The report con-
tent, such as reports, snapshots, and security settings, will be preserved. The setup program
will register new URL endpoints for the report server and Report Manager but it will not de-
lete the old IIS virtual folders. If you don't need the IIS virtual folders, you have to manually
delete them. Metadata and security policies are upgraded on first use of the report server data-
base. Old snapshots are still rendered with the old processing engine, which includes a Ren-
dering Object Model (ROM) “shim” that translates the old ROM structures on-the-fly to the
new Reporting Services 2008 tablix structures.

 Upgrading report definitions
Published reports will be upgraded automatically by the SQL Server setup program. As noted,
you can still publish legacy report definitions to the report server and they won't get up-
graded. If you open reports RDL 2000 or 2005 report definitions in the BIDS Report Designer
or Report Builder 2.0, they will be upgraded to RDL 2008. However, this is a one-way process
and you won't be able to save reports back to RDL 2000 or 2005 formats.

2.3.2 Working with the SQL Server 2008 Upgrade Advisor
Before upgrading Reporting Services, consider running the SQL Server 2008 Upgrade Advisor
to estimate the upgrade effort. The SQL Server 2008 Upgrade Advisor analyzes SQL Server
2000 and 2005 installations in preparation for upgrading to SQL Server 2005 and warns of
potential problems. The Upgrade Advisor can be used to analyze all SQL Server services.
However, for the purposes of our demo, we will focus on Reporting Services only.

 Running the Upgrade Advisor
Follow these steps to install and run the SQL Server 2008 Upgrade Advisor:

1. Install the SQL Server 2008 Upgrade Advisor from the Planning page of the SQL Server Instal-
lation Center (see again Figure 2.5).

2. Launch Upgrade Advisor from the Microsoft SQL Server 2008 program group.
3. In the Welcome page, click the Launch Upgrade Advisor Analysis Wizard link on the welcome

screen to start the Upgrade Advisor Analysis Wizard. Click Next to advance to the SQL Server
Components step.

4. In the Server name textbox, enter the name of the server which hosts the Reporting Services
installation and select Reporting Services in the Components list. Click Next.

5. In the Reporting Services Parameters step, select the Reporting Services instance you want to
analyze or leave the MSSQLSERVER instance pre-selected if Reporting Services is installed on
the default instance.

6. In the Confirm Upgrade Advisor Settings step, note the folder where the report will be gener-
ated. Upgrade Advisor saves the results as an XML report. Each wizard run will overwrite an
existing issues report that was created for the report server you selected. The default report
path is \Documents and Settings\<user>\My Documents\SQL Server 2008 Upgrade Advisor
Reports\<servername>. Click Run to advance to the Upgrade Advisor Progress step.

CHAPTER 2 56

7. The Upgrade Advisor analyzes the Reporting Services instance by evaluating a set of rules, as
shown in Figure 2.11. If any issues are detected, Upgrade Advisor displays a warning message.

Figure 2.11 The SQL Server 2008
Upgrade Advisor evaluates several
rules to identify potential issues that
may impact the upgrade process.

8. Click the Launch Report button the view the generated report.

 Analyzing the upgrade report
The Upgrade Advisor report (see Figure 2.12) displays deprecated features and other issues
that may impact the upgrade process. The When to Fix column tells you when the issue needs
to be addressed, such before or after the upgrade. In this case, the Upgrade Advisor has dis-
covered three critical issues and one warning.

Figure 2.12 The Upgrade
Advisor report shows issues
that may impact upgrading
from previous versions.

INSTALLING REPORTING SERVICES 57

1. Expand the Custom Report Items Were Detected on the Report Server issue.
2. Click the Tell Me More link below to obtain more information.

The Upgrade Advisor navigates to the corresponding help topic, which explains that custom
report items that were created for previous releases of SQL Server Reporting Services are not
compatible with SQL Server 2008 Reporting Services. Farther down, the help topic provides a
corrective action which in this case requires revisions to the custom assembly code and re-
compilation.

TIP If upgrading a custom report item is not a near-term option, one workaround in this case is deploying the RDL 2005
version of the report after the upgrade to render the SQL Server 2005 custom report item through compatible interfaces.

As the help explains, the upgrade can continue and both issues can be addressed after the up-
grade. The reason why the report (When To Fix column) suggests we fix the issues before the
upgrade process is that they may impact existing functionality. For example, a report that uses
an incompatible custom report item will be upgraded to RDL 2008 but the custom report item
will no longer work.

2.3.3 Upgrading a Reporting Services Installation
Once you understand the upgrade effort, it's time to perform the actual upgrade steps. Let’s go
through a hands-on lab that demonstrates upgrading an existing Reporting Services 2005 in-
stallation.

 Selecting an instance to upgrade
The initial steps of the upgrade process are identical to installing a new instance.

1. In SQL Server Installation Center, click the Installation link.
2. In the Installation page (see Figure 2.6), click the Upgrade from SQL Server 2000 or SQL

Server 2005 link. The setup program executes the Setup Support Rules step.
3. Go through the Product Key, License Terms, and Setup Support Files steps to start the setup

wizard.

As when performing a new installation, the Select Instance step detects existing SQL Server
2000 and 2005 installations. It gives you an option to upgrade a selected instance or only the
shared components, such as the SQL Server Client components or SQL Server Integration Ser-
vices. You can upgrade only one instance at a time.

4. Expand the Upgrade Selected Instance drop-down list and select the instance you want to
upgrade. For example, if SQL Server 2005 is installed on the default instance MSSQLSERVER,
selected this instance and click Next.

 Checking upgrade rules
The Select Features step lets you select which SQL Server services and shared features you
want to upgrade.

1. By default, all SQL Server services and features installed on the box will be upgraded. Click
Next.

CHAPTER 2 58

2. In the Instance Configuration page, the Default Instance and Named Instance options will be
disabled because you've already selected which instance will be upgraded. The only change
you can make to this page is to modify the instance identifier if you want to change the instal-
lation folders.

3. In the Reporting Services Authentication step, specify an authentication mode which the setup
program will use to connect to the report server database. The default Windows Authentica-
tion model uses your credentials to connect to SQL Server. Alternatively, you can use standard
authentication and enter the credentials of a SQL Server login that has rights to connect to the
report server database.

4. The Upgrade Rules Check step applies several rules to verify the readiness of the upgrade
process. It flags each rule with one of three status codes: Pass, Warning, or Failed. You can
click on the status link to obtain more information about the rule status. Failed rules will
block the upgrade process and need to be addressed. But you've already run the SQL Server
2008 Upgrade Advisor and addressed critical issues, haven't you?

Once you pass the Upgrade Rules Check step, you have a green light to upgrade. The Ready to
Upgrade step gives you a summary of what will be upgraded. The Installation Progress step
performs the actual upgrade. Finally, the Complete step informs you about the setup status
and suggests further steps if needed.

2.4 Performing Initial Configuration
As you've seen, the SQL Server setup program doesn't offer much control over the Reporting
Services configuration. Therefore, after the setup is done, you may need to perform several
post-deployment steps to finalize the Reporting Services configuration, such as to configure
the report server connections or throttle memory utilization.

2.4.1 Testing the Reporting Services Installation
If the setup program completes successfully and you haven't performed a files-only installation
(Install, but do not Configure the Report Server option in the Reporting Services Configura-
tion page), your Reporting Services installation should be operational.

 Verifying that the report server is operational
As a first post-deployment step, verify that the report server and Report Manager are opera-
tional by requesting their URLs in the browser. Recall that the setup program will configure
the report server URLs to use port 80 when Reporting Services is installed on Windows Vista
and Windows Server 2003 or above. With Windows XP, port 8080 will be used to avoid con-
flicts with IIS. To isolate authentication issues, I recommend you perform the following steps
as a local administrator on the box where you installed Reporting Services.

NOTE Administrator permissions are not automatically available to local administrators if you are using the User
Account Control (UAC) feature of Windows Vista or Windows Server 2008. Follow the steps in the "How to: Configure
a Report Server for Local Administration on Windows Vista and Windows Server 2008" topic (see Resources) to grant
yourself of another user administrator rights to Reporting Services.

1. On the machine where you install SQL Server 2008, open Internet Explorer and type the Re-
port Server Web Service URL, such as http://<machine>/ReportServer or

INSTALLING REPORTING SERVICES 59

http://localhost/ReportServer. You can obtain this URL from the Web Service URL tab in the
Reporting Services Configuration Manager.

After a certain period of inactivity required for initializing the report server applications, you
should see the report server main page. In the case of a new installation, the page should re-
semble the one shown in Figure 2.13 (the Reporting Services version may vary).

If you have upgraded Reporting Services, the report server page should show folder links to let
you navigate the report catalog.

2. The next step is to verify that Report Manager is operational. In Internet Explorer, request the
Report Manager URL, such as http://<servername>/reports. If all is well, you should see the
Report Manager main page.

Don't panic if the report server or Report Manager pages display error messages. A few basic
troubleshooting steps may help you address some of these issues.

3. Open the Services console application and verify whether the SQL Server Reporting Services
service is running. Verify that the Database Engine instance used to host the report catalog is
running as well.

4. Check for any error messages in the Application log in the Windows Event Viewer.
5. Inspect the report server trace log file in \Program Files\Microsoft SQL Serv-

er\MSRS10.MSSQLSERVER\Reporting Services\LogFiles. Search for any error messages that
may indicate what went wrong.

6. Open the Reporting Services Configuration Manager found in the Microsoft SQL Server 2008
 Configuration Tools program group and check for any error conditions.

 Verifying Windows authentication
The setup program configures a new Reporting Services installation for Windows security. As
a next step for verifying the health of the report server I recommend you access the Report
Manager from a remote computer. If all is well, you should see the Report Manager home
page. The most common issue with remote access is confronting the notorious Windows cre-
dential dialog, as shown in Figure 2.14.

There could be 1,001 reasons for Windows authentication to fail between the browser and the
server and none of them have to do with Reporting Services per se. However, here are a few
tips that may help you get rid of the dialog box.

1. Use the name of the server in the Report Manager URL, such as http://millennia/reports, so
Internet Explorer applies the Local Intranet security settings when connecting to the server. If

Figure 2.13 Request the Web
Service URL to verify that the
report server is operational.

CHAPTER 2 60

you use the server IP address or Fully Qualified Domain Name (FQDN), such as millen-
nia.prologika.com, the browser will apply the Internet security settings which may cause the
credentials dialog box to pop up.

2. On the report server computer, open port 80 in Windows Firewall. If you applied the latest
service packs or are running one of the newer Windows operating systems, port 80 is closed
by default. Open Control Panel and then click Windows Firewall. On the Exceptions tab, en-
ter TCP80 for the name and 80 for the port. Click OK to save your changes.

3. Open the browser Internet Options dialog (Tools Internet Options) and flip to the Ad-
vanced tab. Make sure that the Enable Integrated Windows Authentication option under the
Security section is checked.

4. For some obscure reason which probably has to do with security, if your machine isn't in a
domain and Reporting Services is installed locally, Internet Explorer will prompt for creden-
tials with Windows Vista. To get rid of the prompt, in Internet Options, select the Local Intra-
net zone in the Security tab, and click the Sites button. Deselect the Automatically Detect
Intranet Network checkbox and check the three checkboxes below it, as shown in Figure
2.15. Restart the browser.

Figure 2.15 Configure the Local
Intranet settings to suppress the cre-
dentials dialog with Windows Vista.

5. Finally, the Windows Negotiate protocol may be failing. To force the report server to use
NTLM, remove the RSWindowsNegotiate element from the report server configuration file
(rsreportserver.config), as I mentioned in section 2.1.3.

Lukasz Pawlowski, a Program Manager on the Reporting Services team, has written an excel-
lent blog (see Resources) that provides additional solutions for solving login issues.

Figure 2.14 You shouldn't see this dialog
box if Windows Authentication is working
properly with intranet deployments.

INSTALLING REPORTING SERVICES 61

2.4.2 Configuring Reporting Services URLs
Recall that Reporting Services 2008 has a new hosting model that is not dependent on IIS. The
SQL Server setup program defines report server and Report Manager URLs based on the un-
derlying operating system. Use the Report Manager URL to access the Report Manager applica-
tion. All client applications, including Report Manager, use the report server URL to integrate
with the report server.

The default URLs will probably meet the needs of most deployment scenarios, but some-
times they may not be enough. For example, firewall restrictions may force you to use a spe-
cific port. Or, you may need to configure the report server to use SSL if it will be accessed
through an Internet-facing web server. To address such advanced deployment scenarios, you
need to know how to configure the Reporting Services URLs.

 About URL registration and reservation
Recall that the Reporting Services Windows service hosts three Reporting Services applica-
tions: Report Manager, Report Server Web service, and Background Processor. Behind the
scenes, the Reporting Services Windows service uses HTTP.SYS, a kernel-mode Windows de-
vice driver, to listen for network requests and route them to the appropriate request queue. To
do this work, HTTP.SYS maintains a URL reservation and registration system for the HTTP
endpoints that are accessed on the local computer.

URL reservation is a process by which an application stores a URL endpoint in HTTP.SYS.
An application can reserve more than one URL endpoint with HTTP.SYS. For example, be-
sides the default Report Manager endpoint (http://<servername>/Reports) that lets you access
the Report Manager on the corporate intranet, you may also need to register an external URL
endpoint, such as https://reports.adventure-works.com, to make Report Manager accessible to
Internet users. HTTP.SYS ensures that multiple URL endpoints are unique and non-
conflicting. Report server keeps a copy of its URL reservations in the report server configura-
tion file (rsreportserver.config).

URL registration refers to creating the HTTP endpoint for a previously reserved URL when
the URL is requested. URL registration happens at run time. For example, when the Reporting
Services Windows service starts, it reads the endpoints from the report server configuration
file (rsreportserver.config). Then, it creates a queue and registers the endpoints with
HTTP.SYS. As incoming requests to the report server arrive, HTTP.SYS receives and dis-
patches them to the queue. Reporting Services unregisters its endpoints when you stop the
Reporting Services Windows service.

 Understanding the URL reservation syntax
An HTTP.SYS URL endpoint has the following syntax:
scheme://host:port/VirtualDirectory

The scheme must be either http or https, all in lower case. The host could be a machine name,
fully qualified domain name (FQDN), an IPv4 or IPv6 literal string, or a wildcard. Unlike the
scheme, the host is case-insensitive.

NOTE If you have installed Reporting Services on a named instance, the default Report Manager and report server
URLs will include the instance name. For example, if the named instance is SQL2008, the server name is MYSERVER
and the port is 80, the default report server URL would be http://MYSERVER_SQL2008:80/ReportServer. If you don't
know how the server is configured, you can obtain the URLs from the Reporting Services Configuration Manager.

CHAPTER 2 62

The port is a decimal numeric string that does not start with zero and that represents a valid
TCP port number from 1 to 65,535, such as 8080. Although HTTP.SYS doesn't mandate a
virtual directory, Reporting Services requires you to specify report server and Report Manager
virtual directories. Similar to IIS virtual directories, an HTTP.SYS virtual directory indicates a
subtree within the machine's namespace. It must always starts with a forward slash, such as
/ReportServer.

The virtual directories are simplified in Reporting Services 2008. For example, in IIS, a
virtual directory has many settings. By contrast, a Reporting Services 2008 virtual directory is
just a name. Only one virtual directory is allowed for the Report Server Web service and Re-
port Manager applications. For flexibility, HTTP.SYS supports four different host categories
which are listed in Table 2.5.

Table 2.5 HTTP.SYS supports four host categories

Category Description Example

Strong wildcard
(All Assigned)

It matches all possible host names. Use when you need to avoid specifying a long
list of hosts and/or IP Addresses. This is the default host category.

http://+:80/ReportServer/

Explicit The host name is a machine name, FQDN, or IP address. Use an explicit host
when the incoming requests need to be matched directly against the host name in
the HTTP headers.

http://millennia/ReportServer

IP-bound weak
wildcard

This wildcard is implied when the host element is an IP address. It could be IPv4
literal string, such 192.168.0.0, or IPv6 literal string, such as [::1] or
[6FFE:FFFF::6ECB:0101].

http://192.168.100.1/ReportServer

Weak wildcard
(All Unassigned)

When an asterisk (*) appears as the host element. A wild card serves as a catch-
all bucket. It matches any host name associated with the specified scheme, port
and virtual directory that has not already been handled by other categories.

http://*:80/ReportServer

HTTP.SYS routes HTTP requests in the order listed in the table. For example, a strong wild-
card match supersedes a weak wildcard match. Suppose that you run both IIS and Reporting
Services on Windows Server or Vista operating systems. They both listen on port 80 and they
both have a virtual directory called Reports. Which one will win when the user submits an
HTTP request, such as http://<servername>/Reports? The answer is easy once you know that
IIS makes weak reservations while Reporting Services make strong reservations by default. The
request will be routed to Reporting Services.

 Changing the report server port
You can use the Reporting Services Configuration Manager to configure the Report Server
Web service and Report Manager endpoints. Let's say you have Reporting Services running on
Windows Server 2003 and you need to configure the Report Server Web service endpoint to
listen on port 8081 instead of the default port 80.

1. Open Reporting Services Configuration Manager from the Microsoft SQL Server 2008 Con-
figuration Tools.

2. Connect to the server and Reporting Services instance you want to manage.
3. Select the Web Service URL page.

Observe that the virtual directory is ReportServer, the IP Address drop-down list is set to All
Assigned (Recommended), and the TCP port is 80 (8080 on Windows XP). As a result, the

INSTALLING REPORTING SERVICES 63

actual Report Server Web Service URL reservation is http://+:80/ReportServer using a strong
wildcard.

4. Expand the IP Address drop-down list and note it contains a pre-defined list of alternative
choices, such as the IP addresses assigned to the machine.

5. In the TCP Port field, enter 8081. Note that the Report Services Configuration Manager up-
dates the URL link accordingly. Click Apply.

The Reporting Services Configuration Manager removes the old http://+80 endpoint and re-
serves the http://+8081 endpoint, as shown in Figure 2.16.

6. Click the URL link to open the report server page and test the changes.
7. Select the Report Manager URL page. Note that you can change the Report Manager endpoint

by clicking the Advanced button. Click the Report Manager URL link to test that the Report
Manager works with the new Report Server Web service endpoint.

 Advanced URL endpoint configuration
You can use the advanced settings if you need more control over the endpoint registration
process, such as to specify host headers and multiple endpoints.

1. Select the Web Service URL page and click the Advanced button to open the Advanced Mul-
tiple Web Site Configuration dialog box, which is shown in Figure 2.17. Note that you can

Figure 2.16 Use the Reporting Services Configuration Manager to configure the report server and Re-
port Manager URLs.

CHAPTER 2 64

assign more than one HTTP or SSL endpoint by clicking the Add button. You can edit an ex-
isting endpoint reservation by clicking the Edit button.

Network administrators use host headers to run several sites on a single box. For example,
suppose that the Adventure Works Internet web portal is hosted in IIS and responds to
www.adventure-works.com. You want web users to access Report Manager as re-
ports.adventure-works.com instead of www.adventure-works.com/reports. To accomplish
this, you can specify reports.adventure-works.com as a header when you register the Report
Manager endpoint.

NOTE Host headers require DNS (A) records to be created so DNS can translate the header to an IP address. Be-
fore you assign a host header to a Reporting Services endpoint, make sure that the server responds to that header.

Let's use the advanced settings to "undo" our port change.
2. Click the Remove button to remove the 8081 item.
3. Click the Add button. In the Add a Report Server HTTP URL dialog box that follows, set the

TCP Port to 80 (or 8080 on Windows XP) and click OK.
4. Go back to the Advanced Multiple Web Site Configuration dialog box and click OK.

 Configuring SSL certificates
Suppose that you want to set up Report Manager for Internet access. To protect sensitive in-
formation, you want to configure the Report Manager for SSL by installing a server certificate
and binding the certificate to the Report Manager endpoint, as follows:

1. Obtain a server certificate from a trusted certificate-issuing authority, such as Verisign, and
install the certificate on the server.

Figure 2.17 Use the Advanced
Multiple Web Site Configuration
dialog box if you need to assign
multiple endpoints, or work with
host headers and SSL certificates.

INSTALLING REPORTING SERVICES 65

TIP For testing purposes, you can use the Certificate Creation Tool (makecert.exe) which comes with Visual Studio
and Windows Platform SDK to create a test certificate. For example, I used the following command to create a test
certificate for a machine name NW8000 and install it in the My store:
makecert -r -pe -n "CN=NW8000" -b 01/01/2000 -e 01/01/2015 -eku 1.3.6.1.5.5.7.3.1 -ss "My" -sr localMachine -sky
exchange -sp "Microsoft RSA SChannel Cryptographic Provider" -sy 12

Next, check the issued certificate by following these steps.

2. In Windows, click Start Run. Enter mmc and click Enter.
3. In the Microsoft Management Console, click File Add/Remove Snap-in.
4. In the next dialog, click the Certificates snap-in and click the Add button. Click OK.
5. In the Certificates Snap-in dialog, select the Computer Account and click Finish.

6. Expand the Console Root root node Personal and click Certificates.

Reporting Services can use any of the listed certificates where the Intended Purposes list con-
tains Server Authentication. Note the Issued To column. This is what you need to provide in
the URL when connecting to the server. For example, if the certificate is issued to serv-
er.adventure-works.com, then trying to connect to the server using http://localhost/ will fail.
In addition, ensure the certificate is issued by a certificate authority recognized by your do-
main controller. Self-signed certificates do not work. Once you ensure that the certificate is
installed, you can proceed with configuring the Report Manager URL.

7. Open the Reporting Services Configuration Manager and connect to the server.
8. Select the Report Manager URL page and click the Advanced button.
9. In the Advanced Multiple Web Site Configuration dialog box, click the Add button below the

Multiple SSL Identities pane.

10. In the Add a Report Server SSL Binding dialog, expand the Certificate drop-down list and
select the server certificate, as shown in Figure 2.18.

11. Click OK to return to the Advanced Multiple Web Site Configuration dialog box, which
should look like the one shown in Figure 2.19.

12. Optionally, remove the port 80 binding if you want Report Manager to respond to https only.
13. Click OK to register the new endpoint. Test the changes by clicking the Report Manager URL,

which should be https://<servername>:443/Reports.
14. Consider increasing the security level of the Web service connections. You can do so by open-

ing the report server configuration file (rsreportserver.config) and manually changing the Se-
cureConnectionLevel setting to 2 or 3.

Figure 2.18 You can configure the
Reporting Services URLs to use SSL.

CHAPTER 2 66

If you want to disable SSL, set SecureConnectionLevel to 0. For more information about the
SecureConnectionLevel setting, refer to the Using Secure Web Service Methods topic in Books
Online (see Resources for a link).

 Troubleshooting URL configuration
Sometimes, the Reporting Services endpoints in the report server configuration file may get
out of sync with the HTTP.SYS endpoints. Consequently, you may be able to register an end-
point although the Reporting Services Configuration Manager doesn't show that endpoint. To
fix this issue, you can call the HTTP APIs or use the httpcfg.exe utility, which is included in
the Windows Server 2003 support tools, but none of them is easy to use. Instead, consider the
excellent Steve Johnson's HTTP Configuration Utility (see Resources), which provides a graph-
ical interface that wraps the HTTP configuration APIs. For example, as Figure 2.20 shows, the
Permissions tab lets you view the registered endpoints.

Figure 2.19 With this configura-
tion, Report Manager will respond
to http and https protocols.

Figure 2.20 The HTTP Confi-
guration Utility lets you manage
the HTTP.SYS endpoints.

INSTALLING REPORTING SERVICES 67

While you should never add or edit Reporting Services endpoints outside the Reporting
Services Configuration Manager, you can use the HTTP Configuration Manager to view what's
registered and delete "orphan" endpoints. To delete an endpoint, simple select it, click the
Remove button and then the Apply button. You can use this utility to see the SSL bindings
that the Reporting Services Configuration Manager has created when you configure an end-
point to use SSL.

2.4.3 Performing Additional Configuration Steps
Depending on your operational and reporting requirements, you may need to perform a few
more configuration steps before you declare that you are "done" deploying Reporting Services.
Let's go through some of these post-deployment steps.

 Backing up the encryption keys
The report server uses machine-specific symmetric encryption keys to encrypt sensitive infor-
mation, such as connection and subscription credentials. I highly recommend you back up the
encryption keys as soon as possible on a new deployment. You will need the backup in case
you have to re-initialize the server, such as when you re-install the server or when you migrate
the report catalog from one machine to another. If you don't have a backup, your only choice
to initialize the server is to delete the encryption keys. To back up the encryption keys:

1. In the Reporting Services Configuration Manager, select the Encryption Keys tab, and click the
Backup button.

2. In the Backup Encryption Key dialog box that follows, specify a file location and a password
to protect the file from unauthorized access, and click OK.

If you need to re-initialize the server later on, use the Restore button to restore the encryption
keys. You will know that this moment has arrived when you access the Report Server report
page and get the following error:
The report server cannot decrypt the symmetric key used to access sensitive or encrypted data in a report server
database. You must either restore a backup key or delete all encrypted content and then restart the service.

If you don’t have a backup or forgot the password, you have no other option but to delete the
encrypted content by clicking the Delete button. Consequently, you must re-configure the
connection credentials in all data sources.

 Configuring server security
By default, the report server authenticates and authorizes users using Windows security. Spe-
cifically, the report server accepts requests that specify Negotiate and NTLM authentication, as
you can see by inspecting the Authentication element in the report server configuration file
(rsreportserver.config).
<Authentication>
 <AuthenticationTypes>
 <RSWindowsNegotiate/>
 <RSWindowsNTLM/>
 </AuthenticationTypes>
 <EnableAuthPersistence>true</EnableAuthPersistence>
</Authentication>

CHAPTER 2 68

This matches the IIS authentication behavior when IIS is configured for Windows security. To
use Windows integrated security, the interactive user must have a valid Windows local or do-
main user account or be a member of a Windows local or domain group account.

In most cases, the default settings will work just fine. If needed, you can overwrite the de-
fault Windows security configuration or configure the server for Basic Authentication. For
more details, refer to the How to: Configure Windows Authentication in Reporting Services
topic in Books Online (see Resources). When Windows security is not an option, you can re-
place it with custom security, which is also known as Forms Authentication, as I'll demon-
strate in chapter 19.

 Configuring the unattended execution account
By default, Reporting Services carries out unattended operations, such as subscribed delivery,
under the Reporting Services service account which you configure when you install SQL Serv-
er. If your reports will use images from external sources, such as a file server that doesn't allow
anonymous access, or data sources that don't require credentials, you need to configure a spe-
cial unattended execution account so the network call succeeds. The report server uses this
account to impersonate calls that fetch external images and connect to the data sources with
no credentials. To configure the unattended execution account:

1. In the Reporting Services Configuration Manager, select the Execution Account tab.
2. Enter the credentials of a Windows domain account (domain\login) that has permissions to

connect to the external service.

What's not so obvious is that once you specify an unattended execution account, Reporting
Services will always use it, even if reports are requested on demand. Therefore, you must keep
the credentials (user name and password) of the unattended execution account current. Fail-
ure to do so will result in the following error when you attempt to run a report:
Logon failed (rsLogonFailed) Logon failure: unknown user name or bad password.

 Configuring scale-out deployment
Recall that Reporting Services lets you scale out your reporting solution by clustering multiple
report servers. With scale-out deployment all nodes in the cluster point to the same report
server database.

Configuring report server cluster
Follow these steps to configure scale-out deployment:

1. Configure a load-balanced cluster of Windows servers. You can use a software-based load
balancer, such as the Windows NLB Services, or a hardware-based device. Record the virtual
address of the NLB cluster.

2. On each node, install Reporting Services with the Install but Do Not Configure the Report
Server option. This is done to avoid creating node-specific report server databases.

3. Use the Reporting Services Configuration Manager on one of the nodes to create a report serv-
er database on a remote SQL Server 2005 or 2008 instance.

NOTE In this release, Reporting Services doesn't support Anonymous authentication. This was a conscious decision
to discourage users from using Anonymous access and making the server vulnerable to security attacks. If you must
support anonymous users, consider implementing a custom security extension (discussed in chapter 19) and configur-
ing the report server for custom security that grants minimum rights to your users.

INSTALLING REPORTING SERVICES 69

4. Use the Reporting Services Configuration Manager (Database tab) on the other nodes to con-
nect them to the report server database you created in the previous step.

5. In the Reporting Services Configuration Manager, connect to the first node and click the Scale-
out Deployment tab.

You should see as many entries as the number of the cluster nodes. The first node should have
a "Joined" status. The other nodes should be "Waiting to join". In Figure 2.21, NW8000 is the
first report server node. NOR15279 was configured to use the shared report server database
but has not been added yet to the report server cluster.

6. Select each of the Waiting to Join nodes and click the Add Server button.
7. Restart each of the report server nodes that you added. You can use the Reporting Services

Configuration Manager to connect to and restart Report Services on each node.
8. Configure ViewState validation on each node to use the same machine key.

Configuring virtual address
Next, you need to change the URL endpoints of the Report Server Web Service and Report
Manager to use the virtual name or virtual IP address of the NLB cluster. Use the Reporting
Services Configuration Manager to connect to each of the nodes and perform the following
steps:

9. Click the Web Service URL tab and click Advanced.
10. In the Advanced Multiple Web Site Configuration dialog box, click Add.
11. In the Add a Report Server HTTP URL dialog box, click Host Header Name.
12. Enter the virtual server name of the NLB cluster. If you do not have a virtual server name, you

can use the virtual server IP address instead.
13. Back to the Reporting Services Configuration Manager main page, click the Report Manager

URL and repeat steps 10-12.

Figure 2.21 Use the Reporting
Services Configuration Manager
to join nodes to the report server
cluster.

NOTE The ASP.NET ViewState validation is tied to each server by default because it uses a machine-specific vali-
dation key. As a result, you will get the error "The viewstate is invalid for this page and might be corrupted" when a
Report Manager posts back to a different server. To address this issue, overwrite the machineKey element in the
Report Manager web.config file for each node to use the same machineKey. You can use the handy MachineKey
Generator Tool (see Resources) to generate a machine key.

CHAPTER 2 70

Verifying Report Server access
Finally, verify that you can access the report server cluster and all nodes are operational.

14. Access the report server cluster by the virtual address of the NLB cluster, such as
http:// MyVirtualServerName/reportserver.

15. Examine the report server trace log files on each node or the ExecutionLogStorage table in the
report server database (InstanceName column) to verify that each node processes report re-
quests.

If requests do not reach the report server instances, check the rsreportserver.config file on the
node to verify the virtual server address as follows:

16. Open the rsreportserver.config file in a text editor.
17. Find ReportServerUrl and UrlRoot settings. They should specify the virtual address of the NLB

cluster. The Report Manager uses the ReportServerUrl setting to connect to a remote report
server. The UrlRoot setting specifies the host name in report links inside e-mail notifications
sent via subscriptions.

18. If these settings don't specify the virtual address of the NLB cluster, manually change them.

Looking at the rest of the options in the Reporting Services Configuration Manager, you will
see the Email Settings tab which you use to you configure the e-mail subscription delivery. We
will cover report server e-mail configuration in more details in chapter 12. Use the Database
tab to manage the report server database, as I will show you in chapter 13. The Service Ac-
count tab lets you change the Windows account the Reporting Services runs under. This is
discussed in more detail in chapter 11.

 Configuring Reporting Services features
Consider disabling the Reporting Services features you don't need to reduce the attack surface
of a production server and conserve resources. For example, if you need only Report Manager
on an Internet-facing server, disable the Report Server Web service on the Internet-facing
server. By default, all features are turned on. Boolean configuration settings in the report serv-
er configuration file let you turn off Report Manager, the Report Server Web service, and some
features of the Background Processor.

Table 2.6 Configuration settings for turning features off

Setting Description

IsReportManagerEnabled Controls the availability of the Report Manager. When set to False, Reporting Services returns 503 HTTP
Status "Service Unavailable" when the user attempts to access Report Manager.

IsWebServiceEnabled Controls the availability of the Report Server Web Service. When set to False, Reporting Services returns 503
HTTP Status "Service Unavailable" when the user attempts to access the Report Server Web service.

IsSchedulingService Specifies whether the report server dedicates a management thread to synchronize the schedules in the report
server database with the SQL Server Agent schedules.

IsNotificationService Specifies whether the report server dedicates a thread to poll the notification table in the report server data-
base to check for pending notifications. Setting this setting to False disables all scheduled activities, such as
subscriptions and snapshot refreshes.

IsEventService Specifies whether the report server processes events in the event queue (Event table).

The last three options control features of the Background Processor application. You cannot
turn the Background Processor completely off because it provides database maintenance func-
tionality that is required for server operations.

INSTALLING REPORTING SERVICES 71

 Configuring Internet deployment
Internet reporting presents additional deployment challenges, first and foremost being securi-
ty. Suppose you need to report-enable an Internet-facing application. In general, I recommend
against letting web users directly access the report server and request reports by URL. Instead,
consider the deployment model shown in Figure 2.22.

NOTE Regardless of the exact topology chosen, viewing reports with sensitive data over the Internet will require
transport layer security, such as Secure Socket Layer (SSL).

Externals users access a web server behind a firewall that lets only HTTP traffic pass through.
To view reports, users can use Report Manager, which is installed on the Internet-facing serv-
er. Alternatively, if you need to report-enable an existing application or you need to validate
the report request, such as to ensure that the report parameters are valid, a custom web appli-
cation can be used for report viewing. In both cases, the report is rendered in the Visual Stu-
dio ReportViewer Web server control.

Figure 2.22 A recom-
mended deployment model
for report-enabling Internet
applications.

The ReportViewer control generates the report on the server by calling down to the Report
Server Web service. Note that in this scenario the report server is on the private LAN. On the
downside, some report features will not work when the report server is not directly accessible,
including report drillthrough links, report links in e-mail subscriptions, and Report Builder. If
these features are a must, you need to install the report server on an Internet-facing server,
such as your front-end web server. The following configuration steps assume that the Report
Manager will be used for report viewing and the report server is installed on a private LAN.

1. Install Reporting Services on both servers. On the Internet-facing server, install Reporting
Services with the Install but Do Not Configure the Report Server option because you don't
need a functional report server on that box.

2. After the setup is done, open Reporting Services Configuration Manager and configure the
Report Manager URL for SSL, as explained in section 2.4.2. Initialize the Report Manager URL
by clicking the Apply button.

3. Although the report server database on the Internet-facing server is not configured and the
report server is non-operational, I recommend that you explicitly disable the Report Server
Web service on the Internet-facing server. To do so, open the report server configuration file
(rsreportserver.config) and set the IsWebServiceEnabled setting to False.

4. In the report server configuration file, locate the ReportServerUrl element and point it to the
URL of the remote report server instance. The Report Manager needs this setting to connect to
a remote report server.
<ReportServerUrl>http://myserver/reportserver</ReportServerUrl>

CHAPTER 2 72

5. Since you running the Report Manager on a separate machine then the report server, in the
Report Manager web.config file, enable the defaultProxy element, such as:
<system.net>
 <defaultProxy enabled="true" />
</system.net>

For more information about the defaultProxy setting, see <defaultProxy> Element (Network
Settings) in the Resources section.

6. Restart the Reporting Services Windows service.
7. Since Windows Security is rarely practical with web users, consider implementing a custom

security extension and configure the report server for custom security. I will discuss the im-
plementation details in chapter 19. Alternatively, if the report server doesn’t need to discrimi-
nate users and the custom web application is taking care of authenticating and authorizing
report requests, grant the web application account minimum rights to the report catalog, such
rights to view reports only. Then, all requests to the report server will go under this trusted
account.

8. On the report server box in the private LAN, consider disabling the Report Manager by setting
the IsReportManagerEnabled setting to false in rsreportserver.config.

After completing these steps, end users will be able to use the Report Manager on the Internet-
facing server to view reports deployed to the report server on the private LAN.

2.5 Summary
This chapter gave you the necessary background to install and upgrade Reporting Services.
Reporting Services supports flexible deployments scenarios. Take some time to plan your Re-
porting Services installation before you start the SQL Server setup program. Decide upon a
deployment topology for your reporting solution, such as a single-server or multiple-server
deployment, scale-out deployment, instance deployment, or Internet deployment.

You can install Reporting Services on the default or a named instance. Choose the latter
option if you need to run Reporting Services side by side with a previous version. By default,
the setup program configures the report server for native mode but it also supports SharePoint
integration mode and files-only installation mode. The files-only installation option gives you
complete control over the installation and initialization process. The SQL Server setup pro-
gram supports upgrading previous versions of Reporting Services. Make sure you understand
what will be upgraded and what scenarios are not supported. Use the SQL Server 2008 Up-
grade Advisor to plan your upgrade.

Once the setup is done, test the server to make sure it is operational. Use the Reporting
Services Configuration Manager to finalize the installation, such as to configure the Web ser-
vice and Report Manager URLs, back up encryption keys, and configure scale-out deployment.
Set configuration settings in the report server configuration file to turn features off.

By now, your Reporting Services installation should be operational and you are ready to
author reports.

INSTALLING REPORTING SERVICES 73

2.6 Resources
SQL Server 2008 Features Comparison

(http://tinyurl.com/4uqqux)—Compare SQL Server 2008 editions.
Hardware and Software Requirements for Installing SQL Server 2008

(http://tinyurl.com/2vg5qd)—Documents the minimum hardware and software re-
quirements for installing SQL Server 2008.

Troubleshooting Kerberos Delegation
(http://tinyurl.com/5bskv)—This whitepaper explains how to troubleshoot and con-
figure Kerberos authentication.

<defaultProxy> Element (Network Settings)
(http://tinyurl.com/37nzz6)—Explains how to use the defaultProxy setting to confi-
gure the HTTP proxy server.

Windows Server 2003 Deployment Kit: Planning Server Deployments
(http://tinyurl.com/2pmjk5)—This book provides comprehensive information about
planning Windows Server 2003 installations. Chapters 8 and 9 discuss Network
Load Balancing.

How to: Configure a Report Server for Local Administration on Windows Vista and
Windows Server 2008

(http://tinyurl.com/6rhlpz)—Lists the steps to configure administrator access.
Planning for Scalability and Performance with Reporting Services

(http://tinyurl.com/2upc5j)—This paper provides information about the scalability
characteristics of different Reporting Services implementation architectures.

SQL Server 2008 Books Online
(http://tinyurl.com/2sug4d)—The SQL Server 2008 documentation.

Using Secure Web Service Methods
(http://tinyurl.com/5ryatw)—Explains how to use the SecureConnectionLevel set-
ting in rsreportserver.config.

Solving the Reporting Services Login Issue by Lukasz Pawlowsky
(http://tinyurl.com/4ve5uc)—Explains how to troubleshoot login issues.

HTTP Configuration Utility by Steve Johnson
(http://tinyurl.com/2te4vd)—Lets you view and manage the HTTP.SYS endpoints.

Machine Key Generator Tool
(http://tinyurl.com/2laxcg)—Generates random keys for validation and encryp-
tion/decryption of the view state.

How to: Configure Windows Authentication in Reporting Services
(http://tinyurl.com/392gu3)—Explains how Reporting Services Windows authenti-
cation works and how to configure it.

75

 The Report Designer
As a report author, you can use Reporting Services to design professional-looking standard
and ad hoc reports. While Reporting Services provides several designers, Report Designer will
be the tool of choice for developers and power users. It supports all report authoring features
and is hosted inside the Visual Studio integrated development environment.

The best way to learn report design is by practicing it. The exercises included in this book
walk you through the steps of creating different types of reports, including tabular, crosstab,
and free-form reports. Working with data is a fundamental skill that every report author needs
to master. You'll learn different ways to integrate your reports with a variety of data sources,
including relational and multidimensional databases, Web services, and more. You'll also un-
derstand how to parameterize reports to filter data at the data source and the report server.

One of the most exciting new features in this release of Reporting Services is the versatile
tablix region which unites the former table, matrix, and list controls and removes many limita-
tions that were pestering report authors in the past. As a report author, you'll be glad to know
that Reporting Services 2008 has supercharged its data visualization capabilities with an up-
graded chart region and a brand new gauge region. You'll also witness how the enhanced text-
box report item can help you simplify the report layout and help you add rich formatting
features to your reports.

Every tool has its design limitations and Report Designer is no exception. Complex busi-
ness needs may surpass Report Designer capabilities and present unique challenges that re-
quire more advanced design skills. However, you can supercharge your reports with custom
code that is embedded in the report definitions or located in external assemblies. By integrat-
ing your reports with custom code, you can meet more advanced report requirements that
transcend the Report Designer limitations.

PP AA RR TT

77

CChhaapptteerr 33

Report Design Fundamentals

3.1 Designing for Report Design 77
3.2 Working with Report Server Projects 83
3.3 Authoring a Basic Report 88

3.4 Auto-generating Report Definitions 117
3.5 Summary 121
3.6 Resources 121

Recall from chapter 1 that the report lifecycle consists of authoring, management, and delivery
phases. In the authoring phase, you create a report definition that serves as the blueprint of a
report. To facilitate this process, Microsoft provides four report designers to address different
report authoring needs and technical skills. Although different in functionality, all tools trans-
form your design choices into a report definition based on the Report Definition Language
(RDL).

In this chapter, I will introduce you to report authoring with Reporting Services 2008. I
will start by suggesting a methodology for planning the design process and providing guide-
lines for choosing a report authoring tool. Next, I will introduce you to report server projects
and the Business Intelligence Development Studio (BIDS) environment. The rest of the chapter
will be spent walking you through the steps of authoring a basic table report using the BIDS
Report Designer. This chapter concludes with a demonstration of two other report authoring
options supported by BIDS: the Report Wizard and importing reports from Microsoft Access.

3.1 Designing for Report Design
Anyone who has delivered a finished report without first going through a solid design process
knows that there is an unhappy ending to that story almost every time. Almost immediately,
the hapless report author is flooded with requests for modifications and additional reports.

As with any project, the report authoring process can benefit from planning and design
stages. In this section, I will present a methodology that has proved useful in my real-life
projects. Irrespective of whether you use this or another methodology, the important thing is
to have a guided process and to spend time planning your solution before jumping into con-
struction.

3.1.1 Understanding the Report Authoring Cycle
The report authoring process can be described as four-stage cycle that consists of envisioning,
design, construction, and testing phases, as shown in Figure 3.1. Large report solutions may
benefit from breaking the authoring process into more manageable steps or iterations to deliv-
er value to business users as quickly as possible. Let's discuss each stage in more detail.

CHAPTER 3 78

 Envisioning stage
The report design is led by user requirements. Therefore, your first task during the envision-
ing stage is to identify who will use your reports. Knowing your user not only ensures wide
acceptance of the reporting solution, but helps you plan report security later on.

Next, interview users to assess their reporting needs. Ask design questions to understand
what standard reports are expected, the level of data summarization (such as monthly, annual,
detail-level), and the IT skills of the users. Create a target list of candidate reports and assign
an importance factor on a scale from one to ten. If you end up with a long list, explore the
option of letting business users create reports in an ad-hoc tool such as Report Builder. Pre-
pare a high-level reporting requirement specification, similar to the one shown in Table 3.1.

Table 3.1 Sample reporting requirements

User group Report Interactivity Delivery Importance

Executives Chart report showing the Adventure
Works sales for the current month

None E-mail subscription 10

 Executives Sales Summary cross-tab report show-
ing the Adventure Works sales by year

None On-demand 10

Marketing
Managers

Top 100 Internet Products that shows
the top 100 products sold via direct sales

None On-demand 9

Internet Sales
Department

Customer Orders that lists the custom-
er's order history

Drill-down to the
customer order

On-demand 8

Prioritize the targeted report list by importance and negotiate a cutoff list of 10-15 of the most
strategic standard reports for the first iteration.

 Design stage
During the design stage, you prepare a detailed report specification for each report you need
to create. The report specification should include a report mock-up and a mapping between
the report items and data. To help you understand what a report specification might look like,
I included a sample report specification for the Product Sales by Category report (Product
Sales by Category.xlsx) in the source code for this chapter. In the lessons that follow, you will
implement a report that matches this specification.

Figure 3.1 The report au-
thoring cycle consists of envi-
sioning, design, construction,
and testing phases.

REPORT DESIGN FUNDAMENTALS 79

Figure 3.2 You can use Microsoft Excel to construct the report mock-up.

The Product Sales by Category report takes two parameters, Month and Year, and shows the
reseller and Internet sales grouped by product category. The report specification uses Report
Designer placeholders to denote calculated fields, as shown Table 3.2.

 Table 3.2 Mock-up placeholders

Token Description Example

 [] Dataset field [ResellerSales]

@ Report parameter [@Month]

& Built-in field [&PageNumber]

You can come up with placeholders for other features, such as to denote drillable fields and
navigation actions. The sample report specification also includes a Data Inventory worksheet
that shows the mapping between the report fields and data, as shown in Figure 3.3.

In the sample specification, the ProductCategory report field maps to the EnglishProductCate-
goryName column in the DimProductCategory table. The Comments column denotes how the
field will be aggregated or calculated if it is not present in the data source. When you create a
report specification, be sure to include operational requirements, such as who will be autho-
rized to view the report, how report data will be secured, and the expected report perfor-
mance.

Figure 3.3 The report specifica-
tion should include a mapping
between report fields and data.

CHAPTER 3 80

 Construction stage
When the report specification is ready and approved, your report authoring cycle moves to
the construction stage. In this stage, you use a report authoring tool to implement the report
definition. This involves preparing a data source, report dataset(s), and report layout.

You also need to perform unit testing to ensure that the report meets its functional re-
quirements. I recommend you prepare a small but representative dataset to validate the report
results. For example, it may be inefficient to target a large cube as a data source during devel-
opment because the queries may take longer to execute. Instead, consider creating a smaller
cube with representative data. This will let you validate report results quickly. That said, you
should allocate additional time for performance testing with production-size report loads.

 Testing stage
Once the report definitions are ready, it's time for the testing stage to start. Deploy your re-
ports to a dedicated testing server. Conduct usability tests to make sure the reports align with
the user expectations. Perform quality assurance test to verify the accuracy of the report re-
sults. Finally, assess the solution to understand if it meets the user expectations and provides
value to the business. If it doesn’t, return to the design stage before you continue with the next
iteration.

3.1.2 Understanding Report Designers
Recall from chapter 1 that Microsoft provides four report designers that address different re-
port authoring needs. In this section, I will compare their features and discuss how to choose
a report designer based on the user type and reporting task at hand.

 Comparing report designers
Table 3.3 shows the high-level differences among the report designers.

Table 3.3 High-level feature comparison of the Microsoft-provided report designers

Feature BIDS Report
Designer

Report Builder
2.0

Report Builder
1.0

Visual Studio 2008
Report Designer

Visual Studio integration
(source code control, projects, debugging)

Full RDL 2008 support

Built-in connection and query designers for
data retrieval

Local report processing

Doesn't require Visual Studio Client only

Report models as data sources

Require Report Builder model

System-generated drillthrough

Auto-generated queries

REPORT DESIGN FUNDAMENTALS 81

All report designers are implemented as rich, Windows Forms clients that are installed on the
user's machine. Currently, Microsoft doesn't provide a thin, Web-based design tool. Having so
many designers is a little confusing, so let's take a close look at each one of them.

 The BIDS Report Designer
This designer supports all report authoring features and is hosted inside the Visual Studio in-
tegrated development environment (IDE). Since BIDS is a scaled-down version of Visual Stu-
dio, the BIDS Report Designer mainly targets developers who are familiar with the Visual
Studio IDE. It's important to note that the BIDS Report Designer and Report Builder 2.0 share
the same layout surface, as shown in Figure 3.4.

Since the property dialog boxes are included in the layout surface, the BIDS Report Designer
and Report Builder 2.0 share them as well. For the most part, the only implementation differ-
ence between the two designers is the hosting environment. The BIDS Report Designer is
hosted in the Visual Studio shell and supports developer-oriented features, such as debugging,
source control, and projects. By contrast, Report Builder 2.0 is designed as a stand-alone
Windows Forms application that doesn't use the graphical environment of Visual Studio.

The BIDS Report Designer will be the Report Designer that I will use for most of the report
authoring demos in this book. For the sake of brevity, I will drop the "BIDS" portion of its
name and refer to this designer as simply Report Designer.

 Report Builder 2.0
Similar to Report Designer, Report Builder 2.0 supports the full spectrum of report authoring
features. Unlike Report Designer, Report Builder 2.0 lets the report author work with one re-
port at a time. Although dubbed Report Builder 2.0, this designer has very little in common
with the Report Builder you may be familiar with in SQL Server 2005 Reporting Services. For
example, Report Builder 2.0 connects directly to the data source and doesn't require a seman-
tic model. That said, both Report Builder 2.0 and Report Designer support Report Builder 1.0
report models as data sources.

Report Builder 2.0 is still under development but Microsoft has provided a preview ver-
sion available via web download from the Microsoft SQL Server 2008 Feature Pack page. Ir-
respective of the Report Builder 2.0 release status, you should definitely consider using it for

Figure 3.4 The BIDS Report De-
signer and Report Builder 2.0 pro-
vide full RDL 2008 support and
share the same layout surface.

NOTE The layout surface is the WYSIWYG (What-You-See-Is-What-You-Get) design area to which you add report
items, such tables and charts, to define the report layout at design time. Currently, developers cannot embed the
shared layout surface in custom applications. Microsoft hints that a future release may enable this integration scenario.

CHAPTER 3 82

standard and ad hoc reporting outside the Visual Studio IDE. Note that Report Builder 2.0
raises the bar for required technical skills because the user must now know how to work with
data sources and lay out the report. In a long run, however, Report Builder 2.0 is expected to
add more end-user oriented features and supersede Report Builder 1.0. I will preview Report
Builder 2.0 in chapter 10.

 Report Builder 1.0
SQL Server 2005 introduced the Report Builder tool to let non-technical users author simple
ad hoc reports. Unfortunately, while very user-friendly, Report Builder has limitations that
can be difficult if not impossible to work around. For example, it provides only a subset of the
report authoring features. It doesn't support free-form layout, expression-based properties, or
side-by-side report regions. In addition, it supports only SQL Server, Oracle, and Analysis
Services data sources.

In SQL Server 2008, Report Builder is still part of the designer lineup but has been re-
named to Report Builder 1.0. Although it was not enhanced in SQL Server 2008, it remains in
the box because it is a viable option for creating simple ad hoc reports. As such, I will cover it
in chapters 8 and 9. If you use it, be aware that Report Builder 1.0 has been deprecated in fa-
vor of Report Builder 2.0, which delivers both ease-of-use and powerful reporting features
previously found only in the BIDS Report Designer.

 Visual Studio Report Designer
If you have Visual Studio 2008 and you install the SQL Server client components, you will get
the BI project templates in your existing Visual Studio installation. This lets you use Visual
Studio to work with both code projects and business intelligence projects that target SQL
Server 2008. But what if you don't use SQL Server 2008 and still want to report-enable your
.NET applications? For example, suppose you want to include some operational reports that
display data from application datasets in a custom Windows Forms application.

The Visual Studio Report Designer is provided so that you can build reports that run in
the Visual Studio ReportViewer controls. This designer doesn't support working with data
sources and report preview. It lets you lay out a report from a pre-defined application dataset
schema. At run time, the application must pass the report parameters and data to the report.

As it stands, the Visual Studio Report Designer remains unchanged from its Visual Studio
2005 release. It does not support the RDL 2008 schema and it doesn’t use the new layout sur-
face. The plans are to upgrade this designer with new features and support for RDL schema in
the next major Visual Studio release or in a web release after SQL 2008 ships.

If you also happen to have BIDS and you are not using the ReportViewer controls, you
should use BIDS to create any reports that you intend to run on a report server. I will discuss
the Visual Studio Report Designer in chapter 15, where I will show you how to report-enable
custom .NET applications.

 Choosing a report designer
Although four report authoring tools may seem overwhelming, choosing a report designer for
the reporting task at hand is not difficult. If you are a developer who lives and breathes in Vis-
ual Studio, the BIDS Report Designer should be your report authoring tool of choice. If you
are power user and prefer a full-featured report designer outside Visual Studio, choose Report
Builder 2.0. In fact, since BIDS Report Designer and Report Builder 2.0 fully support RDL
2008, you can use them interchangeably.

REPORT DESIGN FUNDAMENTALS 83

If you are a non-technical user and you need a simple ad-hoc report authoring tool that
doesn't assume knowledge of the database schema and query syntax, evaluate Report Builder
1.0. If you find it too limiting, "upgrade" to Report Builder 2.0 or Report Designer.

NOTE One ad-hoc reporting scenario that may favor Report Builder 2.0 instead of Report Builder 1.0 even with non-
technical users is sourcing data from an Analysis Services cube. Report Builder 2.0 with Analysis Services gives end
users the best of both worlds–full support of RDL 2008 and an intuitive end-user model. The graphical MDX Query
Designer can auto-generate MDX queries for simple reports by providing drag-and-drop support.

Finally, the Visual Studio Report Designer lets developers design and distribute reports with
custom .NET applications without requiring SQL Server.

3.2 Working with Report Server Projects
As I explained earlier, I will use the BIDS Report Designer predominantly for the report au-
thoring demos. Since Report Designer is hosted in the SQL Server 2008 Business Intelligence
Development Studio, you need to have a good grasp of the BIDS environment before you can
start using Report Designer. You cannot use earlier versions of BIDS to run the Reporting Ser-
vices 2008 Report Designer, nor can you use BIDS 2008 to author older report definitions.

3.2.1 Business Intelligence Development Studio vs. Visual Studio
Business Intelligence Development Studio is a subset of Microsoft Visual Studio 2008. As its
name suggests, it supports project types that are specific to SQL Server business intelligence,
such as Reporting Services, Analysis Services, and Integration Services projects. Note that
these project types are part of BIDS and not Visual Studio. If you have installed Visual Studio
2008 only, you will find that the BI-related project types are missing. During the SQL Server
2008 setup, you must install BIDS to integrate the BI project types into the Visual Studio 2008
IDE. Once you've installed the SQL Server client components, you can use BIDS and Visual
Studio interchangeably to work with BI projects.

Another important point to remember is that you don't require full-blown Visual Studio if
you work with business intelligence projects only. BIDS is designed exactly for this task with
no additional cost besides a SQL Server license. However, if you require code projects, for ex-
ample to extend reports with Visual Basic or C# custom code, then you'll probably need Visu-
al Studio (or another developer tool) because BIDS alone doesn't support code projects.

3.2.2 Performing Project Tasks
As a prerequisite for authoring reports with Report Designer, you must create a Report Server
project. The Report Server project type supplies templates for creating definitions of data
sources and reports. It also includes a variety of designers, tools, and wizards to work with
these definitions. You can add several BI projects to a Visual Studio solution. For example, you
can add an Analysis Services project and Reporting Services project to the same solution and
then work with them in a single instance of BIDS or Visual Studio.

Next, let's practice a few common tasks that will help you get familiar with BIDS and Re-
port Server projects. If you have both BIDS and Visual Studio 2008, you can use either one to
complete the practices that follow.

CHAPTER 3 84

Figure 3.5 Select the
Report Server Project
template to author reports
with the Report Designer.

 Creating a Report Server project
Follow these steps to create a new Report Server project in BIDS:

1. Open SQL Server Business Intelligence Development Studio from the Microsoft SQL Server
2008 program group.

2. Click File New Project to open the New Project dialog box, shown in Figure 3.5. In my
case, the Project Types list includes code project types, such as Visual Basic and C# project
types because I have installed Visual Studio 2008.

3. Click the Business Intelligence Projects project type and note that the Templates pane lists BI-
related project types.

The Analysis Services Project templates let you create Analysis Services database definitions.
The Integration Services Project templates include the necessary objects for creating Integra-
tion Services packages. The Report Server Project Wizard project creates a Report Server
project but runs the Report Wizard to help you auto-generate the report definition. The Re-
port Model Project template lets you design Report Builder 1.0 report models. The Report
Server Project template includes Report Designer.

4. Let's ignore the Report Wizard for now. Select the Report Server Project template.
5. Enter Reports as the name of the project.
6. In the Location field, enter the folder path where the project will be created and click OK to

create the project.

 Understanding Report Server projects
BIDS creates an empty report server project, as shown in Figure 3.6. The Solution Explorer
window shows a Reports project node, followed by Shared Data Sources and Reports folders.
You can use the Shared Data Sources folder to add data source definitions that are shared
among the reports in the same project. Don’t worry if the concept of shared data sources is not
immediately clear. It will all make sense in the next chapter.

REPORT DESIGN FUNDAMENTALS 85

Figure 3.6 The Report Server
Project template integrates with
the Visual Studio integrated
development environment.

As I noted in chapter 1, reports are described in an XML-based grammar called Report Defini-
tion Language (RDL). The Reports folder contains the report definition (*.rdl) files, as well as
other report content, such as images.

NOTE BIDS doesn't let you create nested folders under the Reports folder although the report server supports a
hierarchical folder structure and nested folders in the report catalog. If you need to organize the report content in
nested folders, consider splitting the project into multiple projects (one per folder). Alternatively, you can deploy all
reports to a single folder and use the Report Manager to move report content to subfolders.

You can select an object in the Solution Explorer to view and change its properties in the Vis-
ual Studio Properties window. Changed property values are shown in bold. If you open a re-
port definition in the Report Designer, the Toolbox pane (press Ctrl+Alt+X if the Toolbox isn’t
visible) will list report items that you can drag to the layout surface to define the report layout.

When you create a new project, BIDS generates a solution file (*.sln) in the project folder.
The Solution Explorer doesn't show the solution file if the solution contains a single project.
You can add a new project to the solution by clicking File Add New Project or add an
existing project by clicking File Add Existing Project.

 Understanding project tasks
You can right-click a node in the Solution Explorer (or use the Visual Studio menu bar) to
carry out related tasks.

1. In the Solution Explorer, right-click the Reports project node.

The context menu displays project-related tasks, as shown in Figure 3.7. Let's quickly review
the most common tasks. The Build task lets you verify the report definitions. Building a
project or a report doesn't result in a binary. Instead, when you build a report project, BIDS
validates the report definition and shows inconsistencies in the Error List pane. For example,
if you misspell a report parameter in a field expression and build the project, the following
error will be shown in the Error List window.
[rsParameterReference] The Value expression for the textbox ‘<name>’ refers to a non-existing report parameter
‘<parametername>’

CHAPTER 3 86

Figure 3.7 You can initiate
project-related tasks from the
project context menu.

You can explicitly build the report by using the Build menu command or you can let BIDS
build the report implicitly when you preview and deploy the report. The Error List window
shows errors, warnings, and informational messages that result from the build process. You
must correct errors to successfully preview and deploy a report. You can quickly select the
offending item by double-clicking the error text.

TIP Another way of locating report items on a busy report is by expanding the item drop-down list in the Properties
window, type the first letter on the item's name, and click the item. The Report Designer will select the item on the report
canvas. As a best practice, I recommend that you assign meaningful names to report items that you need to reference
in expressions and property settings, such as for sorting and hidden visibility.

The Deploy task lets you publish the project files to the server. During deployment, BIDS dis-
plays the deployment progress in the Output window. The Add task lets you add new or ex-
isting report files to the project. You can use the Import Reports task (only available if
Microsoft Access is installed locally) to import Access reports, as I'll discuss in section 3.4.2.

As one of the first tasks after creating a new project, I add the project to source control,
such as Visual SourceSafe or Team Foundation Server, by using the Add Project to Source
Control menu. This lets you maintain version control of the report definition files and allows
multiple developers to work on the same project without overwriting each other changes.

Figure 3.8 The project proper-
ties specify settings for deploy-
ing reports to the server.

REPORT DESIGN FUNDAMENTALS 87

 Understanding project properties
Recall that if you want to make the report publicly available, you need to deploy the report to
the report server. As a prerequisite for deploying reports successfully from BIDS, you need to
set the project properties.

1. Right-click the project node in the Solution Explorer and click Properties to open the project
Property Pages dialog box (see Figure 3.8).

Table 3.4 explains the project properties.

Table 3.4 Project properties

Setting Description Default Value

StartItem Specifies which report will be previewed when you debug the project (F5). Empty

OverwriteDataSources When set to True, overwrites the shared data source definitions on the server. False

TargetDataSourceFolder Specifies the server folder the project data source definitions will be deployed to. Data Sources

TargetReportFolder Specifies the server folder the project report definitions will be deployed to. Reports

TargetServerURL Indicates the Web Service URL. Empty

Let's assume that you need to deploy the project to your local report server for local testing.
2. Change the TargetReportFolder setting to AMRS.
3. In TargetServerURL, enter http://localhost/reportserver (Vista or Windows Server 2003) or

http://localhost:8080/reportserver (Windows XP).

As a result, when you deploy the project, shared data sources will be deployed to the Data
Sources folder and the report definitions will be deployed to the AMRS folder. If the AMRS
folder doesn't exist, the report server will create it.

 Understanding project configurations
A project configuration is a saved set of project properties. If you expand the Configuration
drop-down list, you will see that BIDS has three predefined project configurations: Debug,
DebugLocal, and Release. Project configurations simplify deployment. For example, during
development, you will probably deploy and test reports to your local server by using the set-
tings of the Debug or DebugLocal configurations. When local testing is complete, you can
deploy the project to the production server by choosing the Release configuration.

Each configuration maintains an independent set of project properties. Unfortunately, un-
like Analysis Services and Integration Services projects, Report Server projects don't support
configuration-specific connection strings for shared data sources. Consequently, you may need
to update the data source connection strings when you switch configurations.

Figure 3.9 Use the Configura-
tion Manager to work with project
configurations.

1. In the project Property Pages, click the Configuration Manager button to open the Configura-
tion Manager (see Figure 3.9).

CHAPTER 3 88

The default active configuration is Debug. The Build and Deploy settings specify what hap-
pens when you debug (F5) the project. For example, if you check both settings and debug the
project, BIDS will build and deploy the project. If you have a solution that includes multiple
projects, it may be time consuming to re-deploy them each time. Instead, you may decide to
clear the Build and Deploy checkboxes for the projects that you are not planning to change
often. You can build and deploy them manually when needed.

You can create additional configurations, such as QA for deploying to a QA server, as follows:
2. Expand the Active Solution Configuration drop-down list and choose <New…>.
3. In the New Solution Configuration dialog box that follows, name your new configuration. You

can select a configuration in the Copy Settings From drop-down list if you want to copy the
settings from an existing configuration. Leave the Create New Project Configurations check-
box checked to create project configurations for each project in the solution.

4. In the Property Pages dialog box, enter the deployment settings for the new configuration.

To switch to the active configuration, expand the Solutions Configuration drop-down list (see
again Figure 3.6) and click the new configuration.

3.3 Authoring a Basic Report
Now that you have a good grasp of Report Server projects and the BIDS IDE, let's go through
the steps of creating the Product Sales by Category report (see Figure 3.2) to gain further un-
derstanding of the report authoring process. This report demonstrates:
 Creating a shared data source
 Defining a report dataset
 Working with query and report parameters
 Authoring a tabular report
 Working with report groups
 Implementing basic expressions

3.3.1 Getting Started in Report Designer
In a nutshell, authoring a report involves setting up the report data source, preparing the re-
port dataset(s), and laying out the report. Let's start by creating a new report and examining
the report in the Report Designer. This will help you understand the elements of a report and
the Report Designer environment.

TIP Project configurations come handy when you need an easy way to automate report deployment, such as with
MSBuild. For example, the following command deploys the solution using the settings in the QA configuration.
C:\>devenv "C:\Books\RS2008\Code\ch03\Reports\Reports.sln" /deploy QA

This is especially useful when automating deployment to SharePoint because you need to change the report definitions to
use absolute paths to external resources, such as shared data sources. Instead of writing write custom code to automate
deployment, consider BIDS command-line deployment with project configurations.

REPORT DESIGN FUNDAMENTALS 89

 Creating a report
Start by creating a new project in BIDS by following these steps:

1. In the Solution Explorer, right-click the project node and choose Add New Item. Alterna-
tively, you can right-click the Reports folder and choose Add New Item.

2. In the Add New Item dialog box that follows, select the Report template.

TIP The Report Designer loads the templates from the \Program Files\Microsoft Visual Studio 9.0\Common7\IDE\
PrivateAssemblies\ProjectItems\ReportProject folder. You can add your own report definitions to that folder to imple-
ment "standard" templates for jump-starting the report authoring process.

3. In the Name field, enter Product Sales by Category.rdl and click OK.

BIDS creates a new report definition and opens it in the Report Designer.

 Understanding the Report Designer
Report Designer is a collection of graphical query and design tools that are hosted in the Busi-
ness Intelligence Development Studio environment. When you open a report, the Report De-
signer (Figure 3.10) displays the report in design mode (the Design tab is active).

The Preview tab lets you test the report. The report design area that surrounds the report body
represents the report itself. For example, when you right-click the report design area, Report
Designer shows a context menu to let you access the report properties and show/hide the re-
port ruler and the Grouping pane. The same options are available when you click the Reports
main menu, which is available only in design mode.

Figure 3.10 The Report Designer is a collection of graphical query and design tools that are hosted in BIDS.

CHAPTER 3 90

If the report has groups, the Grouping pane shows the row and column groups defined on the
report. The Report Data window (press Ctrl+Alt+D if the window isn’t visible) contains data
objects that can be dragged on the report. As you progress through the report authoring
process, the Report Designer adds additional objects, such as data sources and datasets, to the
Report Data window. The Toolbox window (inactive on Figure 3.10) contains report items
that you drag on the design area to lay out the report.

The Standard toolbar lets you carry out common tasks, such as saving report definitions or
copying and pasting report items. You should build a habit of saving the report you are work-
ing on frequently, as the Report Designer holds layout changes in memory. Use the Layout
toolbar to perform various common layout tasks in design mode, such as aligning objects. Re-
port Designer adds additional toolbars and menus to BIDS. The Report Borders toolbar lets
you define borders around report objects. Use the Report Formatting toolbar to format text,
such as to set the font and color. The functionality of the last three toolbars is also available
from the Format main menu. The Report toolbar lets you toggle the visibility of Properties
window, Grouping page, ruler, the page header and footer.

 Understanding the report anatomy
A report has a body section and optional page header and page footer sections. The body of
the report contains the report data. You can place any report item in the body, including
tables, matrices, lists, and charts. You can use the page header section to include information
on the top of each page of the report, such as the report title and company logo. Similarly, the
page footer repeats information on the bottom of each page, such as the page number. You
can place only images, textboxes, and lines report items in page headers and footers. This re-
lease also adds support for field references in page headers and footers. For example, you can
add a textbox that displays the overall reseller sales from the Products dataset using the ex-
pression =SUM (Fields!ResellerSales.Value, "Products").

In Reporting Services, a report doesn't have designated report header and report footer
sections. However, you can use the report body to achieve the same effect. For example, if you
want to show the report title only on the first page of the report, place the title text box at the
top of the report body before the report data. Similarly, place static text inside the body sec-
tion after the report data to implement a report footer. By default, the page header and footer
sections are disabled. Use the following steps to enable them:

1. Right-click the report design area and click Add Page Header to enable the page header. Alter-
natively, right-click the report body area and click Insert Page Header or click Report menu
 Add Page Header.

2. Right-click the report design area and click Add Page Footer to enable the page footer.

The Report Designer adds empty page header and footer sections to the report.

 Setting up the page properties
Assuming United States regional settings, by default a new report has a portrait layout with
width of 8.5" and height of 11". Most real-live reports will probably need more horizontal
space. To configure the Product Sales by Category report for landscape orientation:

NOTE Readers who have experience with previous releases of Report Designer have probably noticed that the Data
tab is now gone. It has been superseded with the Report Data window that now consolidates all data-related objects,
including report parameters, which are no longer accessible in the Report menu.

REPORT DESIGN FUNDAMENTALS 91

1. Right-click the report design area and click Report Properties.

The Report Properties dialog box opens, as shown in Figure 3.11. This is one of the shared
dialogs that come with the designer layout surface and are shared by both Report Designer
and Report Builder 2.0. All shared dialogs have consistent look and feel. The settings are orga-
nized logically in tabs listed in the left pane. The actual settings are shown in the right pane.

Figure 3.11 Use the Report Prop-
erties dialog box to set up the page
size, orientation, and margins.

The Page Setup tab of the Report Properties dialog box lets you configure the page properties,
including the page units, page size, and margins.

2. Click the Landscape orientation.
3. Set all page margins to one inch and click OK.

Alternatively, you can click the design area outside the report and use the Properties window
to set the PageSize and Margins properties. The page size affects how the report paginates
when exported with hard-page renderers, such as PDF and Image.

 About report pagination
Pagination refers to the number of pages within a report and how report items are arranged on
these pages. When the report is processed, the Report Processor prepares a Rendering Object
Model that combines report data and report layout, and forwards this object to the rendering
extension (renderer) associated with the export format the user has selected. The renderer de-
termines how much data fits on each page by evaluating the size of the report items on the
report and the size of the report body.

Once you set up the page size, you can set the maximum width of the report body to ac-
commodate as much content horizontally as possible. You can use the following formula to
determine the maximum body width.
Body Width <= Page Width – (Left Margin + Right Margin)

When determining the body width, you should account for extra space with cross-tab reports
because they expand horizontally. If the body width exceeds the page width and margins, the
renderer will flow the report content to the next page, which may result in blank pages. Ap-
plying the above formula, we determine that the maximum body width of the Product Sales
by Category report is nine inches.

CHAPTER 3 92

1. Click the body section.
2. In the Properties window, expand the Size property and set the Width property to 9 inches

(9in). Alternatively, you can resize the body section interactively by dragging its right border.

 About item positioning and sizing
The height of the body section set at design time does not affect the physical page height. This
is because the renderer expands the report body to accommodate the data on the report. The
items in a report may grow either horizontally or vertically, depending on report grouping and
content size

When an item grows, such as a table, it pushes peer items out of the way. Peer items are
those items within the same parent container, such as the report body. An item can grow
down, such as a table, or to the right, such as a matrix. When the item grows down, each peer
item below it moves down to maintain spacing between itself and all the items ending above
it. When the item grows to the right, each peer item moves to the right to maintain spacing
between itself and the items to the left of it. If an item grows so that it would extend beyond
the bounds of the containing item, the container grows to accommodate the contained item.

If an item overlaps another item, its ZIndex property determines its visibility. The item
with the higher ZIndex value wins and is rendered on top of the item with a lower ZIndex
value. Overlapping items are supported only for hard-page renderers. Soft-page renderers
(HTML, Word, Excel) will reposition overlapping items to remove the overlap before render-
ing.

 About logical page breaks
The report author can control where a vertical page break will occur by setting page breaks
before or after various report elements, including group, rectangle, list, table, matrix, and
chart. For example, you can set a logical page break on the product category group to generate
a new page each time the product category changes. Logical page breaks are honored in all
export formats except XML and CSV because these two formats export data only.

Reporting Services does not have a page break report item that you can drag to the page to
specify the exact location where a page break will be generated. Instead, you can use the page
break properties of the report items. For example, you can configure a rectangle item to gen-
erate a page break after the rectangle. Unfortunately, Reporting Services doesn’t support con-
ditional page breaks that cause a new page to occur based on changes in the data (for
example, when the product category changes from Accessories to Bikes). Conditional page
breaks are long due on the Reporting Services wish list but didn't make it to SQL Server 2008.

NOTE There is one enhancement in Reporting Services 2008 with regard to conditional visibility and logical page
breaks. In previous releases, if a page break was defined on an object with conditional visibility, such as a report group
whose Hidden value uses an expression to show/hide the group conditionally, the page break would never occur, even if
the object was visible. In version 2008, the page break will occur if the object is visible.

3.3.2 Working with Data
Most reports query and display data residing in a database. Next, you will set up a data source
to connect to the AdventureWorksDW2008 database and a report dataset that represents the
report data.

REPORT DESIGN FUNDAMENTALS 93

 Creating a shared data source
A data source represents a connection to a database. A report can reference a report-specific
(private) data source or a shared data source. The hands-on lab in chapter 1 demonstrated
how to work with a report-specific data source. As its name suggests, a shared data source can
be shared among reports. This simplifies data source management because once the adminis-
trator updates the data source definition all reports that use the shared data source will pick
up the changes. Let's set up a shared data source that represents a connection to the Adventu-
reWorksDW2008 SQL Server database.

Figure 3.12 Set up a shared data
source that can be referenced by
all reports in the project.

1. In the Solution Explorer, right-click the Shared Data Sources folder and click Add New Data
Source.

2. In the Shared Data Source Properties dialog box that follows, enter AdventureWorksDW2008 as
a data source name.

3. Expand the Type drop-down list and select the Microsoft SQL Server data provider because
AdventureWorksDW2008 is a SQL Server database.

4. Assuming you want to connect to your local SQL Server default instance, enter the following
connection string in the text box below the Type drop-down, as shown in Figure 3.12:
Data Source=(local);Initial Catalog=AdventureWorksDW2008

Alternatively, instead of typing the connection string, click the Edit button and use the Con-
nection Properties dialog to specify the connection details.

5. Click the Credentials tab and verify that the Use Windows Authentication (Integrated Securi-
ty) option is selected. Consequently, the report will connect to the data source using your
Windows credentials.

Don't worry for now about the rest of data source options. I will explain them in detail in the
next chapter.

6. Click OK to create the data source.

The AdventureWorksDW2008.rds data source definition is added to the Shared Data Sources
folder in the Solution Explorer. Next, we need to associate the AdventureWorksDW2008 data
source with the Product Sales by Category report by creating a data source reference that is
saved inside the report definition. Although in this exercise the data source and the reference
have identical name (AventureWorksDW2008), this is not a requirement.

7. With the Product Sales by Category report open in design mode, expand the New drop-down
menu in the Report Data window and click Data Source.

CHAPTER 3 94

8. In the Data Source Properties dialog box that follows, name the data source Adventure-
WorksDW2008.

9. Click the Use Shared Data Source Reference radio button. Expand the drop-down list below
and select AdventureWorksDW2008, as shown in Figure 3.13.

Figure 3.13 Set up a
shared data source that can
be referenced by all reports
in the project.

Notice that you can use the Data Source Properties dialog to set up a report-specific (embed-
ded) connection, which gets saved in the report, or create a new shared data source definition
if it doesn't already exist in the project. Report-specific and shared data sources are discussed
in more detail in chapter 4.

 Creating a dataset
A dataset represents the report data. At design time, you use a query designer to define the
dataset definition, which consists of the query statement, dataset fields and other properties.
At run time, the report server executes the query to fetch the data.

1. In the Report Data window, right-click the AdventureWorksDW2008 data source reference
and click Add Dataset. Another way to add a dataset is to expand the New menu in the Report
Data window, choose Dataset and use the Dataset Properties dialog and to create a new data
source or reference an existing data source that has been added to the Report Data window.

The Report Designer opens the generic query designer, which is the default query building
tool for supported relational data sources such as Microsoft SQL Server and Oracle, and when
you use OLE DB, XML Web Services, and ODBC data providers. The generic query designer
doesn’t validate the query syntax in any way. Instead, it passes whatever you type directly to
the data source.

2. Click the Import button and navigate to the Products.sql file that is included in the Queries
folder with the chapter's source code. This query sums the SalesAmount field from the FactIn-
ternetSales and FactInternetSales fact tables and groups the results by the product category,
subcategory, and product.

3. Click the Exclamation Point button to execute the query and see the results (see Figure 3.14).

REPORT DESIGN FUNDAMENTALS 95

If you prefer to work with a graphical query tool to author SQL queries, toggle the Edit As
Text button. This launches the graphical query designer. This query designer may look famili-
ar to you as it is bundled with several Microsoft products and other SQL Server components.
It provides a visual design environment for selecting tables and columns and builds joins and
the query for you automatically when you select which columns to use.

4. Click OK to go back to the Dataset Properties window. Click OK to return to Report Designer.

The Report Designer creates a DataSet1 dataset and adds it under the Adventure-
WorksDW2008 data source in the Report Data window. The Report Data window shows the
dataset fields below the dataset node.

5. In the Report Data window, double-click the DataSet1 node (or right-click and click Dataset
Properties). Alternatively, select DataSet1 and click the Edit button. The Edit button is con-
text-aware and displays the appropriate property window depending on the selected object.

6. In the Dataset Properties window, rename the dataset to Products and click OK.

At this point, your Report Data window should look like the one shown in Figure 3.15.

Figure 3.14 The generic
query designer is the default
query building tool for sup-
ported relational data sources.

Figure 3.15 The Report Data
window shows the Products
dataset under the Adventure-
WorksDW2008 data source.

CHAPTER 3 96

3.3.3 Working with Report Parameters
Report parameters lets end users filter the data displayed on the report. As a report author,
you can parameterize your reports to make them more useful. Follow these steps to create
Month and Year parameters.

 Creating query parameters
The easiest way to implement report parameters is to parameterize the dataset query first.

1. In the Report Data window, right-click the Products dataset and click Query.
2. Add the following WHERE clause before the query GROUP BY clause.

WHERE D.MonthNumberOfYear = @Month AND D.CalendarYear = @Year

Here, D is an alias to the DimDate table. The @Month and @Year placeholders define query
parameters to filter data by month and year respectively.

3. Click OK.

 Understanding parameter association
As soon as you click OK, several things happen. First, the Report Designer creates Month and
Year query-level parameters. Next, the Report Designer creates Month and Year report-level
parameters and adds them to the Parameters node in the Report Data window. Finally, the
Report Designer associates the report-level parameters with the query-level parameters. Let's
take a look at these changes.

1. In the Report Data window, expand the Parameters node.
2. Double-click the Month report-level parameter.
3. In the Report Parameter Properties dialog box, click the Default Values tab.
4. Click the Specify Values option. Click the Add button and enter 1 to default the Month para-

meter to January. Click OK.
5. Repeat the last three steps to default the Year parameter to 2004.
6. Back to the Report Data window, double-click the Products dataset.
7. In the Dataset Properties dialog box, click the Parameters tab, as shown in Figure 3.16.

Figure 3.16 The Parameters tab of the
Dataset Properties dialog box shows the
association between query-level parame-
ters and report-level parameters.

REPORT DESIGN FUNDAMENTALS 97

The Parameter Name column lists the query-level parameters. The Parameter Value column
lets you define what values will be passed to these parameters. Click the fx button next to the
@Month parameter. Note that the [@Month] placeholder represents the following expression:
=Parameters!Month.Value

The Parameters keyword references the standard Reporting Services Parameters collection that
represents the report-level parameters. Consequently, at run time, the report server will pass
the value of the Month report-level parameter to the Month query-level parameter. Once the
parameters are in place, you are ready to lay out the report by adding report items to the re-
port body. Before doing so, let's gain some understanding about what report items are availa-
ble with Reporting Services.

3.3.4 Understanding Report Items
Now that you've defined report data, you are ready to lay out the report. Before doing so,
however, let me explain a few more report design concepts that will introduce you to report
items, expressions, and functions.

Figure 3.17 You lay out by
adding report items and data
regions to the report.

You can define the report appearance by dragging report items from the Toolbox window,
shown in Figure 3.17, and dropping them on the report. With Reporting Services, you can
place report items anywhere on a report. You are not limited to "bands" of data that you may
be accustomed to with other reporting tools, such as Microsoft Access. This gives you great
flexibility to define the report’s appearance. For example, you can have table and chart sec-
tions side-by-side. Report items can be classified as regular report items and data regions, as
shown in Table 3.5.

 Report items
Reports items are simple controls that you can use to define the layout for data and graphical
elements. The one that you will use the most is the textbox report item. Textboxes are building
blocks of reports. A textbox can contain static text, such as "Product Sales by Category", or
dynamic expression-based text that the report server resolves at run time. Textboxes can be
used as stand-alone report items, such as to display a report title, but they are most useful
when used inside a data region, such as inside a table region, where they display the values of
the dataset fields.

The line report item is used purely for decorative purposes, such as to emphasize the be-
ginning of a new section. A line cannot be associated with data. The rectangle report item can

CHAPTER 3 98

be used for decorative purposes to show a border around a group of items, but it can also con-
tain other items. For example, you can create free-form reports by placing textboxes arbitrarily
inside a rectangle.

TIP You can also use a rectangle item to keep items together. Let's say you want a table report to grow to fill the blank
space below it rather than preserving the blank space. You can group the tablix data region with the blank space below it
in a rectangle. Since growth only pushes peer items out of the way, the table in the rectangle has no items to push down
below it, so it will consume the blank space until it fills the rectangle.

The image report item displays image data. You can display embedded and external images, as
well as images stored in a database, by setting the Source property of the image report item.
An embedded image is saved in base64 format inside the report definition. An external image
located outside Reporting Services can be referenced by its URL. You can also configure the
image report item to render binary image data returned in the report dataset.

Table 3.5 Report Designer includes regular report items and data regions.

Type Item Description

Re
po

rt
Ite

ms

Textbox Displays static or dynamic text.

Line Draws a line, such as to separate the report body from the page footer.

Rectangle Can be used in two ways: as a graphical element and as a container for other report items.

Image Displays binary image data in a report.

Subreport Renders another report in the parent report

Da
ta

Re
gio

ns

Table Displays data in a tabular format

Matrix Displays data in a crosstab format

List Displays data in a free-form layout

Chart Displays graphical representation of the data as a chart

Gauge Displays graphical representation of the data as a gauge

The subreport report item defines a placeholder that references another report. Although sub-
reports are popular with other reporting tools, with Reporting Services you should consider
using separate data regions instead of subreports for performance reasons. This is because
subreports must be processed separately, which is less efficient than processing data regions.
This is not to say that subreports are not useful. One common scenario where subreports can
help is implementing a master report which packages existing reports. Another scenario where
you should consider subreports is when you need to correlate two datasets, such as to display
multiple orders with order header and order details sections.

 Data regions
Besides regular report items, Reporting Services supports more sophisticated report controls
called data regions. While they present information in different ways, all data regions except
gauge, which is a one-dimensional data region, act as repeaters of data. When bound to a da-
taset, they iterate through the dataset rows and expand to render the field values.

REPORT DESIGN FUNDAMENTALS 99

The table data region displays data in a two-dimensional tabular format that has dynamic
rows and fixed columns. The matrix data region generates a crosstab format that has dynamic
rows and columns. The list data region lets you position report items in arbitrary locations for
implementing free-form reports. The chart region displays data in a chart format, such as a line
chart. The gauge data region helps end users visualize a value by presenting it as an indicator,
such as a thermometer.

Internally, the table, matrix, and list regions are represented by the tablix data region, as
you can see by examining the report source code. The Toolbox pane "splits" the tablix region
into three regions to help you define a starting point for your report. For example, if you drop
the table region, tablix will assume a fixed-column format and won't include a pre-defined
column group for dynamic columns. However, regardless of which of the three regions you
use, you can always "morph" the tablix region to another layout. For example, you can start
with a table format but decide later that you need a crosstab format. Instead of deleting the
table region and starting from scratch with the matrix region, you can simply add dynamic
groups to the existing report.

NOTE What's the etymology of the word "tablix"? According to Microsoft, Tablix = Table + Matrix. However, this defini-
tion ignores the list region which is also represented by tablix. So, my tablix etymology is Tablix = Table + List + Matrix.

A report can have any number of data regions placed side-by-side on the report, and each of
them can be bound to a different dataset. For example, you can place a chart and table region
side by side. The chart region can display the company sales per territory in chart format,
while the table region can provide a breakdown by product and territory. You can also nest
data regions. For example, you can nest a gauge region inside a table region to display indica-
tors for each row or group.

When the Microsoft-provided report items and data regions are not enough, developers
can implement custom report items that render data as raster images. Chapter 21 includes an
example of a custom report item that displays a field value as a progress bar.

3.3.5 Understanding Expressions
Expressions are code snippets written in Visual Basic.NET compatible syntax that you can use
to dynamically change the content and appearance of a report. An example of a common ex-
pression is =Sum(Fields!SalesAmount.Value) which sums the values of the SalesAmount field in
a report group or the report grand total line. Expressions let you supercharge your reports in
flexible and powerful ways.

For example, suppose that you need to conditionally hide a report column. You can enter
an expression in the column's Hidden property that evaluates a parameter value or a dataset
field to hide the column if needed. You won't go very far with Reporting Services if you don't
have a solid grasp of expressions, so let's discuss them in more detail.

 Understanding expression types
We can classify expressions in two types based on the complexity of the expression code:
 Simple—A simple expression is a single reference to an item in a built-in collection. Don't

worry if you don't understand the concept of collections yet. I will explain collections in
section 3.3.6. For example, the following expression references the value of the Month pa-
rameter:

 =Parameters!Month.Value

CHAPTER 3 100

 Complex—Any expression that is not is a single reference. For example, the following ex-
pression calculates the discounted sales amount:

 =Fields!SalesAmount.Value * Fields!Discount.Value

 Authoring expressions
An expression must begin with an equal sign (=). This tells the report server to evaluate the
text that follows as an expression instead of as static text. After the equal sign, the expression
text can include field identifiers, constants, functions, and operators. For example, the expres-
sion =Fields!SalesAmount.Value returns the value of the SalesAmount dataset field. You can use
Visual Basic.NET to create more complicated expressions.

Figure 3.18 Expand the property
drop-down list to check if the prop-
erty can be expression-based.

Most report item properties can be expression-based and there is an easy way to verify this.
1. Click the report body section of the Product Sales by Category.
2. In the Properties window, expand the BorderStyle Default property, as shown in Figure

3.18.

Notice that the first item in the drop-down list is <Expression…>, which means you can use
an expression to dynamically control the property value. For example, the expression can
check the value of a report parameter and change the border style accordingly.

3. Now, expand the BackgroundImage property, which you can use to set up a background im-
age for the report body.

4. Expand the Source drop-down list and note that the <Expression…> item is missing. There-
fore, you cannot use an expression to change the image Source property dynamically.

Another example of properties that cannot be expression-based is the size-related properties
(height and width) of the report and report items. This is because Reporting Services doesn't
currently support variable sizing.

You can type the report expression text manually in the Properties window and the stan-
dard dialog boxes, or you can use the Expression dialog box. You will probably find the first
method handy when you want to quickly change the expression text or enter simple expres-
sions. For example, you can click inside a text box and directly type a field expression to bind
the textbox to a dataset field, such as =Fields!Sales.Value. Alternatively, you can use the Ex-
pression dialog box, which is especially useful for more complicated expressions as it offers
IntelliSense support and color-coding.

5. Expand the BorderStyle Default property and click the <Expression…> item.

REPORT DESIGN FUNDAMENTALS 101

The Report Designer launches the Expression dialog box. You can enter the expression text in
the Set Expression field. The panes below the expression pane can help you author the expres-
sion. For example, if the report item is data-bound, you can click the Fields item in the Cate-
gory pane and drag a field from the Items pane.

6. In the Expression dialog box, enter =Iif(

Figure 3.19 The Expression
dialog box provides IntelliSense
support for authoring expressions.

IIF is a Visual Basic function that evaluates a condition and returns one of two values depend-
ing on whether the condition evaluates to true or not. The moment you type the left parenthe-
sis, Report Designer opens an IntelliSense help that shows the IIF syntax to help you author
the expression, as shown in Figure 3.19.

NOTE Since expressions use Visual Basic.NET, the expression text is not case-sensitive. However, names of data
objects, such fields and datasets, and parameters are case-sensitive.

You may wonder about the purpose of the category items shown in the Category pane. The
Constants category provides a list of constant values that are relevant to a given property, such
as a list of standard colors if a color-related property is selected in the Properties window. The
Operators lets you access the Reporting Services operators. The Common Functions category
organizes the functions supported by Reporting Services into categories. You can drag an item
from the Item pane and drop it in the expression pane to insert the item in the cursor posi-
tion.

3.3.6 Understanding Collections
Reporting Services supports eight read-only global collections that you can reference in ex-
pressions. Table 3.6 explains these collections and provides expression examples of how to
use them.

CHAPTER 3 102

Table 3.6 Reporting Services provides seven global collections.

Collection Description Expression Example

Fields Represents a collection of Field objects that map to dataset field. =Fields!SalesAmount.Value

ReportItems Represents a collection of textbox report items within the report. =ReportItems!Title.Value

Globals Contains built-in global fields. =Globals!PageNumber

User Includes user-related fields =User!UserID

Parameters Represents the report parameters =Parameters!Month.Value

DataSources Represents the data sources referenced by the report. =DataSources!AdventureWorksDW2008.Type

DataSets Represents the datasets referenced from the body of a report definition. =DataSets!Products.CommandText

Variables Provides access to report and group-level variables =Variables!Rate.Value

You can reference the global collections in expressions using any of the Visual Basic supported
syntaxes for accessing collections, such as:
Collection!ObjectName.Property Example: =Fields!SalesAmount.Value
Collection!ObjectName("Property") Example: =Fields!SalesAmount("Value")
Collection("ObjectName").Property Example: =Fields("SalesAmount").Value
Collection.Member Example: =User.Language
Collection("Member") Example: =User.Language

 Fields collection
The Fields collection is the most frequently used collection as it lets you access dataset fields.
Each dataset field is represented as a Field object which has Value and IsMissing properties, as
shown in Table 3.7.

Table 3.7 The properties of the Field object

Property Description

Value Returns the field value

IsMissing Indicates if the underlying field is missing from the dataset

The Value property returns the field value from the underlying dataset in its native type. The
IsMissing property lets you check if the dataset includes a given field. Let's say you have a
stored procedure that returns different columns based on an input parameter. If you want to
hide a table column that references a field that may be missing, you can use the following ex-
pression for the column's Hidden property:
=Fields!ProductSubcategory.IsMissing

If the data providers support extended properties, you can use the Field object extended
properties, such as Color. For example, the Microsoft Analysis Services data provider supports
extended properties, as I'll demonstrate in chapter 16

 ReportItems collection
The ReportItems collection references all textboxes in the report. Each item has a single Value
property. For example, let’s say the report has two textboxes: a Sales textbox that displays a
sales value and a hidden Status text box that contains a static string "Goal exceeded". The fol-

REPORT DESIGN FUNDAMENTALS 103

lowing expression for the Hidden property of the Status text box makes it visible if the Sales
textbox exceeds 100,000.
=ReportItems!Sales.Value<=100000

Note that each item in the ReportItems collection is represented as an internal object, which
preserves the data type of the field so that you don't have to convert it. Of course, assuming
that the underlying field name of the Sales textbox is Sales, you can rewrite the expression to
use the Fields collection:
=Fields!Sales.Value<=100000

If you need to access the textbox itself in one of its properties, you can use Me.Value or just
Value. For example, if you want to change the foreground color of the Sales text box to red if
it exceeds 100,000, you can plug in the following expression in its Color property.
=Iif (Me.Value <= 100000, "Black", "Red")

 Globals collection
The Globals collection contains commonly used built-in variables, as shown in Table 3.8.

Table 3.8 The members of the Globals collection

Member Description Data Type

ExecutionTime The date and time the report began to run. DateTime

PageNumber The current page number. Can be used only in a page header and footer. Integer

ReportFolder The full path to the report excluding the report server URL String

ReportName The report name. String

ReportServerUrl The Web service URL. String

TotalPages The total number of pages. Can be used only in a page header and footer. Integer

 User collection
The User collection includes UserID and Language members, as shown in Table 3.9.

Table 3.9 The members of the User collection

Member Description Example

UserID Returns the user identity. adventure-works\bob

Language Returns the user's locale identifier. en-US

If the report server uses Windows authentication (default), UserID returns the Windows logon
in the format domain\logon. If the report server is configured for custom security, UserID re-
turns the user name that was passed to the custom security extension. The UserID member is
typically used to enforce row-level security, such as to pass the user identity to the data source
for restricted data shown on the report.

For the report author's convenience, the members of the Globals and User collections are
exposed under the Built-in Fields node in the Report Data window and Globals category in the
Expression dialog.

CHAPTER 3 104

 Parameters collection
The Parameters collection gives you access to the report parameters. Each parameter object
has the properties shown in Table 3.10.

Table 3.10 The Parameter properties

Property Description

Value Returns the parameter value.

Label Returns the user-friendly label.

IsMutliValue Returns True if the parameter is a multivalued parameter.

Count Returns the number of parameter values.

When you define a parameter, you can specify a value and optionally a label. For example,
you can map a database key column to the Value property so you can pass it to the report
query and a user-friendly description column to the Label property. In the absence of a label,
the Label property returns the parameter value. The last two properties, IsMultiValue and
Count, are useful with multivalued parameters.

 DataSources collection
This collection represents the data sources referenced by the report. Each data source object
has the properties shown in Table 3.11.

Table 3.11 The data source properties

Property Description Example

DataSourceReference The path to the data source. /Data Sources/AdventureWorksDW2008

Type The type of the data provider. SQL

 DataSets collection
The DataSets collection represents the datasets defined in the report. Each dataset object has
the properties shown in Table 3.12.

Table 3.12 The dataset properties

Property Description

CommandText Returns the dataset query text verbatim.

RewrittenCommandText For data providers that implement the IDbCommandRewriter interface (as Report Model data sources do),
returns the expanded command text with parameter placeholders replaced with actual parameter values.

 Variables collection
Reporting Services 2008 introduces variables to store values for time-dependent calculations,
such as currency rates or time stamps that don't change between page refreshes. I discuss va-
riables in more detail in chapter 7.

REPORT DESIGN FUNDAMENTALS 105

3.3.7 Understanding Functions
Reporting Services lets you reference built-in and external functions in expressions. Built-in
functions let you perform common computations tasks, such as aggregating data. External
functions allow you to extend your reports with .NET or custom code.

 Built-in functions
Table 3.13 lists some of the most common built-in functions.

Table 3.13 Common Reporting Services built-in functions

Category Function Description

Aggregates Sum Returns a sum of field values.

 Avg Returns the average of all non-null field values.

 Count Returns a count of all non-null field values.

 CountDistinct Returns a count of all non-null distinct field values.

 Min Returns the minimum value from all non-null field values.

 Max Returns the maximum value from all non-null field values.

Running Values RowNumber Returns a running count of the number of rows.

 RunningValue Calculates a running aggregate, such as running sum.

Row Counts CountRows Counts the rows in the specified scope, such as a row group.

Dataset Navigation First Returns the fist value in a set of data.

 Last Returns the last value in set of data.

 Previous Returns the value or the specified aggregate value for the previous instance of an item.

Consult with the Using Built-in Report and Aggregate Functions in Expressions topic in Books
Online (see Resources) for a full list of the built-in functions.

 External functions
Besides the Reporting Services built-in functions, your expressions can reference external
functions, such as .NET functions or custom functions you or someone else wrote. In order to
evaluate expressions, the Report Processor generates and compiles code during publishing.
The resulting expression host assembly pre-references two standard .NET assemblies, Micro-
soft.VisualBasic.dll and mscorlib.dll. It imports the following namespaces so you can readily
reference their types and functions in expressions without having to specify the namespace.
 Microsoft.VisualBasic—This namespace lets you access many of the common Visual Basic

runtime functions. For example, you can use the Format function to format dates and
numbers. The Visual Basic Run-Time Library Members (see Resources) provides a full list
of the Visual Basic run-time functions.

 System.Convert—Allows you to perform runtime conversion between types, for example,
from string to double using System.Convert.ToDouble.

 System.Math—Provides constants and static methods for trigonometric, logarithmic, and
other common mathematical functions, such as Abs, Ceiling, Floor, Sqrt, and so on.

CHAPTER 3 106

To reference the rest of the System namespaces, you need to specify the fully qualified class
name, including the namespace. For example, if you need to use a collection of the type Ar-
rayList in an expression, you have to use its fully qualified name, System.Collections.ArrayList.
You can also reference functions in custom code, as I will discuss in chapter 7.

 Understanding expression context and scope
Each expression is associated with context and scope. The expression context is the consecu-
tive order in which the expression is evaluated. When the server processes a report, it starts
with the dataset itself and sequentially processes nested sets of data, such as data regions and
groups, all the way down to detail rows. For example, examining the Product Sales by Catego-
ry report (see again Figure 3.2) shows how the server evaluates the context of the Internet
Sales field expression in the detail rows. The server applies filter and sort expressions (if any)
to the Products dataset, followed by filter and sort expressions at the table region level, fol-
lowed by filter and sort expression at the product category and subcategory groups, followed
by filtering and sorting at the details group level.

The expression scope represents the set of data that is used to evaluate the expression. If
you examine the syntax of the built-in functions, you will notice that most of them take an
optional scope argument. If the scope is omitted, the expression is evaluated in the default
scope, which is determined by the expression context. For example, the default scope of a
Sum function in the product subcategory group totals is the product category group because
this is the innermost group in which the function is evaluated.

Some functions (RowNumber, RunningValue, Previous), support specifying a null scope
(Nothing in Visual Basic), such as RowNumber(Nothing). When the expression scope is set to
Nothing, the expression is evaluated in the outermost context, usually the report dataset.

Scopes can be nested. Nested scopes are evaluated in the order Dataset Data region
Row and column groups Nested data regions Row and column groups for nested data
regions. Built-in functions can reference containing (outer) scopes. For example, to calculate
the contribution of the product Internet sales to its subcategory you can use the expression
=Sum(Field!InternetSales.Value, "ProductSubcategory"). This expression returns the subcate-
gory total assuming that the name of the subcategory group is ProductSubcategory.

You cannot reference inner scopes. What will happen if you try to obtain a subcategory to-
tal in the product category group? Since a product category may have many children (subcate-
gories), the server has no way of telling which subcategory subtotal you need. Subsequently,
you will get the following error when you build the report at design time:
The Value expression for the textbox ‘name’ has a scope parameter that is not valid for an aggregate function. The scope
parameter must be set to a string constant that is equal to either the name of a containing group, the name of a
containing data region, or the name of a data set.

Don't worry if the scope discussion sounds mind-boggling. The tablix region provides visual
clues to help you understand the expression scope at design time. You can also use the In-
Scope built-in function to check the expression scope when the report is run.

3.3.8 The Anatomy of a Textbox
Now that you've been introduced to report items and expressions, let's learn more about the
textbox report item, which is the control that you'll use most when authoring text-based re-
ports. Veteran Reporting Services users will find that the textbox report item has undergone a
complete overhaul in Reporting Services 2008 to support mixed formatting and multiple

REPORT DESIGN FUNDAMENTALS 107

bands of text. Understanding these important changes will help you optimize the report layout
and minimize the use of expressions.

 Understanding textbox elements
In the previous releases, the textbox report item didn't support mixed formatting. Conse-
quently, you can only format the textbox content in its entirety. If you wanted a text fragment
to have different format styles, such as to format a text fragment in bold, you had no other
choice but to use another textbox. Because of the textbox formatting limitations, it wasn't
possible to display text with mixed formatting or implement mail merge reports.

This has changed in Reporting Services 2008, wherein the textbox is a constituent control
with multiple bands of text that can be formatted independently. Specifically, a textbox con-
sists of paragraphs and each paragraph is composed of string fragments called textruns (Tex-
tRun RDL element). An analogy to Microsoft Word can help you understand this better. If you
think of a textbox as a Microsoft Word document, then textbox paragraphs correspond to
Word paragraphs and textruns are the spans of contiguous like-formatted substrings in a pa-
ragraph. The Textbox Anatomy report (see Figure 3.20) that is included in the source code for
this chapter is meant to help you understand these textbox elements.

Figure 3.20 A textbox
consists of paragraphs and
each paragraph is a collec-
tion of sequential textruns.

I used one textbox to display the entire report content. By default, when you add a textbox to
a report or when you upgrade a legacy report definition, a textbox has a single paragraph with
a single textrun. The moment you change the formatting styles of a string fragment (even a
single letter), Report Designer breaks down the paragraph into textruns. Thus, the first para-
graph on the report has five textruns whose spans are indicated by the numbers above them.

 Understanding textbox editing
Report Designer supports natively editing the textbox elements in place. Similar to Microsoft
Word, if the textbox is in edit mode (double-click the textbox) and you press the Enter key,
Report Designer creates a new paragraph. However, if you press Shift+Enter, it will create a
newline at your current position in the textrun instead of creating a next textrun or paragraph.
In the latter case, the textrun text will just flow to the new line.

The analogy with Microsoft Word can be extended even further. Similar to Word, textbox
paragraphs can be indented. For example, the second paragraph has a hanging indent (Han-
gingIndent property), as well as a left indent (LeftIndent property) and a right indent (Righ-
tIndent property) defined. You can define spacing between paragraphs by setting the
SpaceAfter and SpaceBefore properties. Paragraph numbers and bullets are supported too. For
example, I formatted the last two paragraphs as numeric lists by changing their ListLevel and
ListStyle properties.

CHAPTER 3 108

Report Designer lets you apply format settings down to the inner textbox elements. For
example, if you select the entire textbox and set its font to bold, all paragraphs and textruns
will be formatted in bold. Consequently, you can apply common format setting at a higher
level. Again, this behavior is similar to Microsoft Word.

NOTE Strictly speaking, there is no style inheritance in RDL. For example, the FontFamily style element exists only at
the textrun level. If you select the textbox and set its font, it does not set the font on the textbox itself. Rather, it sets it
for all textruns in the textbox. The editing experience allows users the benefit of not thinking about that particular detail.

 Understanding placeholders
As noted in section 3.3.4, the textbox report item can display dynamic expression-based text.
In the past, if you wanted to mix static text with expressions, you either had to use separate
textboxes (if you wanted to apply different format settings) or a Visual Basic.NET expression
that concatenates the static and dynamic text if they have the same format settings. In this re-
lease, static and dynamic text can coexist just fine within a single textbox. This eliminates the
need to use separate textboxes or use expressions that concatenate static and dynamic text.

When a simple or complex expression is defined inside a text box, the resulting UI repre-
sentation of this expression is known as a placeholder. For example, the last two paragraphs in
Figure 3.20 include placeholders. The [&ExecutionTime] placeholder represents the expres-
sion =Globals!ExecutionTime, while the [&UserID] placeholder symbolizes the expression
=User!UserID. There are different ways to create a placeholder:
 Drag a field from the Report Data window and drop it into the textbox. If the textbox is in

edit mode, the placeholder will be created where the mouse cursor is positioned. If the
textbox is not in edit mode, its entire content will be replaced with the placeholder.

 Right-click inside the textbox and click Create Placeholder. In the Placeholder Properties
dialog box that follows, use the Value field in the General tab to enter the expression.

 Enter the actual placeholder text enclosed in square brackets. For example, if you enter
[Name], Report Designer will automatically create a placeholder with the expression
=Fields!Name.Value.

 In an empty textbox, type in the expression text prefixed with an equal sign (=).

 Understanding placeholder syntax
Placeholder labels improve the visual experience at design time and let the user see enough
information to understand the content of a textbox. The placeholder label is a special token
that the Report Designer displays at design time in lieu of the actual placeholder expression.
Table 3.14 lists examples of placeholder labels and their corresponding expressions.

Table 3.14 Examples of placeholders used to display simple and complex expressions

Collection Placeholder Actual Expression

Fields [SalesAmount] =Fields!SalesAmount.Value

 [SUM(Sales)] =Sum(Fields!Sales.Value)

Parameters [@Month] =Parameters!Month.Value

Built-in fields [&ReportName] =Globals!ReportName

Complex expression <<Expr>> =Iif (Me.Value <= 100000, "Black", "Red")

REPORT DESIGN FUNDAMENTALS 109

The last example deserves more attention. For textboxes with just one textrun, the Value
property will return the value as the appropriate data type. For textboxes with multiple tex-
truns, it will return a string of the concatenated values. You can see the actual expression text
by right-clicking the placeholder and clicking Expression, by pointing the mouse cursor to the
placeholder when the textbox is in edit mode (a tooltip will pop up), or by inspecting the text
box Value property.

TIP You can enter the placeholder label directly in the textbox. For example, if you enter [SalesAmount] in a textbox,
Report Designer will set the textbox Value to the expression =Fields!SalesAmount.Value. If you want to display square
brackets as literal strings, prefix them with a backslash, such as \[Name\].

You can define your own placeholder labels using the Label property in the General tab of the
Placeholder Properties dialog box. This will be the text that is shown at design time for the
placeholder.

I hope by now you've started to appreciate the enhancements to the textbox report item.
But that's not all. The textbox item is also capable of interpreting rich formatting styles, such
as HTML markup. However, to keep us on track, let's postpone these features to chapter 7.

3.3.9 Designing the Report Layout
Now that you have been introduced to the report design fundamentals, you are ready to final-
ize the Product Sales by Category report. Let's leverage some of the new textbox features to
implement the page header.

 Implementing the page header
The page header includes a report title, subtitle, and the Adventure Works logo. We will im-
plement these elements in this order.

1. If it is not active, activate the Toolbox window (press Ctrl+Alt+X or click the Toolbox tab).
Drag a Textbox report item and drop it on the page header section.

1. Double-click the textbox to enter edit mode, and type Product Sales by Category.
2. Press Esc to select the entire textbox. With the textbox selected, use the Properties window to

configure its properties as follows (only changed properties are shown).

Property Value Alternative Way

Color DarkSlateBlue Click Foreground color toolbar button in the Report Formatting toolbar.

Font:FontFamily Tahoma Use the Font Name drop-down in the Report Formatting toolbar to select font.

Font:FontSize 24pt Enter the value in the Font Size drop-down in the Report Formatting toolbar.

Location:Left 2.88542in Drag the report item to a location or click the Center Horizontally toolbar button.

Location:Top 0.10764in

Name Title

Size:Width 5.60083in Resize the control on the design surface by dragging its resize handles.

Size:Height 0.53819in

TextAlign Center Click the Center button in the Report Formatting toolbar.

CHAPTER 3 110

As you get used to the Report Designer, you might find that you favor the techniques in the
Alternative Way column because they save time.

 Implementing the report subtitle
Since the report subtitle requires an expression and different formatting, your first impulse
might be to add a new textbox. This will work but requires an expression to concatenate static
and dynamic text, such as this:
=String.Format("Month {0} Year {1}", Parameters!Month.Value, Parameters!Year.Value)

This expression uses the .NET String.Format function to replace the format placeholders en-
closed in curly brackets with a comma-delimited list of values. Novice users will probably
struggle with this expression. However, thanks to the textbox enhancements in this release,
you can use one textbox and eliminate expressions whatsoever, as follows:

2. Increase the textbox height to 0.92". Double-click the textbox to enter edit mode. Position the
mouse cursor after the title text and press Enter to add a new paragraph.

3. Move the mouse pointer to the new paragraph and change the font to Arial, 16pt. Change the
SpaceBefore property to 6pt.

4. In the new paragraph, enter Month and a space.
5. With the textbox still in edit mode, drag the Month parameter from the Report Data pane and

drop it after "Month ", as shown in Figure 3.21.

Figure 3.21 Create
a placeholder by drag-
ging a field from the
Report Data pane.

6. With the mouse cursor after Month [@Month], type Year and a space.
7. Drag the Year parameter after " Year ". The entire subtitle expression should now be:

Month [@Month] Year [@Year]

This expression uses two placeholders for the Month and Year parameters.
8. With the textbox in edit mode, double-click the [@Month] placeholder to open the Placehold-

er properties dialog box, which is shown in Figure 3.22.

As noted, you can enter a custom label in the Label field if you prefer a different placeholder
label then the default ([@Month]) to show up at design time. You can use the Number,
Alignment, and Font tabs to format the placeholder text if you need different formatting than
the containing paragraph.

9. Save the report definition.
10. Optionally, inspect the report definition source. In the Solution Explorer, right-click Product

Sales by Category.rdl and click View Source

REPORT DESIGN FUNDAMENTALS 111

Figure 3.22 Use the Placeholder
Properties dialog box to format the
placeholder text.

Notice that the Title textbox has two paragraphs and the second paragraphs has two place-
holders. To accommodate the placeholders, Report Designer has split the second paragraph
into four textruns, as you would notice by examining the report definition source.

 Displaying the company logo
The image report item is frequently used to show a company logo on the report.

1. Drag the Image report item from the Toolbox window to the page header to the left of the
report title.

2. In the Image Properties dialog box that follows (General tab), change the image name to Logo.
3. Click the Import button. Navigate to the Reports folder in the chapter source code, select the

AWC.jpg image, and click Open. This embeds the image binary data in the report definition.
4. Select the Size tab and change the Display option to Fit To Size, so the image fits its dimen-

sions. Click OK.
5. Resize the image to a width of 2.75in and a height of 0.92375in.

If the image overlaps the textboxes, select both textboxes by holding the Shift key, and press
the right arrow key to move them to the right (or drag them). You can also select adjacent
items by clicking an empty area in the report section and dragging the mouse cursor to "lasso"
the items.

Figure 3.23 Snap lines help you
align items as you drag them around
the design surface.

CHAPTER 3 112

6. Select the image and drag it to align its top with the top of the Title text box, as shown in
Figure 3.23.

As you drag the image, blue snap lines let you align the image precisely with other items.

 Getting started in the table data region
Next, we will tackle the report body. We will use the table data region to implement the re-
port body.

1. Drag the Table region from the Toolbox window and drop it on the report body section.

The predefined table data region contains two rows and three columns. The Header row is
grayed out to denote that this is a static row which is used to display the column headers. The
Data row expands at run time to show the report data. The visual cue in the row selector of
the second row (three stacked lines) helps you identify that this is a details row (see Figure
3.24). Examine the Row Groups pane and notice that the table region includes a details group
(Details). This group represents the rows in the underlying dataset. For example, you can use
the details group to sort, group, or filter the dataset rows if needed.

Next, you'll bind the dataset fields to the details cells to implement the Reseller Sales and In-
ternet Sales columns. You can do so by dragging dataset fields from the Report Data window
to the details cells inside the tablix region. Or, you can point the mouse pointer to a details
cell, click the Field Selector drop-down list, and select a dataset field.

2. Use the Field Selector to bind the details cell in the first column to the ResellerSales field.

The Report Designer shows the [ResellerSales] placeholder in the details cell and sets the col-
umn header text to Reseller Sales. Let's take a moment to review what changes Report De-
signer has made to the table region behind the scenes. You need to select the table region to
access its properties. There are several ways to select a report item. First, you can click its out-
line. A selected region shows a resize handle in its upper left corner, which you can drag to
move the region to another location. If you select a cell inside the region, press Esc to change
the selection to its containing region. You can also use the drop-down list in the Property
window to select the region by name. Finally, you can lasso a region by dragging the mouse
cursor to enclose it and select it.

3. Select the table region.

Figure 3.24 Tablix visual cues
help you identify the tablix ele-
ments and group membership.

REPORT DESIGN FUNDAMENTALS 113

The moment you bind a cell to a dataset field, Report Designer binds the containing region to
that dataset. Examine the Properties window and notice that the DataSetName property is set
to the Products dataset.

NOTE A data region can be bound to one dataset only. However, expressions can use aggregated values from
another dataset that isn't bound to the data region. For example, assuming you have a Customers dataset, the expres-
sion =Sum(Field!Field1.Value, "Customers") will return the grand total value of Field1 which you can use in a data re-
gion bound to the Products dataset.

4. Use the Field Selector to bind the details cell in the second column to the InternetSales field.
5. The third column (Sales Amount) is a calculated column that sums the reseller sales and In-

ternet sales. In the column header of the third column, enter Sales Summary.
6. Right-click the details cell, click Expression, and enter the following expression in the Edit

Expression dialog box.
=Fields!InternetSales.Value+Fields!ResellerSales.Value

 Previewing the report
During the report design process, you will find yourself switching often to the Preview tab to
quickly test the report. Although the Product Sales by Category report is far from complete,
let's preview it by clicking on the Preview tab. The Report Designer preview mode connects to
the data source, retrieves data, and processes the report locally via internal interfaces. Conse-
quently, you can author and test reports completely outside the report server.

Report queries may take long time to execute. However, Report Designer preview can help
you here in that it caches the report data locally in a <reportname>.data file to speed up the
report processing. As long as you don't make changes to the report datasets, report preview
uses the cached data. Click the Refresh button to execute the dataset query if you want to see
the most recent data. If you want to turn caching completely off, change the CacheDataFor-
Preview setting to False in the Report Designer configuration file (\Program Files\Microsoft
Visual Studio 9.0\Common7\IDE\PrivateAssemblies\RSReportDesigner.config).

As Figure 3.25 shows, the table report has three columns and as many rows as the number of
the rows in the dataset. Report Designer generates a handy toolbar to let you perform common

Figure 3.25 In preview
mode, the Report Designer
generates a toolbar to let
you perform common report
operations.

CHAPTER 3 114

functions, such as exporting the report to any of the supported export formats. If you want to
see what the report looks like when printed, click the Print Layout button. The toolbar in-
cludes a parameter area which you can use to change the parameters. Click View Report to
render the report with the new parameter values. Notice that in preview mode, the Report
Data window is disabled because you cannot make changes to the report layout.

 Defining row groups
Next, you'll define row groups to group data by product category, subcategory, and product.

1. Switch to design mode by clicking the Design tab.
2. Drag the ProductCategory field from the Products dataset (Report Data window) and drop it

before the Details row group in the Row Groups pane.

Several things happen at this point. The Report Designer creates a new ProductCategory row
group and adds it to the Row Groups pane, as shown in Figure 3.26. If you double-click the
ProductCategory group in the Row Groups pane to open the Group Properties dialog box
(General tab), you will see that Report Designer has set the group expression to the [Product-
Category] placeholder. This placeholder represents the ProductCategory dataset field and it's
equivalent to the expression =Fields!ProductCategory.Value.

Figure 3.26 When you drop a field on
the Row Groups pane, the Report Design-
er creates a new row group and adds a
table group header to the table region.

Report Designer also generates a tablix group header column (Product Category) and adds it
to the table. Tablix group headers are a new feature of Reporting Services 2008. A tablix group
header spans over its content, including inner groups and subtotals. If you have used previous
releases of Reporting Services, you would find tablix group headers similar to matrix headers.
Or, if you are familiar with Office Web Components or Excel PivotTable reports, you can
think of tablix group headers as row groups that the PivotTable control creates to group data
on rows.

Tablix shows visual cues to provide information about row and column groups. The
double dashed line is a group divider that separates the tablix body from tablix group headers.
The group indicator (left parenthesis) in the row selector shows the rows that the group spans.
This becomes more useful as you add group subtotals.

3. Preview the report to understand tablix group headers. Note that the Product Category header
spans details rows. Switch back to design mode.

4. Drag the ProductSubcategory field from the Products dataset (Report Data window) and drop
it between the ProductCategory group and the Details row group in the Row Groups pane.

REPORT DESIGN FUNDAMENTALS 115

Alternatively, you can create a new row group by dropping a field on the tablix region to the
left of the group divider line or between tablix group headers. As you hover on the tablix re-
gion, a blue guideline is shown to give you a visual cue where you can drop the field. If you
drag the field over the group divider and you move the cursor slightly to the left towards the
row group area, the blue line will change to a right square bracket (]). This indicates that a
new row group will be created. If you move the mouse cursor towards the tablix body, a left
square bracket ([) will be shown to indicate that the field will be added to the details row in
the tablix body area.

5. Drag the ProductName field and drop it between the ProductSubcategory row group and De-
tails row group.

The Rows Groups pane should now contain ProductCategory, ProductSubcategory, Product-
Name, and Details groups in this order. If the group order doesn't match, you can relocate a
group by dragging it to the correct position in the Row Groups pane.

6. To generate a page break after each product group, double-click the ProductCategory group in
the Row Groups pane (or right-click it and click Group Properties).

7. In the Tablix Group Properties dialog box, click the Page Breaks tab and check Between Each
Instance of a Group.

 Adding group subtotals
The Product Sales by Group report totals data at the subcategory level and has a grand total
footer.

1. Right-click the ProductSubcategory cell in the details row and click Add Total After, as
shown in Figure 3.27.

The Report Designer adds a total row that sums the numeric columns (Internet Sales and Re-
seller Sales).

2. Right-click the ProductCategory cell in the details row and click Add Total After.

The Report Designer adds a total line after the ProductCategory group. Since ProductCategory
is the outermost group, its total acts as a report grand total line.

3. Preview the report to test the row groups. Note that the Sales Summary column doesn't have
totals.

4. Back to design mode, enter the following expression in the total rows of the Sales Summary
column.
=Sum(Fields!ResellerSales.Value+Fields!InternetSales.Value)

Figure 3.27 To add a group
total, right-click the group cell
and click Add Total.

CHAPTER 3 116

The aggregate functions are not limited to a single field only. In this case, Sum aggregates over
an expression.

5. Click the total cell of the product subcategory group, as shown in Figure 3.28.

Tablix shows visual cues to help you understand which group the cell belongs to and its ex-
pression scope. The active group indicator (highlighted in orange) shows the innermost
group. In this case, the innermost group is ProductCategory. Therefore, the expression scope
is the ProductCategory group. Inactive group indicators mark the tablix groups.

Figure 3.28 Tablix visual cues
help you understand the expression
scope and group membership.

 Formatting the report
Next, let's improve the report appearance by formatting the report:

1. Resize the columns by dragging their resize handles to accommodate the content.
2. Select all tablix cells by dragging the mouse cursor down all row selectors. Change the Bor-

derStyle Default property to None to remove the cell borders.
3. Select the tablix header row by clicking its row selector. In the Properties window, set the

BackgroundColor property to DarkSlateBlue to change the background color of all header
cells. Change the Color property to White and Font FontWeight to Bold.

4. Repeat the last step to format all cells in the ProductSubcategory total row.
5. Right-click one of the numeric cells, such as [ResellerSales], and click Text Box Properties.
6. In the Textbox Properties dialog box, click the Number tab. Format the textbox as currency

with zero decimal places and a thousand separator. Click OK.
7. In the Properties window, copy the Format setting of the textbox, which should be

'$'#,0;('$'#,0) (assuming United States regional settings).
8. Select all numeric cells (hold Shift for extended selection). Paste the format setting in the For-

mat property to format all numeric cells this way.
9. Select the Reseller Sales, Internet Sales, and Sales Summary details cells of the last row and

change their BorderStyle Bottom property to Solid and BorderWidth Bottom property to
2pt in the Properties window. This adds a single underline below the grand total numeric col-
umns.

10. Select all cells in the last row by clicking its row selector and change their Font FontStyle
property to Bold.

11. Select the ProductCategory group cell and change its BackgroundColor to AliceBlue and Font
 FontStyle to Bold.

12. Select the ProductSubcategory group cell and change its BackgroundColor to AliceBlue.
13. Select the last three columns by holding Shift and clicking the column headers and click the

Align Right button in the Report Formatting toolbar to right-align their content.

REPORT DESIGN FUNDAMENTALS 117

14. To alternate the background color of the details cells (green bar effect), select the Product
Name, Reseller Sales, Internet Sales, and Sales Summary cells in the details row and enter the
following expression in the BackgroundColor property.
=Iif(RowNumber("ProductCategory") Mod 2, "AliceBlue", "White")

The Iif function uses the RowNumber function to change the color of even rows to AliceBlue
and odd rows to White.

 Implementing the page footer
Finally, it's time to implement the page footer. All it takes is two textboxes and a line item.

1. In the Toolbox window, click the Line report item. Click inside the page footer area and drag
a line horizontally.

2. In the Toolbox window, click the Pointer item. Select the line and change its LineColor prop-
erty to DarkSlateBlue.

3. Drag a Textbox report item to the page footer and enter the following text in it:
Execution Time: [&ExecutionTime]
User: [&UserID]

Make sure to press the Enter key after the first line to start a new paragraph. You can press the
Tab key or add spaces to left align the placeholders.

4. Drop a new textbox for the page number and align it with the right edge of the page footer.

5. Enter the following expression in its Value property:
Page [&PageNumber] of [&TotalPages]

6. Select the two textboxes in the page footer and change their font size to 9pt.

That's it. If you preview the report at this point, it should match its specification.

3.4 Auto-generating Report Definitions
To get you started quickly with the report authoring process, BIDS supports two options for
auto-generating report definitions. The Report Wizard walks you through a series of steps and
generates table and matrix (crosstab) reports. If you have existing Microsoft Access reports,
BIDS can import and convert them to Reporting Services reports.

3.4.1 Using the Report Wizard
Report Wizard is a report authoring tool that guides you through the process of creating a re-
port. You can use the Report Wizard to quickly generate table and matrix reports using pre-
defined report templates. Let's use the Report Wizard to author the report shown in Figure
3.29. This is a cross-tab report that shows the product sales on rows and years on columns,
grouped by sales territory on pages. The report also lets the user drill down the row groups to
see more data on the report.

TIP You can copy report items by using the familiar shortcut keys. For example, you can select one or more textboxes,
press Ctrl-C to copy and Ctrl-V to paste them. Then, drag the new items to the desired location.

CHAPTER 3 118

Figure 3.29 The Product
Sales by Territory cross-tab
report is auto-generated by the
Report Wizard.

 Running the Report Wizard
Auto-generating the Product Sales by Territory report with the Report Wizard takes a few
mouse clicks.

1. In the Solution Explorer pane, right-click on the Reports project node and click Add New
Report. This starts the Report Wizard and shows the Welcome to the Report Wizard page.
Click Next.

2. In the Select the Data Source step, leave the AdventureWorksDW2008 data source pre-
selected and click Next.

3. In the Design the Query step, copy and paste the ReportWizard.sql query included in the
book source code. This query is similar to the one used by the Product Sales by Category re-
port but groups data by sales territory and year. Click Next.

4. In the Select the Report Type step, select the Matrix type to create a cross-tab report.

Figure 3.30 The Design the
Matrix step lets you define the
report groups and details.

REPORT DESIGN FUNDAMENTALS 119

The Design the Matrix step lets you specify how the report will group data. The Available
Fields list shows the dataset fields.

5. Select the SalesTerritoryCategory in the Available Fields list and click the Page button to group
by territory and generate a page break when the territory changes.

6. Select the CalendarYear field and click the Columns button to group data by years on col-
umns.

7. Hold the Ctrl key and select ProductCategory, ProductSubcategory, and ProductName fields.
Click the Rows button to group data by these fields on rows, as shown in Figure 3.30.

8. Select the ResellerSales and InternetSales fields and click the Details button to show these
fields as report details.

9. Check the Enable Drilldown checkbox to let the user drill down the report interactively.
10. In the Choose the Matrix Style step, click the Corporate style.

TIP You can alter existing style templates or add new ones by editing the StyleTemplates.xml file in the \Program
Files\Microsoft Visual Studio 9.0\Common7\IDE\PrivateAssemblies\Business Intelligence Wizards\Reports\Styles\<lang>
folder. You need to make this change on the client machine where BIDS is installed.

11. In the Completing the Wizard step, name the report Product Sales by Territory and click Finish.

The Report Wizard generates the report definition and opens it in Report Designer.

 Understanding the generated report
Let's take a moment to understand the wizard's changes.

1. Click on Reseller Sales details cell, as shown in Figure 3.31.

Figure 3.31 The Product
Sales by Territory cross-tab
report uses the matrix data
region and a dynamic col-
umn group.

Note that the tablix region has three row groups and one column group. The column group is
what defines the cross-tab behavior. At run time, the report server groups the report data on
year and rotates the years from rows to columns. Notice also that the matrix region is nested
inside a list region. The list region is nothing more than a tablix with a single cell. The cell has
a rectangle that contains the second tablix region. In our case, the list region has a single row
group that groups the report data by sales territory.

CHAPTER 3 120

TIP Selecting the containing item with nested report items can be tricky. To quickly find the item's parent, select the
item and press Esc. Each time you press Esc, the Report Designer selects the parent of the currently selected item, all
the way up to the report body.

2. Double-click the ProductSubcategory row group in the Row Groups pane.
3. In the Group Properties dialog box, click the Visibility tab.

Note that when the report is initially run, the ProductSubcategory group will be hidden but
the user can toggle its visibility by the ProductCategory textbox. Consequently, when the user
clicks the plus sign on the left of the Product Category group, the matrix will expand to show
the product subcategory data. This lets the user drill down the report data to see more details.

3.4.2 Importing Reports from Microsoft Access
If you have existing Microsoft Access reports, you can migrate them to Reporting Services.
Reporting Services supports importing reports from a local installation of Microsoft Access
2002 and above. Microsoft Access is the only database format that is supported for import
operations by Reporting Services.

NOTE Although somewhat outdated, Microsoft has published a Migrating from Business Objects Crystal Reports to
SQL Server 2005 Reporting Services guide (see Resources) to help you manually upgrade Crystal reports. In addi-
tion, a few Microsoft partners offer migrating Crystal reports to Reporting Services reports as a service. See
http://www.microsoft.com/sql/technologies/reporting/partners/crystal-migration.mspx.

 About importing from Microsoft Access
Because there is not an exact match between Access and Reporting Services features, you can
expect to lose some functionality when you import an Access report to a report server. For a
full list of the supported Access features, please consult the Importing Reports from Access
topic in Books Online (see Resources). The most noticeable unsupported Access feature,
which will probably cause some grief, is custom modules and events. Since Reporting Services
currently doesn't support events, any custom events that you have defined in your Access re-
port will be lost. As a workaround, consider replacing Access code-behind modules with cus-
tom code and expressions.

The import process does the bare minimum to convert the report definitions. Basic reports
will probably convert successfully. More complex reports are likely to lose some functionality
during the report process. You shouldn’t consider the imported reports as a best practice of
how to author Reporting Services report. In most cases, you will be better off to author the
Reporting Services counterparts from scratch.

 Importing the Northwind reports
To demonstrate how this report authoring option works, let’s import reports from the North-
wind sample database that comes with the Microsoft Access samples. BIDS doesn't let you
pick individual reports to import. Instead, it imports all reports in the Access database.

1. In the Solution Explorer, right-click the Reports folder and click Import Reports Microsoft
Access.

2. In the File Open dialog that follows, specify the path to the Northwind database and click OK.

BIDS imports each report and adds the report definition to the Reports folder.

REPORT DESIGN FUNDAMENTALS 121

3. Double-click the Invoice.rdl file to open it in the Report Designer, as shown in Figure 3.32.

The Reporting Services equivalent has a free-form layout. If you click on any field in the report
body, you will notice that report sections are enclosed in rectangles. All sections are nested in
a list region.

Figure 3.32 Imported from
Access reports use the list data
region and have free-form layout.

3.5 Summary
If a journey starts with a single step, you travelled far in this chapter! You learned about the
report authoring process and its envisioning, design, construction, and testing stages. You also
learned about the Microsoft-provided report authoring tools and how to select a tool given the
reporting task at hand.

By now, you should have a good understanding of the report anatomy and report items.
Authoring a report involves setting up a data source, a dataset, and laying out the report by
using the report items and regions. You went through a "click-intensive" exercise to put things
together by creating a basic tabular report with the Report Designer. You also practiced auto-
generating reports with the Report Wizard and importing existing Microsoft Access reports.

In the next chapter, you continue mastering the design process by learning how to work
with report data.

3.6 Resources
Using Built-in Report and Aggregate Functions in Expressions

(http://tinyurl.com/2jv56c)—Lists the Reporting Services built-in functions.
Visual Basic Run-Time Library Members

(http://tinyurl.com/2pkwo4)—Lists the functions in the Visual Basic Run-Time Li-
brary which you can use in expressions.

Migrating from Business Objects reports to SQL Server 2005 Reporting Services
(http://tinyurl.com/396eya)—Explains how to manually upgrade Crystal Reports to
Reporting Services.

Importing Reports From Access
(http://tinyurl.com/5ocokn)—Explains what features are supported when importing
reports from Microsoft Access.

122

CChhaapptteerr 44

Designing Data Access

4.1 Understanding Data Access 122
4.2 Connecting to Data 126
4.3 Working with Datasets 136
4.4 Working with Report Parameters 147

4.5 Working with Other Data Sources 157
4.6 Summary 165
4.7 Resources 166

Most reports retrieve raw data from a data source and present that data in a user-friendly for-
mat. As such, the process of authoring a report begins with defining the data that you will use.
With Reporting Services, a data definition includes specifying a data source and configuring a
query. You can then use report items and data regions to map the data to a report layout.

This chapter starts by discussing the Reporting Services data access architecture. You will
learn different ways to connect to a data source. Most of the chapter will focus on showing
you how to work with data that you retrieve from a SQL Server relational database. As you'll
see, Reporting Services provides many ways to filter report data and implement parameterized
reports. I'll also show you how to integrate your reports with other types of data sources, in-
cluding OLE DB data sources, XML Web services, SQL Server Integration Services packages,
and .NET Framework data providers.

4.1 Understanding Data Access
Nowadays, data can be found in a variety of data sources that range from relational and OLAP
databases to XML files and spreadsheets. Proliferation of data sources and database standards
present unique challenges because each one has different requirements for securing, connect-
ing, and querying data. Building reports that use a variety of data sources has been traditional-
ly difficult even with the most popular reporting tools. One of the most prominent strengths
of Reporting Services is that it helps you meet this challenge head on. It can draw data from
virtually any data source, and even combine data from multiple data sources on the same re-
port.

4.1.1 Understanding Data Architecture
To meet demanding data integration needs, Reporting Services provides a flexible and extens-
ible data architecture whose major components are shown in Figure 4.1. The diagram depicts
the flow of data from the data source to the report.

DESIGNING DATA ACCESS 123

 Data sources
As the term is commonly used, a data source can be defined as an external repository from
which data originates. Familiar examples of data sources that are in wide-spread use include
relational databases, cubes, ODBC or OLE DB-compliant databases, Web services, and so on.
In Reporting Services parlance, a data source is a definition of a data connection. In this chap-
ter, I will use the term "data source" to refer to both physical data sources and connections.

 Data providers
A data provider (also called a data processing extension or DPE), is a .NET component that is
designed to retrieve data from a specific type of data source and provide extra functionality
that supports report design and report processing. The data provider sends the report query to
the data source, retrieves data, and exposes the data as a Reporting Services dataset.

Reporting Services includes built-in data providers that support relational databases, mul-
tidimensional databases, report models, and XML-based data. In addition, you can extend the
Reporting Services data capabilities by plugging in custom data providers that you or someone
else wrote.

NOTE Perhaps, you've heard about the Microsoft ADO.NET Entity Framework, which is designed to abstract the
database schema, and you may wonder if you can use it with reports. As it stands, Reporting Services doesn't natively
support the Entity Framework. One workaround is to implement a custom data processing extension that loads your
entity model and returns the data via the data extension interfaces.

 Datasets
At design time, a dataset definition contains query information that is used by the report. Spe-
cifically, it contains a reference to a data source, the query, any query parameters, and addi-
tional information, such as collating and filtering options. At run time, the data provider
executes the query and returns a two-dimensional dataset object with rows and columns. The
report processor combines the dataset with the report layout to produce the raw report.

The way you specify the dataset query depends on the type of the data source. For exam-
ple, if you target a relational database, you would use a SQL query or a stored procedure. If
the report draws data from an Analysis Services cube, you would use a multidimensional
(MDX) query.

Reports can have multiple datasets and each dataset can reference a different data source.
Suppose that you need a report with a chart showing the Adventure Works company perfor-
mance data that originates in an Analysis Services cube, followed by a table showing more de-
tailed operational data that is kept in a SQL Server relational database. To implement this

Figure 4.1 The major Reporting Services data components are the data source, data provider and dataset.

CHAPTER 4 124

report, you need two data sources and two datasets, as shown in Figure 4.2. You can bind the
chart region to the first dataset, and the table region to the second.

4.1.2 Understanding Data Providers
As noted, a data provider is a bridge between the report and the data source. A data provider
is responsible for connecting Reporting Services to a data source, executing commands, and
returning the results as a Reporting Services dataset. Reporting Services provides several built-
in data providers to access the most popular data sources, as shown in Table 4.1.

Table 4.1 The Reporting Services built-in data providers

Provider Data Source Underlying .NET Data Provider

Microsoft SQL Server SQL Server 7.0 or later System.Data.SqlClient

 OLE DB OLE DB-compatible data sources System.Data.OledbClient

Microsoft SQL Server Analysis Services SQL Server Analysis Services 2000 or later ADOMD.NET

Oracle Oracle 8.1.7 or later System.Data.OracleClient

ODBC ODBC-compatible data sources System.Data.OdbcClient

XML XML documents N/A

Report Server Model Report Builder 1.0 models N/A

SAP NetWeaver BI SAP BW 3.5 N/A

Hyperion Essbase Hyperion System 9 BI+ Analytic Provider Services 9.3 N/A

SSIS SQL Server Integration Services 2005 or later N/A

Teradata Teradata data warehouses .NET Data Provider from Teradata

Let's briefly discuss the built-in data providers in the order listed in the table.

 Microsoft SQL Server
The Microsoft SQL Server data provider wraps the System.Data.SqlClient .NET data provider
that you may have used in custom .NET applications to connect to SQL Server. As you saw in
the previous chapter, the Report Designer providers a graphical query designer when you tar-
get the Microsoft SQL Server provider. This graphical query designer analyzes the query, and
sometimes rewrites it by replacing parameter placeholders with actual parameter values. You

Figure 4.2 A report can refer-
ence more than one data source
and have multiple datasets.

DESIGNING DATA ACCESS 125

can use the generic query designer if you want to control the exact query sent to the data
source. Most of the report samples in this book use the Microsoft SQL Server data provider.

 OLE DB
OLE DB is a generic data provider that lets you access OLE DB-compliant data sources. In the
process of configuring this generic provider, you must select a data source-specific OLE DB
provider. Supported data sources are SQL Server 7.0 and later, Analysis Services 2000 and
later, and Oracle 8 and later.

 Microsoft SQL Server Analysis Services
If you did the hands-on lab in chapter 1 that walks you through creating a chart report that
retrieves source data from the Adventure Works cube, you are already familiar with the built-
in Microsoft SQL Server Analysis Services data provider. This provider wraps the
ADOMD.NET programming library to communicate with Analysis Services 2000 or later.

The Analysis Services provider supports several features that would otherwise require sig-
nificant implementation effort on your part, including support for defining parameterized
queries, server aggregates, and extended properties. Report Designer includes graphical tools
to facilitate authoring multidimensional and data mining queries.

 Oracle
The Oracle data provider extends the .NET System.Data.OracleClient provider, which you
may have used in custom applications that connect to Oracle databases. As a prerequisite for
using this provider, you must install the Oracle client tools. The provider supports named pa-
rameters. Multivalued parameters are supported with Oracle 9 or later. You can retrieve data
from stored procedures with multiple input parameters, but the stored procedure must return
only one output cursor.

 ODBC
This is another generic data provider that lets you access ODBC-compliant data sources via
the .NET System.Data.OdbcClient provider.

 XML
The XML data provider debuted in Reporting Services 2005. It lets you query XML data re-
turned from URL-addressable resources, such as Web services, or embedded XML document
inside the dataset query. This provider supports a proprietary syntax for navigating XML. It
remains unchanged from the previous release.

 Report Server model
Recall from chapter 3 that Report Builder 1.0 lets business users author basic ad hoc reports
from a predefined report model. The report server uses the report model to auto-generate que-
ries to an underlying data source, which could be a SQL Server, Oracle, or Analysis Services
database. You can use the Report Server Model data provider in Report Designer to author
reports from Report Builder 1.0 models. A graphical query designer is provided to let you au-
thor queries by dragging and dropping model entities.

 Other providers
The SAP NetWeaver BI provider lets you integrate reports with SAP NetWeaver Business Intel-
ligence (SAP BW). Microsoft has also provided a query designer for SAP NetWeaver Business
Intelligence. For more information about using the SAP NetWeaver BI provider, read the Us-

CHAPTER 4 126

ing SQL Server 2005 Reporting Services with SAP NetWeaver Business Intelligence paper (see
Resources).

Hyperion Essbase is a multidimensional database very similar to Analysis Services. The
Using SQL Server 2005 Reporting Services with Hyperion Essbase paper explains how to leve-
rage the Hyperion Essbase provider to integrate Reporting Services with Hyperion Essbase.

Although not officially supported and disabled by default, the SSIS data provider allows
you to retrieve data from a SQL Server Integration Services package. For example, you may
need to extract data from a flat file and transform that data before it's used in the report.

Finally, the Teradata provider (new with Reporting Services 2008), enables you query Te-
radata databases. This provider extends the .NET Data Provider for Teradata from Teradata,
which must be installed before you can query data.

4.2 Connecting to Data
As a first step of authoring a data-driven report, you need to set up a data source. A data
source contains the definition of a data source connection. The definition can be shared
among several reports or stored inside the report.

4.2.1 Working with Shared Data Sources
As its name suggests, a shared data source can be shared among multiple reports. If you use
the BIDS Report Designer, a shared data source can be referenced by any report in the Report
Server project. Once you deploy a shared data source to the server, any published report can
reference it. A report that uses a shared data source stores only a reference to the data source
definition.
<Report>
 <DataSources>
 <DataSource Name="AdventureWorksDW2008">
 <DataSourceReference>AdventureWorksDW2008</DataSourceReference>
 <rd:DataSourceID>fef5e490-dea9-4933-8fda-e38ef757dd4d</rd:DataSourceID>
 </DataSource>

In this example, the report definition references the AdventureWorksDW2008 shared data
source. The actual data source definition is saved in a separate (.rds) file that contains the
name of the data source and other connection-specific information, such as the connection
string. The data source identifier is used only at design time by Report Designer; hence the rd
namespace. When you publish the data source, reports reference it by its path in the report
catalog.

 Advantages of shared data sources
You should consider configuring and using a shared data source whenever possible for several
reasons. First, a shared data source centralizes connection information. If you need to change
the connection string or credentials, you can do so in one place and all dependent reports will
pick up the new settings. Second, a shared data source is a securable item. The report admin-
istrator can define security policies that control who is authorized to change the connection
information. Finally, because all reports use the same connection string, a shared data source
can minimize the number of open connections to a database that supports connection pool-
ing.

DESIGNING DATA ACCESS 127

NOTE Database connections are expensive resources. Many data providers, such as the Microsoft SQL Server pro-
vider, perform connection pooling behind the scenes to minimize the number of open database connections. When a
connection is closed, it is returned to the pool. When the application needs to connect to the database again, the pro-
vider checks the pool for available connections. If it finds one, it uses that connection; otherwise it creates a new one.
However, in order for connection pooling to work, all connections must have identical connection string settings.

 Creating a shared data source
You can create shared data sources in BIDS and Report Manager. Next, I will walk you
through the steps for setting up a shared data source to the AdventureWorksDW2008 data-
base.

Figure 4.3 The Type drop-
down list in the Shared Data
Source Properties dialog box
lists the Reporting Services
built-in data providers.

1. In BIDS, create a new Report Server project.
2. Right-click the Shared Data Sources folder and choose Add New Data Source to open the

Shared Data Source Properties dialog box.

Observe that the Microsoft SQL Server data provider is pre-selected by default.
3. In the Shared Data Source Properties dialog box (see Figure 4.3), enter Adventure-

WorksDW2008 in the Name field. Choosing a descriptive name is important because reports
reference the data source by its name.

4. Expand the Type drop-down list. Notice that it shows all data providers except the SSIS data
provider, which is disabled by default.

5. While you can enter the connection string manually in the field below the Type drop-down
list, you can let the Connection Properties dialog box auto-generate the connection string for
you. With the Microsoft SQL Server provider selected, click Edit to open the Connection
Properties dialog box.

6. Enter (local) in the Server Name field. If you want to connect to another server, you can click
the Refresh button or expand the server drop-down list to find all SQL Server instances on
your LAN, but this may take a while. To avoid delay, type the server name directly.

CHAPTER 4 128

TIP What's the difference among (local), locahost, and “.” when connecting to a local SQL Server anyway? Because
Reporting Services use .NET data providers, all of the three settings are equivalent. The client will connect with different
protocols depending upon the server configuration. It will first attempt shared memory, then TCP/IP, and then named pipe.
For other providers, such as Microsoft OLE DB Provider for SQL Server, the last two settings are protocol dependent. To
avoid confusion, I would recommend you stick with (local). The only exception would be if you want to control the TCP/IP
address of the server in the Hosts configuration file. In this case, use localhost since it is a socket-based construct.

The Connection Properties dialog box provides a subset of the authentication modes sup-
ported by Reporting Services. Specifically, if the data source supports Windows integrated
security, you can select the Use Windows Authentication option. Alternatively, you can use
standard security by selecting the Use SQL Server Authentication options and entering login
credentials. This option lets you save the password in an encrypted format so you don't have
to retype it each time you access the data source in Report Designer.

When working with local databases at design time, you will probably find Windows au-
thentication more practical to work with. You can always use Report Manager to re-configure
the data source credentials after you publish the data source to the server.

7. Assuming your Windows account has at least read rights to the AdventureWorksDW2008
database, leave the Use Windows Authentication option selected and expand the Select or En-
ter a Database Name drop-down list.

After a short delay, the drop-down list shows all databases for which you have connection
rights.

8. Select the AdventureWorksDW2008 database and click the Test Connection button to test the
connection. Click OK.

The Advanced button lets you access all connection properties supported by the provider. For
example, you can change the Application Name property. This will help you identify the con-
nection in the SQL Server Profiler. Back to the Shared Data Source Properties dialog box, no-
tice that BIDS has now generated the following connection string:
Data Source=(local);Initial Catalog=AdventureWorksDW2008

 Understanding authentication options
The Credentials tab, which Figure 4.4 shows, provides more authentication options than what
you see in Connection Properties. Let's go over each one.

Use Windows Authentication (integrated security)
The connection will be established under the identity of the interactive user. At design time,
the interactive user is you. When you deploy the report to the server, the interactive user will
be the user requesting the report. For example, if Bob logs in to the adventure-works domain
as adventure-works\bob, the database will attempt to authenticate him with his Windows lo-
gin credentials.

As a prerequisite for using Windows authentication, the database administrator must set
up database logins for all report users and grant these logins at least read access to the data.
Alternatively, account management can be simplified and made less granular by grouping us-
ers in Windows groups, such as Report Users, and granting rights to the groups instead.

DESIGNING DATA ACCESS 129

Windows authentication is inherently more secure than standard authentication because
Windows maintains the password, not you. In addition, this authentication method lets you
flow the user identity to the database and implement schema and data security policies. For
example, a stored procedure can query a policy table and return only the rows that the user is
authorized to see.

On the downside, report caching and subscriptions (discussed in chapter 12) don't sup-
port Windows authentication. In addition, this authentication method may also present dep-
loyment challenges. For example, if the report server and database servers are on different
machines and you need to pass the user's Windows credentials to the database server, you will
need to configure Kerberos to avoid the "double hop" issue which I discussed in more detail in
chapter 2.

In addition, Windows authentication may prevent connection pooling, which can impact
performance when the server is under heavy report loads. Since the connection string for each
user will be different (via different Windows logins), the connections will not be pooled. More
accurately, you will end up with as many connection pools as the number of users requesting
the report.

Use This User Name and Password
This authentication method, which is also referred to as “stored credentials," requires that you
specify a single set of user credentials that are used every time the report is requested. When
you publish the data source definition, the report server encrypts and stores the credentials
with a machine-specific encryption key. As a security best practice, I’d recommend you use a
login that has minimum rights to the database. For example, if you target SQL Server, consid-
er assigning the login to the db_datareader role which grants read-only rights.

Standard security is a wide-spread security authentication mode because it is supported by
all commercial RDBMS. This option works with report caching and subscriptions. Moreover,
because all users connect with the same connection string, stored credentials improve perfor-
mance because the server pools connections if the data source supports connection pooling.
On the downside, the data source won't be able to differentiate the users.

Once you deploy the data source definition to the server and open its properties in Report
Manager, you will notice that this authentication option is called Credentials Stored Securely
In the report server. More importantly, it supports two additional settings that are not availa-

Figure 4.4 Reporting Ser-
vices supports flexible data-
base authentication options.

CHAPTER 4 130

ble in BIDS. The Use As Windows Credentials When Connecting To the Data Source lets you
use a Windows login with standard security. The Impersonate The Authenticated User After a
Connection Has Been Made To the Data Source allows you to impersonate the database con-
nection. These settings are discussed in more detail in chapter 11.

Prompt for Credentials
This option doesn’t store any credentials. Instead, the report will prompt the user to enter cre-
dentials before the report is generated. Specifically, this option will generate Login Name and
Password fields in the report toolbar, as shown in Figure 4.5.

Figure 4.5 The Prompt for
Credentials option generates
Login Name and Password
fields to collect credentials
before the report is run.

This option should be used with caution because it may present a security vulnerability as a
hacker may intercept the user credentials on their way to the server. One scenario where this
option could be useful is a distributed deployment where the report server and the data source
are installed on different machines, and enabling Kerberos is not an option. In this case, the
Prompt for Credentials option lets you work around the "double hop" limitation and pass the
user credentials to the data source.

No Credentials
You may come across a data source that doesn't require authentication. For example, in chap-
ter 18, you will implement a custom data provider that lets you create reports from ADO.NET
datasets that do not require authentication. Another scenario where the No Credentials option
might be useful is when the credentials are embedded in the connection string. Finally, you
can consider this option with a subreport that uses the credentials of the parent report to con-
nect to its data source.

When a data source uses the No Credentials authentication option, the report server uses
a special unattended execution account to impersonate the call to the data source. Chapter 2
explained how to configure the unattended execution account.

 Deploying shared data sources
You can publish definitions of shared data sources to the server as a part of deploying the
project from BIDS, or individually by right-clicking the data source and choosing Deploy. If
the data source doesn't exist on the server, the deployment process will create it. If the data
source uses stored credentials, the credentials are not transferred to the deployed data source.
After deploying the data source, you need to use Report Manager to open the data source and
set the credentials.

The OverwriteDataSources project property setting determines what happens if the data
source already exists on the server. If OverwriteDataSources is False (default), subsequent
deployments will not overwrite that data source. The premise here is that the administrator
may have changed the data source definition of the published data source. If you want to
overwrite the published data source each time the project is published, change OverwriteDa-
taSources to True.

DESIGNING DATA ACCESS 131

4.2.2 Working with Report-Specific Data Sources
A report-specific (or private) data source is available only in the report in which it is defined.
For example, the sample report you authored in chapter 1 uses a report-specific data source
definition whose report definition is shown below.
<Report>
 <DataSources>
 <DataSource Name="DataSource1">
 <ConnectionProperties>
 <DataProvider>OLEDB-MD</DataProvider>
 <ConnectString>Data Source=(local);Initial Catalog="Adventure Works DW"</ConnectString>
 <IntegratedSecurity>true</IntegratedSecurity>
 </ConnectionProperties>
 <rd:DataSourceID>6abc2688-c82c-413a-a41b-43ce6d9dc1e0</rd:DataSourceID>
 </DataSource>

As you can see, the definition of a report–specific data source is embedded in the containing
report and becomes part of the report itself. Consequently, the data source can be shared by
multiple datasets within the report, but not among other reports on the server.

TIP You can start with a report-specific data source and convert it to a shared data source later on if needed. To do so,
right-click the data source reference in the Report Data window and click Convert to Shared Data Source.

 Advantages of report-specific data sources
Report-specific data sources may simplify deployment because you can distribute both the
report layout and connection information in one file. For example, a third-party vendor may
choose to encapsulate the database connection information in the RDL file to simplify the
process of distributing the report to its customers.

More importantly, only report-specific data sources can have expression-based connection
strings. The reason for this limitation is that when the report server evaluates expressions, it
generates and compiles an expression host assembly during report publishing. Expressions
used in report-specific data sources become part of the expression host assembly and are eva-
luated like other expressions. By contrast, there is no equivalent compiled code for shared da-
ta sources.

On the downside, you cannot use a query designer to test dataset queries with expression-
based connections. To make designing the report easier, you can initially set up the data
source to use a regular connection string, allowing you to build the dataset using the query
designers. After the report layout is finalized, change the connection string to use the expres-
sion. Let's go through a couple of examples that demonstrate how expression-based connec-
tion strings can be useful.

 Constructing a connection string from a parameter
Suppose you are implementing a reporting solution for multiple companies and all companies
share the same report definitions. For performance and security reasons, you decide to host
the data for each company in a separate database and possibly on a separate server. At run
time, the user passes the company database name as a parameter to the report. The report dy-
namically constructs the connection string and connects to the appropriate database.

The Connection From Parameters report (shown in Figure 4.6) demonstrates this scena-
rio. It uses a report-specific data source with an expression-based connection string that de-
pends on the Company parameter. To implement this report, start by creating a report-
specific data source.

CHAPTER 4 132

Figure 4.6 This report demonstrates
constructing the data source connec-
tion string from a parameter.

1. In BIDS, create a new report and name it Connection From Parameters. Open the report in
design mode.

2. In the Report Data window, expand the New drop-down button and click Data Source to set
up a new data source reference.

3. In the Data Source Properties dialog box, leave the Embedded Connection option selected and
click the Edit button to connect to the AdventureWorksDW2008 database. Click OK.

4. In the Report Data window, click New Dataset. In the Dataset Properties dialog box, rename
the dataset to Main and click the Query Designer button.

5. In the generic query designer, enter the following query statement.
select name, crdate from sysobjects where xtype = 'U' order by name

This statement returns the names of all tables in the database and their creation dates.
6. In the Report Data window, click New Parameter (or right-click Parameters and click

Create Parameter).
7. In the General tab of the Report Parameter Properties dialog box, name the parameter Compa-

ny.
8. Click the Available Values tab. Select the Specify Values option to define static available val-

ues.
9. Click Add to define a new available value with a label of Adventure Works and a value of Ad-

ventureWorks2008.
10. Click Add to define a second new available value with a label of Prologika and a value of Ad-

ventureWorksDW2008.

As you've probably guessed, the Value property of the Company parameter specifies which
target database to connect to when the report is run.

11. Drag a table region from the Toolbox window to the report area and configure it to show the
Name and Crdate dataset fields.

12. Preview the report to test the changes. It should show the names of all tables in the Adventu-
reWorksDW2008 database.

13. Back to design mode, double-click the DataSource1 data source in the Report Data window.
Replace the connection string with the following expression:
=String.Format("Data Source=(local);Initial Catalog={0}",Parameters!Company.Value)

DESIGNING DATA ACCESS 133

When you run the report, the Initial Catalog connection string setting will be set to the value
of the Company parameter.

14. In the Report Data window, right-click the Main dataset and click Query. Notice that Report
Designer shows an error message:
An error occurred while connection to "DataSource1". Only the text-based query designer will be available. Connection
string expressions cannot be evaluated at design time. You must preview or deploy the report to verify the connection.

Although you can edit the query text, you cannot use the query designers to execute queries
with test expression-based data sources.

15. Click OK to close error dialog. Report Designer opens the generic query designer, which you
can use to change the query text if needed. Click OK to close the query designer. Another er-
ror message is shown:
Could not update a list of fields for the query. Verify that you can connect to the data source and that your query syntax is
correct.

Again, Report Designer shows this message because the query designer is not capable of ex-
ecuting queries that use expression-based connections. Click OK.

16. Preview the report.

When you select Adventure Works, the report should show the table names in the Adventu-
reWorks2008 database. When you select Prologika, the report should show the table names in
the AdventureWorksDW2008 database.

 Constructing a connection string from a configuration setting
An expression-based connection doesn't have to reference parameters. Instead, its expression
can call custom code that returns the connection string. The Connection From Configuration
Settings report demonstrates how to read a connection string from the report server
web.config file. Recall that the application domain of the Report Server Web service is hosted
by ASP.NET. Consequently, although not officially supported, you can add application set-
tings to the report server web.config file and read them when the report is run.

1. Open the report server web.config file (located at Program Files\Microsoft SQL Serv-
er\MSRS10.MSSQLSERVER\Reporting Services\ReportServer\web.config) and add the follow-
ing application setting before the </configuration> element:
<appSettings>
 <add key="connectionString" value="server=(local);database=AdventureWorksDW2008;Integrated Security=SSPI"/>
</appSettings>
</configuration>

2. Save the file.
3. Open the Connection From Configuration Settings report and double-click DataSource1 in

the Report Data window.
4. Click the fx button next to the connection string field and notice that the data source uses the

following expression:
=Code.ConnectionString

NOTE In real life, security requirements may disallow users from choosing a company they are not authorized to
access. If you report-enable a custom application, the application can validate security policies and load the Company
parameter with the authorized companies only. Alternatively, you can pass the user identity to the database and popu-
late the parameter available values from a query, as I will demonstrate in section 4.4.3.

CHAPTER 4 134

5. Open the Report Properties dialog and click the References tab. Notice that the report has a
reference to the .NET System.Configuration assembly. This assembly defines the Configura-
tionManager class that lets you access configuration settings.

6. Click the Code tab. It shows the code of the ConnectionString property:
Const CONNECTION_STRING As String = "Data Source=(local);Initial Catalog=AdventureWorks2008;
Integrated Security=SSPI"

Public ReadOnly Property ConnectionString() As String
 Get
 Dim conn As String=System.Configuration.ConfigurationManager.AppSettings("connectionString")
 If String.IsNullOrEmpty(conn) Then
 conn = CONNECTION_STRING
 End If
 Return conn
 End Get
End Property

The code attempts to read the connectionString setting from the configuration file. This will
succeed if the report is deployed to the server. However, when you preview the report in
BIDS, the Report Designer won't be able to find the setting. In this case, the code falls back on
a static connection string so you could test the report at design time.

4.2.3 Using Transactions
Reporting Services doesn't start processing the report until all queries are executed and data is
returned. Because data retrieval, report processing, and rendering are sequential stages, the
user cannot see a partial report until after the queries are finished executing. By default, the
report server will execute all report queries in parallel unless the queries are interdependent,
such as queries that return available values for cascading parameters. However, in some cases,
you may need to force the report queries to execute sequentially. For example, suppose that
you need to execute a statement to prepare the report data before showing it on the report.
This is a sequential flow that requires a specific query order.

You can execute queries sequentially in the order they appear in the report definition by
enabling the Use single transaction when processing the queries property on the Data Source
Properties dialog box. This option is only available for data source references in the Report
Data window.

 Working with data source advanced properties
The Transaction report included in the book source code demonstrates this approach. It has
two datasets. Dataset1 has the following command text:
CREATE TABLE #MyTempTable (Result INT PRIMARY KEY)
INSERT INTO #MyTempTable VALUES (1)

The first command creates a local (connection-specific) temporary table in the Adventure-
WorksDW2008 database. The second statement inserts a value in the temporary table. Be-
cause the .NET SqlClient provider doesn't let you execute multiple statements by default, you
will get the following error when you attempt to preview the report:
Failed to roll back transaction for data source 'AdventureWorksDW2008'. There is already an open DataReader associated
with this Command which must be closed first.

As a workaround, enable the MultipleActiveResultSets advanced connection property, as fol-
lows:

DESIGNING DATA ACCESS 135

1. In the Report Data window, double-click the AdventureWorksDW2008 data source.
2. In the Data Source Properties dialog box, click Edit to open the Connection Properties dialog

box, and click the Advanced button.
3. In the Advanced section, change the MultipleActiveResultSets property to True and click OK.

The resulting connection string (see Figure 4.7) should now be:
Data Source=(local);Initial Catalog=AdventureWorksDW2008;MultipleActiveResultSets=True

Figure 4.7 Check the
Use Single Transac-
tion when Processing
the Queries property
to force queries to
execute sequentially.

 Understanding query execution
The second dataset, DataSet1, reads from the temporary table and displays the results on the
report. You can use SQL Server Profiler to understand how the report executes the dataset
queries.

1. Open SQL Server Profiler from the Microsoft SQL Server 2008 Performance Tools program
group.

2. Click File New Trace or press Ctrl+N to start a new trace.
3. In the Connect to Server dialog box, connect to your database server.
4. In the Trace Properties dialog box that follows, click the Events Selection tab, and click the

Column Filters button.

SQL Server Profiler lets you filter trace events. To eliminate "noise", let's set up a column filter
that shows the trace events associated with your connection.

5. In the Edit Filter dialog box, set up a filter on the NTUserName, as shown in Figure 4.8.
Check the Exclude Rows that Do not Contain Values checkbox and click OK to return to the
Trace Properties dialog box. Click Run to start the trace.

CHAPTER 4 136

Figure 4.8 SQL Server Profiler lets
you set up a column filter to sub-
scribe to a subset of trace events.

6. Preview the report or refresh the report if it is already in preview mode.

At this point, you should see the report queries in SQL Server Profiler. If the Use Single Trans-
action when Processing the Queries setting is off (as it is by default), the queries execute on
separate threads and their execution order is not guaranteed. Examine the SPID column to
confirm this. Notice that report preview fails with the following error because the SELECT
statement fails to find the temporary table.
Invalid object name '#MyTempTable'

7. In the Report Data window, double-click the AdventureWorksDW2008 data source and check
the Use Single Transaction when Processing the Queries property.

Now, previewing the report should succeed. Examining the SPID column reveals that queries
execute sequentially on the same thread in the order in which they appear in the report defini-
tion.

 Working with temporary tables
Here are some additional tips for working with stored procedures that use temporary tables:

1. If the field list is not showing up, click on the Refresh Fields button in the Dataset Properties
(Query tab).

2. Do not use SET NOCOUNT ON in your stored procedure.
3. Do not explicitly drop the temporary tables. Let the temporary tables just fall out of scope.

SQL Server will properly dispose of them when they are no longer needed.
4. Have your last statement be a SELECT statement.
5. If you still cannot retrieve the dataset fields, add SET FMTONLY OFF to the stored procedure.

You need SET FMTONLY OFF when you create a temporary table in your stored procedure
that is then filled with data from another stored procedure.

4.3 Working with Datasets
A report dataset is a contract between a data source and a report that uses data from that data
source. Specifically, a dataset definition includes a reference to the data source used by the
dataset, a command text that the report server sends to the data source at run time to extract
data, a list of fields that the query returns, and additional settings, such as query parameters.

DESIGNING DATA ACCESS 137

4.3.1 Understanding the Dataset Definition
A dataset can reference a single data source and a single query. A partial definition of the
Products dataset that you defined in the preceding chapter for the Product Sales by Category
report illustrates how a dataset appears in the report definition.
<DataSet Name="Products">
 <Fields>
 <Field Name="ProductCategory">
 <DataField>ProductCategory</DataField>
 <rd:TypeName>System.String</rd:TypeName>
 </Field>
 <Field Name="ProductSubcategory">
 <DataField>ProductSubcategory</DataField>
 <rd:TypeName>System.String</rd:TypeName>
 </Field>
 <!-- More dataset fields -->
 <Query>
 <DataSourceName>AdventureWorksDW2008</DataSourceName>
 <CommandText>SELECT DimProductCategory.EnglishProductCategoryName AS ProductCategory, . . .
 </CommandText>
 <QueryParameters>
 <QueryParameter Name="@Month"><Value>=Parameters!Month.Value</Value></QueryParameter>
 <QueryParameter Name="@Year"><Value>=Parameters!Year.Value</Value></QueryParameter>
 </QueryParameters>
 </Query>
</DataSet>

The Products dataset references the AdventureWorksDW2008 data source. The Command-
Text query statement specifies the dataset query. The QueryParameters element defines the
query parameters. The Fields element enumerates the dataset fields and data types. Each field
has a Name property which is used by the report and a DataField property that maps the field
to the underlying column in the query results. Next, let's go through a few exercises to prac-
tice working with datasets.

4.3.2 Using the Generic Query Designer
In this practice, you'll recreate the datasets for the Sales Order report (see Figure 4.9), which is
included in the book source code. The order header section of the report is implemented with
a list region (bound to a SalesOrder dataset), while the order item section uses a table region
(bound to a SalesOrderDetail dataset).

 Creating a dataset
The Sales Order Start report provides the starting point for this practice. It includes the report
layout, but it doesn't contain the report datasets. To prevent build errors, I excluded the Sales
Order Start report from the Reports project. Start by including the report definition file in the
project.

1. In Solution Explorer, right-click the Reports folder and click Add Existing Item. In the Add
Existing Item dialog box that follows, select the Sales Order Start report and click Add.

2. In Solution Explorer, double-click the Sales Order Start report to open it in Report Designer.

Next, you'll create the SalesOrder dataset for the order header section. In the Report Data
window, note that the report has a reference to the AdventureWorks2008 data source. The
AdventureWorks2008 data source is a shared data source in the project that connects to the
AdventureWorks2008 database.

CHAPTER 4 138

Figure 4.9 The Sales Order report
uses two datasets; the SalesOrder da-
taset supplies data for the order header,
while the SalesOrderDetail dataset pro-
vides data for the order items.

3. In the Report Data window, click New Dataset to open the Dataset Properties dialog box.
Alternatively, to associate the new dataset with a data source reference, right-click the Adven-
tureWorks2008 data source in the Report Data window, and click Add Dataset.

NOTE Configuring the data source and dataset as separate steps before laying out the report is my preferred way of
authoring a report, which you don’t have to follow. For example, you can start by dropping a data region, such as a
table or a chart. If the report doesn't have a data source reference, Report Designer will open a wizard-like version of
the Data Source Properties dialog box that will let you set up a data source and a dataset. If the report has a data
source reference but doesn’t have a dataset, adding a data region will open the Dataset Properties dialog. Regardless
of the approach chosen, you must have a dataset in place for a functional data region.

4. In the Query tab (see Figure 4.10), rename the dataset to SalesOrder.

Figure 4.10 Use the Query
tab of the Dataset Properties
dialog box to establish a data
source reference and set up
the dataset query.

DESIGNING DATA ACCESS 139

You can author three types of queries. Use the Text query type to create free-form command
text. Use the Table query type to retrieve all data from a single database table (note that this
query type is not supported by the .NET SqlClient provider). Use the Stored Procedures query
type to specify a stored procedure that retrieves the data you want to use. You can also specify
a query timeout to cancel a long running query. By default, the query will not time out.

You can click the Import button to import the query from a file or another report defini-
tion. Alternatively, you can initiate the import action within the query designer, as you will do
next. Finally, you can refresh the dataset fields by clicking the Refresh Fields button. When
you do this, Report Designer executes the query and updates the dataset fields based on the
columns returned by the query.

5. Click the Query Designer button.

Report Designer opens the generic query designer, which is the default query designer for re-
lational data sources.

 Importing queries
The generic query designer is the default query building tool for most supported relational
data sources. It doesn't validate the query syntax during query design. In other words, it
passes the query verbatim to the data source. You will use the generic query designer to ex-
ecute stored procedures, work with the XML data provider, and author complex queries that
are not supported in the graphical query designer. For your convenience, all query designers
support importing external query statements. Let's demonstrate this feature.

1. Click the Import toolbar button. Notice that the file dialog box defaults to *.sql and *.rdl files.
2. Navigate to the SalesOrder.sql file, which is included in the Queries folder with the source

code for this chapter, and click Open.

NOTE If you import datasets from a report definition file, Report Designer will open an Import Query dialog to let you
preview the dataset or pick a dataset if the source report includes multiple datasets. You can import only one dataset
at the time.

The generic query designer loads the query text, as shown in Figure 4.11. If you scroll down
the query text, you will see that it defines a @SalesOrderNumber query parameter.

3. Click the Run toolbar button to test the query. In the Define Query Parameters dialog box that
follows, enter SO50750 as a parameter value for the SalesOrderNumber parameter and click
OK.

Figure 4.11 Use the ge-
neric query designer to ex-
ecute pass-through queries.

CHAPTER 4 140

4. Click OK to return to the Dataset Properties dialog box and OK again to return to Report De-
signer.

The Report Data window shows the SalesOrder dataset. Since the dataset query contains a
query parameter, Report Designer has generated a SalesOrderNumber report parameter,
which you can find under the Parameters node.

4.3.3 Using the Graphical Query Designer
The graphical query designer is a query building tool used in several Microsoft products. It
provides a visual design environment that auto-generates the query as you pick columns. This
makes it appealing to novice users who are not familiar with the Transact-SQL syntax. The
graphical query designer always validates the query syntax but it doesn't support all Transact-
SQL features. For example, it doesn't support executing multiple SQL statements or
representing graphically UNION queries.

 Auto-generating queries
Let's use the graphical query designer to author the query for the SalesOrderDetail dataset.
The source code includes the SalesOrderDetail query (SalesOrderDetail.sql). You can import it
in the graphical query designer in case you want to skip the next steps.

1. In the Report Data window, right-click the AdventureWorks2008 data source and click Add
Dataset.

2. In the Dataset Properties window, rename the dataset to SalesOrderDetail, and click the Query
Designer button.

3. In the generic query designer, toggle the Edit As Text button to switch to the generic query
designer.

The graphical query designer connects to the data source and retrieves the database schema.
4. Right-click the diagram (topmost) pane and click Add Table. In the Add Table dialog box,

select the SalesOrderHeader, SalesOrderDetail, and Product tables, and click OK.

The graphical query designer detects the referential integrity constraints among the tables and
auto-generates a SELECT statement.

5. In the diagram pane, check the SalesOrderDetailID, OrderQty, UnitPrice, UnitPriceDiscount,
CarrierTrackingNumber, and SalesOrderID columns from the SalesOrderDetails table, the
ProductNumber and Name columns from the Product table, and SalesOrderNumber column
from the SalesOrderHeader table.

6. In the Grid pane, uncheck the Output checkbox next to the SalesOrderNumber column be-
cause we don't need it in the query results. In the Filter column, enter @SalesOrderNumber to
parameterize the query.

7. Change the Sort Type of the SalesOrderID column to Ascending to sort the query results by
this column.

8. Click the Run toolbar button to test the query. In the Define Query Parameters dialog box,
enter SO50750 for a value of the SalesOrderNumber parameter.

9. Click OK to return to the Dataset Properties dialog box and OK again to return to Report De-
signer.

DESIGNING DATA ACCESS 141

 Implementing a dataset calculated field
A dataset calculated field is an expression-based field that the report author adds to the dataset
definition. You can implement calculated fields at the query, dataset, and report levels.
 Query calculated field—Consider a query-level calculated field when you want to add a

calculated column to the query results using the syntax of the underlying data source.
 Dataset calculated field—You can extend the dataset definition with calculated fields.

Consider this approach when you want to reuse the same calculation more than once on
the report, and defining a calculated query field is not an option.

 Report calculated field—You can also add a calculated column to a data region by using a
field expression, as demonstrated in chapter 3.

Dataset calculated fields use the same expression syntax as fields on the report. They can call
external code if more complex expressions are needed to derive the field value. However, cal-
culated fields cannot use aggregate functions, which means you cannot sum values of other
fields in the dataset. Let's implement a LineTotal dataset calculated field that represents the
order item total.

1. In the Report Data window, double-click the SalesOrderDetail dataset.
2. In the Dataset Properties dialog box, click the Fields tab.

The Fields tab lets you work with the dataset fields. The Field Name column shows the field
name that is used on the report. The Field Source column shows the name of the underlying
column to which the field is bound. To rename a field, change the Field Name column. If the
name of the underlying column has changed, use this tab to re-bind the field by changing the
Field Source column. To rearrange a field, click the up or down arrow. Changing the field po-
sition is for your convenience only and has no effect on exiting reports.

3. Click the Add button and click Calculated Field, as shown in Figure 4.12. A shortcut for
combing the last three steps is to right-click the dataset in the Report Data window and click
Add Calculated Field.

4. Enter LineTotal as a field name and click the fx button to open the Expression dialog box.
5. Enter the following expression:

=Iif(Fields!UnitPrice.Value is Nothing, 0, (Fields!UnitPrice.Value *
(1.0-Fields!UnitPriceDiscount.Value))*Fields!OrderQty.Value)

Figure 4.12 Use the Fields tab to
rename fields, change field bind-
ings, and add calculated fields.

CHAPTER 4 142

You can check for null values in the query results by using the Visual Basic Nothing keyword.
The Iif operator checks whether the UnitPrice is null and returns zero if this is the case. Oth-
erwise, it computes the order item total by multiplying the field value, the order quantity, and
the discount percentage.

6. Click OK to close the Expression dialog box and OK again to close the Dataset Properties
dialog box.

Report Designer adds the LineTotal field to the SalesOrderDetail definition in the Report Data
window. At this point, you should be able to preview the report successfully.

4.3.4 Filtering Datasets
While we are on the Dataset Properties tab, let's demonstrate another dataset feature. Suppose
that you cannot parameterize the dataset query to restrict data at the data source. For example,
the database administrator may have created a stored procedure that returns all sales orders
but doesn't accept any parameters. At the same time, you need to filter the data on the report
to show only the orders submitted by the employee viewing the report.

Another scenario where filters could be useful is when you have multiple data regions,
such as tables, matrices, and charts, bound to the same dataset. In this case, filters let you re-
strict data on a per-region basis without affecting the data displayed in the other regions.

 Understanding dataset filters
The Filters tab in the Dataset Properties dialog box lets you define filter conditions to restrict
the dataset results. Similar to a SQL WHERE clause, a dataset filter limits the data by applying
criteria that excludes rows. Unlike a WHERE clause, however, the filter is applied after data
has been retrieved from the data source. For example, if there are one million sales orders in
the AdventureWorks2008 database, the dataset will contain one million records before the
filter is applied. Therefore, you should use dataset filters with caution since they may impact
performance. You should always try to perform as much data manipulation as possible at the
database level. This includes filtering, grouping, and sorting. Performing these operations
quickly and efficiently is what databases are designed to do.

Report caching can also benefit from filters. When a report is configured for execution or
snapshot caching, its results are shared among users. One of the limitations of report caching
is that for security reasons you cannot pass the User!UserID to a query parameter (for exam-
ple, to return only the data that applies to the interactive user). However, you can set up a
dataset filter whose expression uses User!UserID. This scenario is demonstrated in chapter 12.

 Implementing a dataset filter
The Sales Order with Filter report shows you how to apply a dataset filter. This report is a
simplified version of the Sales Order report because it shows only the order header section. I
removed the WHERE clause from SalesOrder query to return all sales orders in the Adventu-
reWorks2008 database. In addition, I added the LoginID column from the HumanRe-
sources.Employee table to the query results. Let's set up a filter that returns only the sales
orders where the employee's login matches the login of the interactive user.

1. Double-click the SalesOrder dataset. In the Dataset Properties dialog box, click the Filters tab.
2. Click Add to create a new filter.
3. Expand the Expression drop-down list and select the LoginID field, as shown in Figure 4.13.

DESIGNING DATA ACCESS 143

Although we won't be using this feature in this exercise, notice that you can create a filter that
is based on an expression, such as the expression [LastName] & ' ' & [FullName] to filter on
the employee full name

4. Expand the Operator drop-down list and notice that Reporting Services supports common
filter operators, such as Equal, Like, Less Than, Greater Than, Top, Bottom, Between, and so
on. Leave the Equal (=) operator pre-selected.

5. In the Value field, enter =User!UserID. Make sure to append the equal sign in front since this
is an expression. If you omit the equal sign, the filter won't work.

What you've accomplished is setting up a filter that returns only dataset rows where the Logi-
nID column matches the Windows logon of the interactive user (assuming the report server is
configured for Windows security). Of course, when you run the report, no data will be shown.
This is because your Windows logon won't match any of the logins in the HumanRe-
sources.Employee table. To see data on the report, you can replace one of the Adventure
Works logins with your login in the format domain\username. Alternatively, you can use a
static filter expression by replacing the Value expression in the filter with a valid Adventure
Works login, such as ="adventure-works\tsvi0".

4.3.5 Working with Stored Procedures
Database developers and administrators favor stored procedures because they centralize secu-
rity, administration, and maintenance of common routines, and improve performance. SQL
Server supports Transact-SQL stored procedures and, since version 2005, CLR stored proce-
dures that are written in .NET code. You can call both types of stored procedures from a re-
port.

NOTE If a stored procedure returns multiple rowsets (executes multiple SELECT statements), only the first rowset is
processed by the report. If you need all results, consider implementing a wrapper stored procedure that merges the
multiple rowsets in a temporary table and returns all rows with one SELECT statement.

 Using T-SQL stored procedures
The TSQL Stored Procedure report, which Figure 4.14 shows, demonstrates these features:
 Using Transact-SQL stored procedures in dataset queries.
 Hiding duplicate rows in a table region.
 Displaying a custom message if the query returns no data.

Figure 4.13 You can set up one or
more dataset filters to exclude rows
after the query is executed.

CHAPTER 4 144

Figure 4.14 This report uses a Tran-
sact-SQL stored procedure to show the
employees that report directly or indi-
rectly to a given manager.

The report uses the uspGetManagerEmployees stored procedure that is included in the Adven-
tureWorks2008 database. This stored procedure takes a manager identifier as an input para-
meter and uses a recursive query to return employees who directly or indirectly report to this
manager.

1. In the Report Data window, right-click the AdventureWorks2008 data source and click Add
Dataset.

2. In the Dataset Properties (Query tab), name the dataset Main.
3. Select the Stored Procedure query type.

You can enter the stored procedure name or select the stored procedure from the drop-down
list, which shows all user-defined functions and stored procedures in the database. CLR stored
procedures are excluded from the list.

4. Expand the Select or Enter Stored Procedure Name drop-down list and select the uspGetMa-
nagerEmployees stored procedure, as shown in Figure 4.15.

Figure 4.15 Change the Query
Type option to Stored Procedure
to see a list of all user-defined
functions and stored procedures
in the database.

DESIGNING DATA ACCESS 145

5. Optionally, to test the stored procedure, click the Query Designer button. In the generic query
designer, click the Run toolbar button. In the Define Query Parameters dialog box, enter 3 as
a value for the @BusinessEntityID parameter.

Click OK to close the Dataset Properties dialog. Report Designer executes the stored proce-
dure and shows the dataset fields of the Main dataset in the Report Data window.

6. Back to Report Designer, drag a table region to the report area and add a fourth column to it
by right-clicking on the third column and clicking Insert Column Right.

7. Bind the detail cells to the Manager First Name, Manager Last Name, First Name, and Last
Name fields.

Preview the report and notice that the manager's first and last names are duplicated for each of
his subordinates. To fix this, you can create a row group to group by manager. Alternatively,
you can simply hide the duplicated values. Let's demonstrate the latter approach.

8. Select the ManagerFirstName and ManagerLastName details cells. In the Properties window,
expand the HideDuplicates property and set it to Main, which is the name of the dataset.

You can display a custom message when the data region has no data.
9. Select the table region and enter No Employees Found in its NoRowsMessage property. Preview

the report with for BusinessEntityID of 3 and 0 to test the changes.

 Using CLR stored procedures
A CLR stored procedure is a SQL Server stored procedure written in .NET code. Consider
CLR stored procedures when you need complex programming logic to prepare report data at
the data source level. For example, you may need to merge data from many SELECT state-
ments and evaluate complex business rules that require .NET code. To avoid "chatty" network
round trips, you can package the .NET code as a CLR stored procedure. You need Visual Stu-
dio 2005 or later to implement SQL Server projects and CLR stored procedures.

REAL LIFE One of my real-life projects involved implementing an ad hoc reporting tool to let business users auto-
generate reports. The business user would specify what columns and level of detail the user wanted to see on the report.
The ad hoc reporting tool would serialize the report definition and forward it to a custom data gatherer module that would
analyze the report object and generate the data. We implemented the data gatherer as a CLR stored procedure.

The book source code includes a CLR project. It includes a simple GetOrders CLR stored pro-
cedure whose code is shown below.
[Microsoft.SqlServer.Server.SqlProcedure]
public static void GetOrders (DateTime date) {
 using (SqlConnection conn = new SqlConnection("context connection=true")) {
 conn.Open();
 SqlCommand cmd = new SqlCommand("select * from Sales.SalesOrderHeader
 where OrderDate=@OrderDate", conn);
 cmd.Parameters.Add(new SqlParameter("@OrderDate", date));
 SqlContext.Pipe.ExecuteAndSend(cmd);
 }
}

GetOrders returns all customer orders for a given date that is passed as an input argument. It
opens a context connection to the database to which it is deployed. Then, it prepares a
SqlCommand object to retrieve all sales orders whose order date matches the input date. Fi-
nally, it uses the SqlContext object to execute the command and pipe back the results to the
report. To deploy GetOrders to SQL Server, complete the following steps:

CHAPTER 4 146

1. In SQL Server Management Studio, connect to the AdventureWorks2008 database. Enable the
AdventureWorks2008 database for CLR integration by executing the following statements:
sp_configure 'clr enabled', 1
GO
RECONFIGURE
GO

2. In the project properties of the CLR project, verify that the connection string in the Database
tab points to the AdventureWorks2008 database.

3. In the Solution Explorer, right-click the project node and click Deploy.

The CLR Stored Procedure report, shown in Figure 4.16, demonstrates how a dataset query
can invoke a CLR stored procedure. As it stands, the .NET SqlClient data provider treats CLR
stored procedures differently than regular stored procedures. Consequently, CLR stored pro-
cedures won't show up on the Stored Procedure drop-down list in the Dataset Properties di-
alog box. Instead, you need to execute them as text.

4. Create a new dataset and open the generic query designer.
5. Enter the following command text:

EXEC dbo.GetOrders @OrderDate

6. Click the Run Query button and enter 7/4/2004 as a parameter value.

The report also demonstrates how to work with date parameters. If you double-click the Or-
derDate parameter in the Report Data window to open its properties, you will see that its type
is set to Date/Time. Consequently, Reporting Services displays a calendar control in the report
toolbar to help the user select a date.

NOTE My Implementing Smart Reports with the Microsoft Business Intelligence Platform article (see Resources) de-
monstrates another scenario that benefits from CLR stored procedures. The Sales Forecast report featured in the article
calls a CLR stored procedure that leverages the Analysis Services data mining capabilities to generate forecasted data.

 Working with expression-based queries
An expression-based query uses a Reporting Services expression to generate the command
text. For example, suppose that you want to extend the CLR Stored Procedure report to let the
user pick a date within the last ten years of the current date.

One way to implement this is to define available values for the OrderDate parameter that
returns dates for the past ten years. If the user doesn't pick a valid date, the report won't run.
Another approach could be to use an expression-based query text, as the Dynamic Query re-
port demonstrates. This approach is more flexible because it lets you change the query state-
ment at run time.

Figure 4.16 This report
retrieves data from a CRL
stored procedure.

DESIGNING DATA ACCESS 147

=String.Format ("EXEC dbo.GetOrders '{0}'", Iif (Parameters!OrderDate.Value>DateTime.Now.AddYears(-10),
Parameters!OrderDate.Value, DateTime.MinValue))

This query executes the same GetOrders CLR Stored procedure but changes its argument at
run time. If the user has entered an invalid date, the query executes but returns no data. The
Iif expression checks if the selected date by the user (Parameters!OrderDate.Value) is within
ten years of the current selection. If this is the case, the user date is passed to GetOrders. Oth-
erwise, the report passes the minimum date of the .NET DateTime date type. This results in no
rows.

TIP When working with dates, you can use both the Visual Basic date-related functions, such as Today, DateAdd, Year,
and the members of the .NET DateTime structure, such as Now, AddYears, and so on.

None of the query designers support expression-based queries, which is why the Report Data
Query menu is disabled when you right-click a dataset that uses an expression-based query.
This means that you cannot auto-generate the dataset fields. To work around this limitation, I
recommend you use the following procedure to work with expression-based queries:

1. Use the generic query designer or graphical query designer to test a regular query that returns
the same dataset schema. Alternatively, you can add the dataset fields manually using the
Fields tab of the Dataset Properties.

2. In the Dataset Properties dialog box (Query tab), click the fx button next to the query text to
change the query text to an expression. Once this is done, you will no longer be able to use
any of the query designers to work with the query.

Given that Reporting Services expressions can call custom code, using expression-based que-
ries offers a lot of flexibility. This flexibility comes with a cost. If you use them, you need to be
aware that expression-based queries are susceptible to SQL injection attacks. SQL injection
happens when some (malicious) SQL code is appended to a legitimate SQL statement con-
tained within the report query. For example, if a report uses a free-form expression-based
statement, a hacker could pass another SQL statement to a string report parameter, such as a
data modification statement, to change, append or delete data. You should never trust report
parameters! Consider restricting string parameters by providing available values. For added
security, use stored procedures and validate input parameters.

Now that you've seen how to work with dataset queries, let's make them more flexible by us-
ing parameters.

4.4 Working with Report Parameters
Most real-life reports use parameters to restrict the data on a report, connect related reports
together, and vary report presentation. For example, the Product Sales by Category report you
authored in chapter 3 includes month and year report parameters to let the user filter data.
Reporting Services supports flexible parameter options to help you address more advanced
reporting needs.

4.4.1 Understanding Report Parameters
Recall that Reporting Services is a server-based platform. Report definitions are published to
the server so they can be shared by all authorized users. From an end user perspective, a pub-

CHAPTER 4 148

lished report is like a black box that takes report parameters as input and returns the exported
report, as shown in Figure 4.17. The only option available to end users for personalizing the
report content and appearance is via report parameters.

Figure 4.17 End users can pass
parameters to the report to control the
report data and presentation.

 Common ways to use parameters
Here are some common reporting needs where parameters can help:
 Filter data at the data source—You can pass a parameter value to a dataset query to re-

strict the data returned by the query.
 Implement row-level security—A sensitive report can pass the user identity as a query

parameter, so the data source returns only the rows the user is authorized to see.
 Set up cascading parameters—A parameter can control the possible values of another re-

port parameter.
 Control report appearance—You can write expressions that change the report appearance,

such as hiding a table column, based on a parameter value.

Reporting Services supports two parameter types: query parameters and report parameters.

 Understanding query parameters
Report Designer creates a query parameter when you use a variable (placeholder) inside the
query statement. For example, the following query includes a @OrderDate variable:
select * from Sales.SalesOrderHeader where OrderDate = @OrderDate

The syntax of the query variable depends on the type of the data provider. With the SQL .NET
provider, you use named parameters, such as @OrderDate. With the Oracle data extension,
you use named parameters prefixed with a colon, such as :OrderDate. The OLE DB provider
doesn’t support named parameters, but you can use the question mark (?) to denote query
variables.

A query parameter is private to the containing dataset. You cannot access query parame-
ters in expressions because they are not added to the Parameters collection. Similarly, you
cannot manage the query parameters of a published report because they are not available in
the management tools, such as Report Manager. Instead, to change query parameters, you
need to open the report definition in Report Designer and use the Parameters tab in the Data-
set Properties dialog box to view and change the query parameters.

 Understanding report parameters
While query parameters are private to the dataset, report parameters are public. They appear
in the report toolbar to let report users set their values. Report Designer generates report pa-
rameters automatically from query parameters. For example, when Report Designer encoun-
ters the @OrderDate placeholder in the dataset query, it performs the following actions:

1. It creates a @OrderDate query parameter.

DESIGNING DATA ACCESS 149

2. It creates an OrderDate report parameter.
3. It links the query parameter to the report parameter so the value of the report parameter is

passed on to the query when the report is run.

If necessary, you can break the association between query and report parameters. Suppose you
need to pass the user identity (User!UserID) to the data source to return only rows the user is
authorized to see. In this case, you don't need a report parameter because you can obtain the
user identify from User!UserID. To disassociate parameters, set the value of the query parame-
ter to User!UserID and delete the auto-generated report parameter.

The reverse is true as well. You can have a report parameter that is not used in a query.
For example, you may need a report parameter solely to control the appearance of the report
or to define a filter expression that is applied to the dataset results.

When setting up a report parameter, you define the parameter type, which could be one
of the following types: Boolean, Date/Time, Integer, Float, and Text. In the report toolbar, the
parameter is displayed in a textbox for string, integer, or float types. For Date/Time, a calen-
dar control is used. A radio button is used for a Boolean type.

You can reference the Parameters global collection to use report parameters in expres-
sions. You can manage report parameters of a deployed report in Report Manager (native
mode) or SharePoint (SharePoint integration mode).

4.4.2 Designing a Parameterized Report
Next, let's go through the steps of implementing a Sales Orders by Date report that demon-
strates various parameter options. Figure 4.18 shows the finished report. The user can use the
calendar control to pick a date (by default, the last date with sales orders is used). When the
Date parameter is changed, the report refreshes and updates the Sales Order Number parame-
ter to show only the orders submitted for this date. The user can select multiple order num-
bers to view multiple sales orders on the report.

Figure 4.18 The Sales
Orders by Date report lets
the user select multiple
orders for a given date.

 Preparing the startup report
The Sales Order report, on which Sales Orders by Date is based on, is designed to display a
single order. It used two datasets (SalesOrder dataset for the header section and SalesOrderDe-
tail dataset for the detail section) and two side-by-side data regions (a list region for the header
section and a table region for the detail section).

CHAPTER 4 150

As it stands, Reporting Services doesn't let you join datasets at the report level. Conse-
quently, you cannot relate the SalesOrder and SalesOrderDetail datasets to preserve the one-
to-many relationship between order headers and order details across multiple orders. Instead,
consider the following workarounds:
 Single query—The report can have a single SELECT statement that combines the master

and detail rows. You can define appropriate groups in the data regions to create the master
and details sections.

 Subreport—You can use a subreport for the detail section.
 Custom data extension—You can write a custom data processing extension that merges

the datasets and returns a single dataset.

For the purpose of this demo, I chose the first approach to implement the Sales Orders by
Date Start report, which you can use as a starting point for implementing the Sales Orders by
Date report. The changes I've made to the Sales Orders by Date Start are as follows:

1. I merged the SalesOrderDetail dataset into the SalesOrder dataset and removed the WHERE
clause.

2. In the Report Data window, I deleted the SalesOrderNumber report parameter.
3. I bound the OrderDetail table region to the SalesOrder dataset by changing its DataSetName

property.
4. I nested the OrderDetail table region inside the OrderHeader list region. I accomplished this

by dragging the table region inside the list region. Alternatively, cut the table region (Ctrl+X),
select the list region, and paste the table region (Ctrl+V) inside the list region.

5. I changed the Details group of the OrderHeader list region. In the Row Groups pane, I
double-clicked the OrderHeader_Details_Group group. In the Group Properties dialog box, I
clicked Add to create a new group and selected [SalesOrderNumber] as a field to group on.

Because of these changes, the list region starts a new group for each new order and propagates
the group scope to the nested table region to show only the order items for this order.

6. I added a Sales Order Number label and field to the list region to show the order number.
7. I moved the Adventure Works logo and report title outside the list region to create a report

header.
8. I changed the second paragraph of the Title textbox to "Selected Orders: ". You will modify

the expression later on to show the sales order numbers of the orders that the user has se-
lected.

To avoid performance degradation, the SalesOrder dataset query includes a TOP 50 clause
that returns only the first 50 sales orders in the Adventure Works database.

 Creating a query parameter
Next, you will create a SalesOrderQuery parameter to filter the data returned by the report.
Make the following changes to the Sales Order by Date Start report.

1. In the Report Data window, right-click the SalesOrder dataset and click Query to open it in
the generic query designer (or the graphical query designer).

2. Append the following WHERE clause at the end of the SELECT statement:
WHERE SOH.SalesOrderID = @SalesOrderNumber

DESIGNING DATA ACCESS 151

Since we target SQL Server, I used a named parameter in the query. Because we filter data on
the primary key (SalesOrderID), the query will execute efficiently.

3. Execute the query. Enter 50750 as a value of the SalesOrderNumber query parameter. The
query results should display all order items for order 50750.

4. Click OK to close the query designer.

Report Designer auto-generates a SalesOrderNumber report parameter and adds it to the Pa-
rameters node in the Report Data window.

5. Double-click the Sales Order dataset to open the Dataset Properties window.
6. Click the Parameters tab.

Note that Report Designer has generated a @SalesOrderNumber query parameter and set its
value to [@SalesOrderHeader]. If you click the fx button next to the parameter, you will see
that the [@SalesOrderHeader] token is a substitute for =Parameters!SalesOrderNumber.Value.

7. Preview the report. Note that the report now takes a Sales Order Number parameter.
8. In the Define Query Parameters dialog box, enter 50750 as a parameter value and click View

Report.

The report should display a single order. This is because when the report is generated, the
value of the report parameter is passed to the query parameter.

 Understanding the parameter general properties
Let's take a moment to understand how the SalesOrderParameter is configured.

1. In the Report Data window, double-click the SalesOrderNumber parameter. Alternatively, you
can right-click the SalesOrderNumber parameter and click Parameter Properties.

The Report Parameter Properties dialog box (see Figure 4.19) that follows lets you manage
report parameters. Use the General tab to specify the parameter prompt text, data type, and
visibility. The Prompt field specifies the parameter field label that will be displayed in the
toolbar when the user views the report. By default, the report parameter will be visible to end
users. Select the Hidden option to exclude the parameter from the report toolbar.

Figure 4.19 You can use the General
tab of the Report Parameter Properties
dialog box to specify the parameter
prompt text, data type, and visibility.

CHAPTER 4 152

A hidden parameter can still be set from another source, such as a report URL.This could be
useful when you need to specify a report parameter as part of configuring a subscription to a
parameterized report. You can also use a hidden parameter to pass some system settings to a
report. For example, if you are report-enabling a custom application, you might want to pass
some settings to a Settings report parameter. Since these settings are not meant to be accessed
by end users, you can hide the Settings parameter from the user without hiding them from
your application.

By contrast, an internal parameter can be modified only by the report author or adminis-
trator, and not by the user. You can think of an internal parameter as a private constant that is
available internally, such as in report expressions, but not to external clients. For example, if
you need to version report definitions, you can implement an internal parameter to store the
report version. Each time a new report definition is deployed, the report administrator can use
Report Manager to change the value of the internal parameter. Selecting the Internal option
disables the Prompt field because the parameter is not available to end users.

I will cover the Available Values and Default Values tabs in the next sections. You can use
the Advanced tab to overwrite the Reporting Services default auto-detection behavior for dis-
covering whether the parameter are used in a query. This could be useful with execution
snapshots and is explained in more detail in chapter 12.

 Implementing available values
As it stands, the Sales Orders by Date report requires the user to enter the sales order number.
Let's make it more user-friendly by letting the user pick the number from a drop-down list. To
do so, we can set up available values for the parameter. You can define a static parameter value
by entering a label and a value for each item, or you can reference a query that returns a dy-
namic list. Let's use the latter approach.

1. Create a new OrderNumbers dataset that uses the following query statement:
SELECT DISTINCT SalesOrderID, SalesOrderNumber
FROM Sales.SalesOrderHeader
ORDER BY SalesOrderNumber

This query returns all distinct sales orders from the Sales.SalesOrderHeader table.

Figure 4.20 You can define
a static or dynamic list of
available parameter values.

DESIGNING DATA ACCESS 153

2. In the Report Parameter Properties dialog box, click the Available Values tab.
3. Click the Get Values from a Query option, as shown in Figure 4.20.
4. Expand the Dataset drop-down list and select the OrderNumbers dataset.

As I mentioned earlier, a report parameter can have a label and a value. The parameter label is
what gets displayed to the user. The parameter value is typically used for internal purposes,
such as passing the key of the selected item to the main dataset query. If you don’t define a
parameter label, the parameter value will be displayed to the user.

5. Expand the Value Field drop-down list and select the SalesOrderID field.
6. Expand the Label Field drop-down list and select the SalesOrderNumber field. Click OK.
7. Preview the report.

Notice that the Sales Order Number parameter is now a drop-down list. However, it presents
a long list of available values and the user cannot locate an order number easily. In the next
exercise, you will implement a Date report parameter and configure the Sales Order Number
as a cascading parameter.

 Implementing cascading parameters
A cascading parameter is a report parameter that depends on another parameter. Cascading
parameters are typically used to limit the number of available parameter values based on the
selected value of another parameter.

NOTE Sometimes, the “cascade” effect is a side effect of using a complex RDL expression as parameter default/valid
values or labels. Reporting Services may not be able to fully parse all RDL expressions (due to custom code, assem-
blies, Visual Basic run-time functions). In that case, it assumes it is a complex expression that references previous pa-
rameters and you get the cascade effect.

1. In the Report Data window, right-click Parameters and click Add Parameter.
2. In the Report Parameters dialog box, enter Date for both the parameter name and prompt, and

change the parameter date type to Date/Time.

We don't need to link the Date parameter to the SalesOrder dataset because we don't need to
pass it to the query.

3. Preview the report and notice that the Date parameter appears after the Sales Order Number
parameter.

4. In the Report Data window, select the Date parameter and click the Move Up toolbar button
to move it before the Sales Order Number parameter.

5. Preview the report to test the changes. Notice that although you can change the date, the Sales
Order Number parameter doesn't refresh to show only the orders for the selected date.

6. In the Report Data window, right-click the OrderNumbers dataset and click Query.
7. Change the OrderNumbers query as follows and click OK.

SELECT DISTINCT SalesOrderID, SalesOrderNumber
FROM Sales.SalesOrderHeader
WHERE OrderDate = @Date
ORDER BY SalesOrderNumber

This query returns only sales orders whose order date matches the Date parameter. Since the
Date report parameter already exists, Report Designer doesn't create a new parameter but links
the @Date query parameter to the existing Date report parameter.

CHAPTER 4 154

8. Preview the report. Enter 7/4/2004 in the Date parameter or use the calendar control to pick a
date. If you entered the date manually, press the Tab key to let Report Designer refresh the
report.

The report refreshes and the Sales Order Number parameter now contains only those orders
whose order date is 7/4/2007. This is because the Sales Order Number parameter depends on
the Date parameter.

 Setting up a default parameter value
If the parameter doesn’t have a default value and Allow Null Values is off, Reporting Services
will prompt the user to specify a parameter value to view the report. However, if the parame-
ter has a default value, Reporting Services will proceed with the report generation. Suppose
that users would like the Date parameter to default to the last date for which there is an order.
To accomplish this, set up a default value for the Date parameter, as follows:

1. Create a new LatestDate dataset which uses the following query:
select max(OrderDate) as OrderDate from Sales.SalesOrderHeader

This query selects the latest order date from the Sales.SalesOrderHeader table.
2. Open the properties of the Date parameter and click the Default Values tab, as shown in Fig-

ure 4.21.

The Specify Values option lets you enter a static or expression-based default value. For exam-
ple, to default the Date parameter to the current date, enter =Today(). The Get Values From a
Query option lets you reference a dataset that returns the default value.

3. Click the Get Values From a Query option.
4. Expand the Dataset drop-down list and select the LatestDate dataset.
5. Expand the Value field and select the OrderDate field.
6. Preview the report.

The Date parameter should now default to 7/31/2004 because this is the latest order date.

Figure 4.21 You can define
an explicit or data-driven de-
fault parameter value.

DESIGNING DATA ACCESS 155

 Configuring multivalued parameters
To let the user select multiple orders, we need to configure the SalesOrderNumber parameter
as a multivalued parameter.

1. In the Report Data window, double-click the SalesOrderNumber parameter.
2. In the General tab, click the Allow Multiple Values checkbox.

When a report parameter is configured as a multivalued parameter, Reporting Services auto-
matically generates a comma-delimited string of the selected parameter values and passes the
string to the query parameter. To support multivalued parameters, we will need to change the
WHERE clause of the SalesOrder dataset.

3. Right-click the SalesOrder dataset and click Edit Query. Change the query WHERE clause, as
follows:
WHERE SOH.SalesOrderID IN (@SalesOrderNumber)

Make sure to include the parenthesis surrounding the @SalesOrderNumber. The parentheses
enclose the list of individual values selected by the user. For example, if the user selects orders
50750 and 50751, this is how Reporting Services rewrites the query:
WHERE SOH.SalesOrderID IN (50750, 50751)

Reporting Services automatically handles the parameter data type by surrounding each value
with single quotes if the parameter data type is Text. In addition, Reporting Services appends a
Select All parameter value to the drop-down list to let the user select or unselect all values.

NOTE The Select All feature may produce an inefficient query with a large parameter list because it may result in a
huge IN clause. To make things worse, there is no way to remove Select All. Realizing the performance issues sur-
rounding Select All, Microsoft turned off this feature in SQL Server 2005 Service Pack 1 but brought it back in Service
Pack 2 due to the popular demand. Brian Welcker, a former Group Program Manager for Reporting Services, covered
the Select All story well in his blog (see Resources).

Reporting Services supports several functions and properties to use multivalued parameters in
expressions.

Table 4.2 Expression examples with multivalued parameters

Function Example Description

IsMultiValue property =Parameters!SalesOrderNumber.IsMultiValue Returns True if the parameter is a multivalued parameter.

Count property =Parameters!SalesOrderNumber.Count Returns the number of the selected parameter values.

Value(n) property =Parameters!SalesOrderNumber(0) Returns the first selected parameter value.

Split function =Split("50750, 50751", ",") Creates an array of parameter values. Use the Split function
to set default values of a multivalued parameter.

Join function =Join(Parameters!SalesOrderNumber.Label, ", ") Generates a string by concatenating the selected values
using the specified delimiter.

Let's use the Join function to show the selected order numbers on the report.
4. Double-click the Title textbox to put in edit mode.
5. Position the mouse pointer after the end of the second paragraph after "Selected Orders:".

Right-click and click Create Placeholder.

CHAPTER 4 156

6. In the Placeholder Properties dialog box (General tab), enter the following expression in the
Value field. Click OK.
=Join(Parameters!SalesOrderNumber.Label, ", ")

This Join function obtains the selected parameter values and concatenates their labels by using
a comma as a delimiter.

TIP You cannot reference the Select All parameter value. At the same time, you may need to default a multivalued
parameter to Select All. Assuming you use a query for the available values, you can use the same query for the parame-
ter default value. This works because setting Select All is the same as selecting all available values.

4.4.3 Securing Reports with Parameters
As I’ve mentioned before, you should never trust report parameters with sensitive reports.
Even if you report-enable a custom application that validates the parameters, a hacker can eas-
ily intercept the parameter values and request the report by URL passing the same parameters.
Next, I will present two techniques that show you how to use parameters with sensitive re-
ports. To learn these techniques, we’ll use the Sales Orders Restricted report. This report is
based on the Sales Orders by Date report, but includes modifications that restrict access so
that a user can view only his or her sales orders.

 Restricting parameter values
The first technique leverages the parameter available values list. If the user passes a parameter
value that doesn't have a match in the parameter valid values list, no data will be shown on
the report. Let's change the Sales Orders by Date report to show only the sales orders asso-
ciated with the user in the Sales Order Number parameter.

1. We don't need the Date parameter anymore. In the Report Data window, delete the LatestDate
dataset and the Date report parameter.

2. Change the query of the OrderNumbers dataset, as follows:
SELECT DISTINCT SOH.SalesOrderID, SOH.SalesOrderNumber
FROM Sales.SalesOrderHeader AS SOH
INNER JOIN HumanResources.Employee AS E ON SOH.SalesPersonID = E.BusinessEntityID
WHERE E.LoginID = @UserID
ORDER BY SOH.SalesOrderNumber

This query joins the SalesOrderHeader table and the Employee table and returns the sales or-
ders where the employee's login matches the @UserID query parameter.

3. In the Report Data window, delete the UserID report parameter that Report Designer auto-
generated when it detected the query changes.

4. Double-click the OrderNumbers dataset and click the Parameters tab.
5. Change the Parameter Value column of the @UserID query parameter to the =User!UserID

expression.
6. To test the report, in SQL Server Management Studio, open the HumanResources.Employee

table and update the LoginID column of the employee with BusinessEntityID of 283 (adven-
ture-works\david8) to your Windows login in the format domain\login.

7. Preview the Sales Orders Restricted report and notice that the Sales Order Number parameter
shows only the orders associated with this employee.

DESIGNING DATA ACCESS 157

8. Deploy the report to the server.
9. Open Internet Explorer and request the report by URL, such as:

http://localhost/ReportServer?/AMRS/Sales Orders Restricted&SalesOrderNumber=50750

Notice that the report renders successfully because you (as employee 283) are associated with
this sales order.

10. Next, submit a report request for a sales order which is not associated with employee 283,
such as:
http://localhost/ReportServer?/AMRS/Sales Orders Restricted&SalesOrderNumber=50751

Notice that the report shows no data. To view the report, the user must choose a parameter
value that is valid for him or her.

 Implementing row-level data security
Many organizations implement home-grown security solutions to enforce security policies at
the data source and return only data that the user is authorized to see. To implement row-
level data security, a report can pass the user identity to the data source.

1. Change the WHERE clause of the SalesOrder dataset, as follows:
WHERE (SOH.SalesOrderID IN (@SalesOrderNumber)) AND (E.LoginID = @UserID)

2. Delete the UserID report parameter that Report Designer auto-generates.
3. In the Report Data window, double-click the SalesOrder dataset and click the Parameters tab.
4. Change the Parameter Value column of the @UserID query parameter to the =User!UserID

expression.

At run time, the server passes the user identity to the @UserID query parameter, which in turn
is passed to the data source. The resulting dataset contains only the sales orders associated
with the employee.

4.5 Working with Other Data Sources
Besides SQL Server, Reporting Services includes data providers for other popular data sources.
In this next section, I will demonstrate how you can integrate your reports with OLEDB-
compatible data sources, XML data, Integration Services packages, and standard .NET provid-
ers.

4.5.1 Using Microsoft Access Databases
Microsoft Access is a popular desktop RDBMS and you may need to produce reports from it.
The Northwind Orders report, shown in Figure 4.22, demonstrates how you can build a Re-
porting Services report from data in a Microsoft Access database. It is similar to the Sales Or-
ders by Date report but displays sales order data from the Northwind sample database.

CHAPTER 4 158

 Connecting to Microsoft Access
You can connect to Microsoft Access by using the Microsoft Jet OLE DB provider.

1. Create a new report and click the link in the report body to set up a data source.
2. In the Data Source Properties dialog box, select the OLE DB data provider and click Edit.
3. In the Connection Properties dialog box, select the Microsoft Jet 4.0 OLE DB Provider, as

shown in Figure 4.23.

Figure 4.23 Use the Microsoft
Jet OLE DB provider to connect
to a Microsoft Access database.

4. In the Source or file name, enter the path to the Northwind database. By default, the path is
\Program Files\Microsoft Office\Office12\SAMPLES\Nwind.mdb.

5. Click Test Connection to test the database connection and click OK.

 Querying data
You can use either the generic or graphical query designers with Microsoft Access databases.
Because you are using the OLE DB data provider, you need to denote query parameters with
question marks.

1. In the generic query designer, add Order Detail, Orders, Customers, Employees, and Products
tables.

2. Select the following columns: Orders.OrderID, Orders.OrderDate, Orders.RequiredDate, Or-
ders.ShippedDate, Orders.ShipName, Orders.ShipAddress, Orders.ShipCity, Or-
ders.ShipRegion, Orders.ShipCountry, Orders.ShipPostalCode, Orders.Freight, [Order

Figure 4.22 This report re-
trieves data from the Microsoft
Access Northwind database.

DESIGNING DATA ACCESS 159

Details].UnitPrice, [Order Details].Quantity, [Order Details].Discount, Prod-
ucts.ProductName.

3. In the Filter Column of the graphical query designer, enter ? in the OrderDate row. Click OK.

Report Designer creates a new Parameter1 report parameter.
4. Rename the Parameter1 parameter to OrderDate and change its type to Date/Time.
5. In the dataset properties, link the Parameter1 query parameter to the OrderDate report para-

meter.

Once the dataset is in place, you can lay out the report as usual.

4.5.2 Working with XML Data
XML is omnipresent nowadays. Web services communicate using XML messages that follow
the SOAP protocol. Organizations exchange information described in XML. Because XML is so
widely used, chances are you may need to author reports from XML documents. Reporting
Services includes an XML data provider to help you access XML data sources and Web servic-
es from a report.

 Understanding the XML data provider
Extensible Markup Language (XML) is designed to represent structured hierarchical data. The
XML data provider lets you navigate the document structure and return a "flattened" two-
dimensional dataset that Reporting Services reports can use. The XML data provider debuted
in Reporting Services 2005 and remains unchanged in 2008. It supports three types of XML
data sources:
 Web service—The XML provider can query Web services and parse the SOAP payloads.
 URL-based resources—The XML provider can connect to a URL-based resource, such as a

web page, and parse the XML document that is returned.
 Embedded XML—You can embed the XML content inside the query statement. While

embedding static XML inside the query may not seem very useful, recall that dataset que-
ries can be expression-based and obtain the query statement from elsewhere. For example,
the query expression may call custom code that returns an XML fragment. The query can
shred the XML fragment and expose it as a two-dimensional dataset.

The XML data provider supports a proprietary XPath-like syntax for navigating the XML doc-
ument, which is explained in Books Online (XML Query Syntax for Specifying XML Report
Data topic) and in the Using XML and Web Service Data Sources paper by Jonathan Heide.
Next, I will show you how to use the XML data provider to build reports that retrieve data
from Web services. You will need Visual Studio 2008 to work with the solution.

Understanding the Customers Web service
The book source includes a Visual Studio solution (XML Provider.sln) that consists of a Report
Server project (Reports) and an ASP.NET project. To simplify configuring the Web service, the
ASP.NET project is configured to use the ASP.NET development server that listens on a static
port 1966. It includes a Web service (Customers.asmx) that defines a single GetOrders web
method.

CHAPTER 4 160

[WebMethod]
public CustomerOrders.SalesOrderHeaderDataTable GetOrders(int customerID)
{
 CustomerOrdersTableAdapters.SalesOrderHeaderTableAdapter adapter =
 new CustomerOrdersTableAdapters.SalesOrderHeaderTableAdapter();
 CustomerOrders.SalesOrderHeaderDataTable orders = adapter.GetData(customerID);
 return orders;
}

This method returns a typed ADO.NET dataset whose schema is defined in the CustomerOrd-
ers.xsd file.

1. Double-click the CustomerOrders.xsd file to open it in the Visual Studio Dataset Designer.
2. Right-click the SalesOrderHeader dataset and click Configure. Notice that the dataset connects

to the AdventureWorks2008 database and uses the following query to extract sales order data:
SELECT CustomerID, OrderDate, SalesOrderNumber, SubTotal, TaxAmt, Freight, TotalDue
FROM Sales.SalesOrderHeader
WHERE (CustomerID = @CustomerID)

The GetOrders method accepts a customer identifier. The web method calls the GetData me-
thod of the table adapter to execute the query and return the dataset.

Figure 4.24 This screen-
shot shows a sample
SOAP payload from the
GetOrders method.

Figure 4.24 shows an example of the SOAP response obtained by calling the GetOrders web
method. The actual order data is found under the SalesOrderHeader element whose path is
GetOrdersResponse/GetOrdersResult/diffgram/DocumentElement/SalesOrderHeader.

3. In Solution Explorer, right-click Customers.asmx and click View in Browser to start the
ASP.NET development server. The Windows taskbar should show a new icon that says
ASP.NET Development Server – Port 1966.

 Using the XML data provider
Let's author a report that uses the built-in XML data provider to invoke the GetOrders web
method. The report will display the sales orders submitted by a given customer. The XML Da-
ta Provider report included in the Reports project represents the finished report.

1. Create a new report. In the Report Data window, expand the New button and click Data
Source to set up a data source reference.

2. In the Data Source Properties window, name the data source Customers.
3. Expand the Type drop-down list and click XML. Enter the following connection string:

http://localhost:1966/Web/Customers.asmx

This connection string specifies the URL address of the Customers.asmx Web service.

DESIGNING DATA ACCESS 161

4. Click the Credentials tab and verify that the Use Windows Authentication option is selected. If
the Web service is configured for Anonymous access, you can use the No Credentials option.

5. In the Report Data window, create a new dataset that references the Customers data source.
Name the dataset SalesOrder.

When you target the XML data provider, you must use the generic query designer to set up
the report dataset.

6. Enter the following query statement:
<Query>
<Method Namespace="http://tempuri.org/" Name="GetOrders">
 <Parameters>
 <Parameter Name="customerID">
 <DefaultValue>1</DefaultValue>
 </Parameter>
 </Parameters>
</Method>
<SoapAction>http://tempuri.org/GetOrders</SoapAction>
<ElementPath IgnoreNamespaces="true">
 GetOrdersResponse/GetOrdersResult/diffgram/DocumentElement/SalesOrderHeader
</ElementPath>
</Query>

The Method element specifies the name of the web method. The Parameters element enume-
rates the arguments of the web method. Embedding parameters in the query statement simpli-
fies design-time testing. Alternatively, you can specify the query parameters in the Dataset
Properties window, similar to how you define parameters when using the SQL Server data
provider. Note that the parameter name is case-sensitive and must exactly match the name of
the web method argument, which is customerID in our case.

The SOAP request specification requires a SoapAction element that spells out the web me-
thod namespace and name. The element path specifies the XML path to the XML element you
need to query. To facilitate XML navigation, the provider lets you omit the XML namespaces
by including an IgnoreNamespaces="true" attribute in ElementPath.

7. In the Report Data window, double-click the CustomerID parameter. In the Parameters tab of
the Dataset Properties window, verify that the CustomerID query parameter is linked to the
CustomerID report parameter.

8. Execute the query in the generic query designer. If all is well, you should see four rows that
represent the sales orders submitted by this customer.

Now that the dataset is done, you can proceed with laying out the report.

4.5.3 Retrieving Data from Integration Services
Suppose that you need to transform data before it's shown on the report. Some common ex-
amples include cleansing the data, adding additional columns, or pre-aggregating the results.
SQL Server Integration Services (SSIS) is designed to handle such data transformation
processes. Reporting Services includes an experimental (yes, this means unsupported) data
provider that lets you use an Integration Services package as a data source.

The SSIS Demo solution demonstrates how you can use Reporting Services with Integra-
tion Services. The SSIS demo report executes the CalculatedColumns.dtsx and displays the
results.

CHAPTER 4 162

 Enabling the SQL Server Integration Services (SSIS) data provider
As I mentioned earlier, the SSIS data provider is disabled by default. To enable it, complete
the following steps.

1. Open the RSReportDesigner.config file from the \Program Files\Microsoft Visual Studio
9.0\Common7\IDE\PrivateAssemblies folder.

2. In the Data section, locate the SSIS extension and remove the <! - - and - -> enclosing charac-
ters to uncomment the entire line.

3. In the Designer section, locate the SSIS extension and remove the <! - - and - -> enclosing
characters to uncomment the entire line.

4. If BIDS is open, restart it to reflect the configuration changes.

To publish reports that use the SSIS provider, you need to enable this provider on the report
server.

5. Open the RSReportServer.config file from the \Program Files\Microsoft SQL Server\
MSRS10.MSSQLSERVER\Reporting Services\ReportServer folder.

6. In the <DATA> section, locate the SSIS extension and remove the <! - - and - -> enclosing
characters to uncomment the entire line.

 About the CalculatedColumns package
The CalculatedColumns package (see Figure 4.25) is one of the Integration Services samples
(see the Resources section for a download link) that come with SQL Server. The CalculatedCo-
lumns sample package extracts data from the Production.TransactionHistoryArchive table in
the AdventureWorks2008 database and performs a series of data transformations, such as
adding additional columns, aggregating data values, and sorting data.

To use a package as a data source for a report, the package must send results to a Data-
Reader destination task. This requires that you make the following changes to the original
package. The updated version of the package is included in the book source code.

1. In the Control Flow tab, delete the File System task (Copy File).
2. In the Data Flow tab, delete the Flat File Destination task (Load Data) and replace it with a

DataReader Destination Task (Send Results).
3. Double-click Send Results. In the Advanced Editor dialog box, click the Input Columns tab,

and check all columns.

As a result of these changes, the package sends the results to a data reader instead of a flat file.

 Working with the SSIS data provider
Once the package is in place, you can use the SSIS data provider with a report, as the SSIS
demo report demonstrates.

Figure 4.25 The Calcula-
tedColumns package is used
as a data source of a report.

DESIGNING DATA ACCESS 163

1. When setting up the report data source, choose the SSIS data provider.
2. Enter the following connection string:

-f "<path>\CalculatedColumns.dtsx"

Replace <path> with the path to the CalculatedColumns.dtsx file.

TIP You can use an expression-based connection string to pass a report parameter to a package variable. For example,
to pass the value of the MyParameter report parameter to a MyVariable package variable, use the following expression-
based connection string: ="/f c:\package.dtsx /Set \Package.Variables[MyVariable];" & Parameters!MyParameter.Value

3. Create a new dataset. Use the generic query designer to set up the data source query.
4. Enter the name of the DataReader Destination task, Send Results in our case, as query text.
5. Click the Exclamation button to execute the page and view results.

4.5.4 Using a .NET Framework Data Provider
A .NET Framework data provider is a component available from Microsoft or third-party ven-
dors that implements the .NET System.Data interfaces and lets you retrieve data from a specif-
ic type of data source. Consider using a .NET data provider to extend the Reporting Services
data architecture when no standard data providers meet your requirements.

NOTE In most cases, NET Framework providers will not support the full report design functionality in BIDS. If this hinders your
ability to create the reports you want, consider implementing a custom data processing extension that wraps the .NET
Framework provider.

 About the DotNetDataProviderTemplate data provider
To demonstrate how you can integrate a .NET Framework provider in your reports, I will use
the DotNetDataProviderTemplate data provider, which is one of the samples included with
the .NET Framework (see the Sample .NET Framework Data Provider link in the Resources
section). The book source code includes a DotNetDataProviderTemplate solution that contains
the source code and a report to test it. You will need Visual Studio 2008 to work with the so-
lution.

The Visual Studio documentation describes the source code in detail, so I'll just mention
the interesting classes. The TemplateConnection class represents a data connection. For ex-
ample, you can pass the connection string to the ConnectionString property. The Template-
Command object represents a command object that executes a command statement and
returns a data reader object back to the caller. The TemplateParameterCollection class
represents the collection of parameters passed to the command object.

The SampleDb class simulates a data source that stores customer and order information. It
returns a dataset consisting of five rows and three columns (id, name, and orderid).

 Deploying the DotNetDataProviderTemplate data provider
Before using a .NET Framework data provider, you must deploy and register it with Report
Designer and report server. Configuring the extension involves modifying several configura-
tion files. For your convenience, I included my version of the affected configuration files in the
Config folder, but do not just replace your configuration files with mine. Instead, use them as
a reference to make changes to the files in your installation.

CHAPTER 4 164

Deploying to Report Designer
To register the DotNetDataProviderTemplate provider with Report Designer, complete the
following steps.

1. Copy the provider binaries, DotNetDataProviderTemplate.dll and DotNetDataProviderTem-
plate.pdb, to the Report Designer folder.

The BIDS Report Designer default folder is \Program Files\Microsoft Visual Studio
9.0\Common7\IDE\PrivateAssemblies.

TIP To automate the deployment from Visual Studio, I’ve created a post-build script (see the Build Events tab on the
project properties of the DotNetDataProviderTemplate project) that copies the binaries to the BIDS Report Designer
folder and report server bin folder when you build the project.

2. In the same folder, open the rsreportdesigner.config file and locate the <Data> element.
3. Add the following line after the last <Extension> element in the <Data> section:

<Extension Name="DotNetDataProvider" Type="DotNetDataProviderTemplate.TemplateConnection,
DotNetDataProviderTemplate"/>

4. Add the following line after the last <Extension> element in the <Designers> section:
<Extension Name="DotNetDataProvider" Type="Microsoft.ReportingServices.QueryDesigners.GenericQueryDesigner,
Microsoft.ReportingServices.QueryDesigners"/>

5. Next, you need to elevate code access security for the DotNetDataProviderTemplate assembly.
In the same folder, open the RSPreviewPolicy.config file.

6. Scroll to the end of the file and add the following CodeGroup element after the last code
group element:
<CodeGroup class="UnionCodeGroup" version="1" Name="DotNetProvider"
 Description="Code group for the Microsoft DotNet Data Provider" PermissionSetName="FullTrust">
 <IMembershipCondition class="UrlMembershipCondition" version="1"
 Url="C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\PrivateAssemblies\
 DotNetDataProviderTemplate.dll" />
</CodeGroup>

7. If the Visual Studio IDE is open, close and reopen it to reflect the configuration changes.

At this point, the Report Designer configuration is complete. You should be able to create a
data source using the DotNetDataProvider data provider.

Deploying to Report Server
To configure the DotNetDataProviderTemplate provider on the report server, complete the
following steps.

8. Copy the extension binaries, DotNetDataProviderTemplate.dll and DotNetDataProviderTem-
plate.pdb, to the report server binary folder \Program Files\Microsoft SQL Serv-
er\MSRS10.MSSQLSERVER\Reporting Services\ReportServer\bin.

9. Open the rsreportserver.config file from the \Program Files\Microsoft SQL Server\MSRS10.-
MSSQLSERVER\Reporting Services\ReportServer folder.

10. Locate the <Data> element and register the provider just as you did with the Report Designer
configuration file.

11. To grant the code the necessary security permissions, open the rssrvpolicy.config in the same
folder and add the following code group after the last code group element, as follows:

DESIGNING DATA ACCESS 165

<CodeGroup class="UnionCodeGroup" version="1" Name="CustomDataExtensionCodeGroup"
 Description="Code group for .NET Framework data provider" PermissionSetName="FullTrust">
 <IMembershipCondition class="UrlMembershipCondition" version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting
 Services\ReportServer\bin\DotNetDataProviderTemplate.dll "/>
</CodeGroup>

After these steps are complete, you should be able to successfully define a server report that
uses the .NET Framework data provider. The next section will walk you through the process.

 Working with the DotNetDataProviderTemplate data provider
Once the provider is deployed and registered, you can author reports that use it. The TestDa-
taProvider report, which is included in the Reports project, demonstrates how to use the Dot-
NetDataProviderTemplate provider with a report.

1. When setting up the report data source, select DotNetDataProvider in the Type drop-down list
in the Data Source Properties dialog box.

Because the DotNetDataProvider does not establish a physical database connection, the con-
nection string is ignored, so you can leave this field blank or press the space bar to add an
empty space in place of a value.

2. In the generic query designer, enter the following query statement:
select * from customers

3. Execute the query.

The resulting dataset should consist of five rows and three columns, as shown in Figure 4.26.

4.6 Summary
Reporting Services has a flexible and extensible data architecture that allows you to connect to
a variety of data sources. It comes with several built-in data providers so that you can easily
access popular data sources.

To define data source connections, you can specify either shared or report-specific data
sources. Shared data sources are easier to manage because you can centralize connection in-
formation in a single definition. Private or report-specific data sources are embedded in the
report definition. Report-specific data sources can be expression-based and may simplify re-
port deployment.

Figure 4.26 Use the generic
query designer to test Dot-
NetDataProvider.

CHAPTER 4 166

A dataset defines the query or command text that retrieves data used in the report. Dataset
filters allow you to select a subset of the result set that was returned to the report. Query pa-
rameters filter data at the data source. A query parameter is typically linked to a report para-
meter. A parameter can have default and available values. Use a cascading parameter when the
parameter available values are dependent on another parameter. Multivalued parameters let
the user specify multiple values for a single parameter.

The OLE DB provider is a generic provider that lets you access OLE DB-compatible data
sources. Use the XML data provider to integrate reports with Web services and report off XML
data. If report data requires transformation, consider the SSIS provider and an Integration Ser-
vices package as a source of report data. .NET Framework data providers from Microsoft and
third-party vendors let you access specific data sources that don't have corresponding Report-
ing Services built-in data providers.

4.7 Resources
Using SQL Server 2005 Reporting Services with SAP NetWeaver Business Intelligence

(http://tinyurl.com/34s4zz)—Discusses the integration of SAP NetWeaver Business
Intelligence (BI) with Reporting Services.

Using SQL Server 2005 Reporting Services with Hyperion Essbase
(http://tinyurl.com/2pzchy)—Discusses the integration of Hyperion Essbase with
SQL Server 2005 Reporting Services Service Pack.

Using XML and Web Service Data Sources
(http://tinyurl.com/2w9o7h)—This white paper provides general information and
tips for designing reports with the XML data provider.

Sample .NET Framework Data Provider
(http://tinyurl.com/33rkrb)—Learn how to create a .NET Framework data provider.

Implementing Smart Reports with the Microsoft Business Intelligence Platform
(http://tinyurl.com/232vb2)—Demonstrates how you can integrate CLR stored pro-
cedures with data mining to generate forecasted data.

Select All in Service Pack 1
(http://tinyurl.com/2v4tru)—Brian Welcker discusses Select All and multivalued pa-
rameters.

SQL Server Samples
(http://tinyurl.com/6b9bev)—Install the SQL Server samples to obtain the Calcula-
tedColumns samples.

167

CChhaapptteerr 55

Designing Tablix Reports

5.1 Designing Tabular Reports 167
5.2 Designing Crosstab Reports 182
5.3 Designing Freeform Reports 191

5.4 Implementing Interactive Reports 199
5.5 Summary 212
5.6 Resources 212

By now, you should feel comfortable authoring basic reports with Report Designer. Recall
from chapter 3 that Reporting Services 2008 introduces a flexible tablix data region that lets
you author tabular, crosstab, and freeform reports. As is often the case, flexibility and com-
plexity go hand in hand. Tablix is a very versatile control but you need to know it well if you
want to get the most out of it. In this chapter, you will kick it up a notch and "graduate" to the
next level of report design where you will learn how to author more complex reports that use
the tablix data region.

Because the report design process is very interactive, the best way to present this chapter
is by example. Each report type explanation includes an exercise that shows you how to create
a specific report. By the time we finish this chapter, you will have created tabular reports with
stepped layout and row groups, crosstab reports with dynamic and static groups, freeform
reports, and subreports. Along the way, I will show you how to jazz up your reports with in-
teractive features, such as drilldown, drillthrough, interactive sorting, document maps, and
more.

5.1 Designing Tabular Reports
Tabular reports are very common. The report output is organized in multiple rows and fixed
(static) columns. By contrast, crosstab reports define dynamic columns that expand to ac-
commodate data, such as to show the data broken down by years on columns. Typically, tabu-
lar reports include row groups that group report data and subtotal lines that sum the values in
a column. The report may also have a report footer to show the grand totals. In Reporting Ser-
vices, you can implement tabular reports by using the table region. The table region is a pre-
configured tablix with fixed columns.

5.1.1 The Anatomy of a Table Region
Before delving into the implementation details, let's take a moment to understand the anatomy
of a Reporting Services table report. Figure 5.1 shows the Product Sales Stepped report, which
is the first report you will author in this chapter. This figure illustrates the main components
of a typical table report and how they relate to the table region.

CHAPTER 5 168

 Row groups
Table reports typically aggregate and group data into row groups. For example, the Product
Sales Stepped report groups data at product category and subcategory levels. The ProductCa-
tegory group displays the product category in the group header and the subtotals in the group
footer.

The table region has a pre-defined details group that represents detail data. Detail data
correspond to the rows of the dataset to which the table region is bound. Detail data is essen-
tially what you see in the query designer Results pane when you run a dataset query. The de-
tails group comes in handy when you need to process detail rows before they are shown on
the report. For example, suppose that the report dataset contains fine-grained information,
such as order transactions. If you want to group report data by product but you cannot do so
in the report query, you can use the details group to group and sort the details. Detail rows
that are associated with the details group are symbolized as three stacked lines in the nar-
row row selector area.

Each group can have an arbitrary number of rows in its group headers and footers. The
details group of the Product Sales Stepped report, for example, contains two rows. The first
row displays Internet sales, while the second row displays reseller sales. Notice that the row
group header (in this case, ProductName) is placed alongside the first detail row.

Tablix provides visual cues to help identify the cell scope and group membership. Glanc-
ing at the screenshot, we can deduce that the first group that the selected cell (InternetUnit-
Price) is associated with is the details group because the active group indicator (colored in
orange) shows the innermost group to which the currently selected cell belongs. The group
indicators that are shown as lines that span row selectors indicate that this cell also belongs to
the ProductSubcategory and ProductCategory row groups. Therefore, this cell will be repeated
within each instance of these groups.

 Static columns
A table report contains static columns that are always present at run time. As it stands, Report-
ing Services doesn't let the user add or remove tablix columns dynamically at run time. How-
ever, you can use expressions to control column visibility and you can hide columns based on
certain conditions. For example, if the user picks January as the current period, you can hide a
Year-To-Date column on the report.

Figure 5.1 A table
report typically in-
cludes static columns
and multiple rows with
row groups.

DESIGNING TABLIX REPORTS 169

You can select all cells within a column by clicking on the column selector. This is conve-
nient if you want to change their format settings in one step. For example, to change the for-
mat of all cells in the Unit Price column, click the Unit Price column selector and change the
Format property in the Properties window.

 Table headers
A table header is a static row that appears at the beginning of the report. The Product Sales
Stepped report has two table header rows with dark blue background color. You would typi-
cally use a table header to define column labels that display static or expression-based text.
Most of the column captions show static text, such as Product, Unit Price, and so on. The first
cell on the second header row contains an expression that displays the count of all products
shown on the report.

5.1.2 Designing a Stepped Report
To hone your tablix skills, you will now create a stepped report called Product Sales Stepped.
You may have authored tabular reports that display each row group in a separate column. This
usually results in wide reports that exceed the page width. In contrast, a stepped report dis-
plays nested detail or row groups in the same column, as shown in Figure 5.2.

Figure 5.2 A stepped re-
port has indented groups in
the same column.

Besides having a stepped layout, the Product Sales Stepped report also demonstrates the fol-
lowing features:
 Dataset calculated fields
 Expressions in column header cells
 Grouped and sorted report data
 Repeated table headers
 Pagination at the group level
 External images and background image for the report body

 Understanding tablix group header limitations
Recall from chapter 3 that Report Designer automatically creates a row group when you drag a
field into the Row Groups pane. In addition, Report Designer auto-generates a column (tablix
group header) for each row group so that you can label it. Tablix group headers are useful be-
cause they reduce the height of the report since the group headers of all row groups occupy

CHAPTER 5 170

the same row. Tablix group headers also simplify how you define group subtotals. To add a
group subtotal, you can simply right-click the group header and click Add Total.

Although tablix group headers have unquestionable value, they can sometimes get in the
way. Suppose your objective is to minimize report width by placing rows groups in a single
column, such as stacking the ProductCategory, ProductSubcategory, and Product columns
within one column. To implement this, you would need to reverse the default layout that tab-
lix creates so you can get groups to share columns instead of rows. Another scenario when
tablix group headers may get in the way is when you need a separate header row for a group.
Fortunately, tablix group headers are entirely optional. On the downside, authoring more ad-
vanced layouts require additional steps to manually configure the row groups.

 Creating the basic tabular report
When tablix group headers are not desirable, you can re-configure tablix to have a more tradi-
tional layout with designated group header and footer rows. The Product Sales Stepped Start
report provides the starting point for this practice. It contains datasets, but no layout. Com-
plete the following steps to design a stepped layout:

1. In the Report Data window, double-click the Products dataset to open its properties. In the
Fields tab, notice that the InternetProfit and ResellerProfit fields are defined as calculated
fields.

2. Preview the query results and notice that results are grouped by product category, subcate-
gory, and product.

3. Add a tablix region to the report body.

Since the dataset query already groups data by product, you don't need to define a Product
row group.

4. Bind the three cells in the tablix detail row to ProductName, InternetUnitPrice, and Internet-
OrderQuantity fields.

To demonstrate the tablix flexibility, I'll present two approaches for implementing the stepped
layout. The first approach is easier but assumes authoring the report from scratch. The second
approach requires more steps but it could be useful when you need to reconfigure existing
reports with tablix group headers to stepped layout.

 Implementing stepped layout (option 1)
This approach explores the tablix capability to add parent groups, as follows:

1. In the Row Groups pane, right-click the Details group and click Add Group Parent Group.
2. In the Table Group dialog box that follows (see Figure 5.3), expand the Group By drop-down

list and select [ProductSubcategory]. Check the Add Group Header and Add Group Footer
checkboxes and click OK.

Figure 5.3 Use the tablix
parent group support to add a
row group that groups data on
the ProductSubcategory field.

DESIGNING TABLIX REPORTS 171

Report Designer adds a new row group (Group1) to the Row Groups pane and creates a tablix
group header, as shown in Figure 5.4. Notice that the detail cells are within the scope of both
Group1 and Details groups. However, the ProductSubcategory cell is within the scope of
Group1 only because the Group1 indicator (spanning line) extends to ProductSubcategory.

Figure 5.4 The ProductSubcate-
gory tablix group header is not
needed with stepped layout.

The ProductSubcategory tablix group header column is not needed. What you need to imple-
ment the stepped layout is only the row group itself and its header and footer rows.

3. Copy the ProductSubcategory cell from the Group1 column and paste it in the empty cell
above the ProductName cell. This configures the group header of the product subcategory
group. Paste the ProductSubcategory cell one more time in the cell below ProductName to
configure the group footer.

4. Right-click any cell in the Group1 column and click Delete Columns.
5. In the Row Groups, double-click the Group1 group. In the Group Properties dialog box, re-

name the group to ProductSubcategory.

Figure 5.5 The ProductSubcate-
gory group and ProductName
group share the same column.

Compare your report layout with the one shown in Figure 5.5. Notice that the ProductSubca-
tegory and ProductName groups share the same column.

6. In the Row Groups pane, right-click the ProductSubcategory group and click Add Group
Parent Group.

7. Follow similar steps to configure the ProductCategory group.

Figure 5.6 All groups are stacked
in the same column.

CHAPTER 5 172

Compare your report layout with Figure 5.6.

 Implementing stepped layout (option 2)
While we have a few more steps to go, let's now demonstrate another approach for stacking
columns. First, you'll create ProductCategory and ProductSubcategory row groups to simulate
an existing report with tablix header group columns. Next, you will reconfigure the report for
stepped layout. The starting point is the same as with the first approach. Your tablix should
have only ProductName, InternetUnitPrice, and InternetOrderQuantity columns.

1. Drag the ProductSubcategory field from the Report Data window and drop it above the Details
row group in the Row Groups pane to group by product subcategory.

2. Drag the ProductCategory field from the Report Data window and drop it above the Product-
Subcategory row group in the Row Groups pane to group by product category.

3. The last two steps add two new columns to the left of the table to accommodate the Product
Category and Product Subcategory tablix group headers.

4. Preview the report and notice that the report includes Product Category and Product Subcate-
gory header columns and that they span the detail rows.

Let's now configure the stepped layout.
5. Click the Design tab to go back to design mode. Select the first two tablix columns (Product

Category and Product Subcategory) by holding the Ctrl key and clicking on the column head-
ers, as Figure 5.7 shows.

6. Right-click any of the selected column headers and click Delete Columns to remove the Prod-
uct Category and Product Subcategory columns.

7. This step is important. Report Designer shows a prompt asking if you want to delete the col-
umns and associated group or the columns only. Choose Delete Columns Only and click OK.

Examine the Row Groups pane. Notice that although you've deleted the Product Category and
Product Subcategory columns, tablix has preserved the row groups. This is important because
you need the row groups to define the stacked layout.

8. Select the detail row by clicking its row selector. Right-click the row selector and click Insert
Row Outside Group – Above. Alternatively, you can right-click any cell in the detail row
and click Insert Row Outside Group – Above.

Figure 5.7 Start designing the
stepped report by deleting the tablix
group header columns.

Figure 5.8 Inserting a row out-
side the selected group scopes
the new row to the parent group.

DESIGNING TABLIX REPORTS 173

At this point, your report layout should look like the one shown in Figure 5.8. You will use
the empty cell above the ProductName detail cell, which is selected in Figure 5.8, for the Pro-
ductSubcategory group header. This works because this cell is associated with the ProductCa-
tegory and ProductSubcategory groups, as the group indicators (spanning lines) show. The
first spanning line represents the ProductCategory group, while the second represents the
ProductSubcategory group.

9. Bind the selected cell to the ProductSubcategory field by clicking its field selector and clicking
ProductSubcategory.

10. Right-click the same cell and click Insert Row Outside Group – Above. All cells in the new
row are in the ProductCategory scope. Only the first group indicator should extend to the new
row because you need the new row to be associated with the ProductCategory group.

11. Bind the first cell of the new row to ProductCategory.
12. Compare your report layout to Figure 5.9.

Next, follow similar steps to add group footers below the detail row.

13. Right-click the detail row and click Insert Row Outside Group – Below. The new row
represents the ProductSubcategory group footer. Bind its first cell to ProductSubcategory.

14. Right-click the ProductSubcategory row and click Insert Row Outside Group – Below. The
new row represents the ProductCategory group footer. Bind the first cell to ProductCategory.

At this point, the report layout should match Figure 5.6. The next two steps indent the Pro-
ductCategory and ProductSubcategory cells to achieve the desired stepped layout.

15. Select the ProductSubcategory cell and change its Padding Left to 10pt. Select the Pro-
ductName cell and change its Padding Left to 20pt.

16. Indent ProductSubcategory footer cell with 10 pt and the ProductCategory footer cell at 2 pt.

 Working with the Details group
While you can display all numeric columns side by side, this will result in a very wide report.
Instead, consider arranging them in two detail rows to minimize the report width. The first
row will show the Internet-related fields, while the second row will show the reseller fields.

1. Right-click the detail row and click Insert Row Inside Group – Below.
2. The new row shares the same group (Details) with the original detail row.

3. Right-click the Internet Unit Price column and click Insert Column Left.
4. In the first detail cell of the new column enter Internet. In the cell below it, enter Reseller.
5. To set up a report footer, right-click the last row (ProductCategory) and click Insert Row

Outside Group – Below. Enter Grand Totals in the first cell of the new row. This row is outside
of the row groups and it represents the report footer that will show a single row of grand totals
for the entire report.

Figure 5.9 The stepped row group
headers share the same column.

CHAPTER 5 174

Figure 5.10 You can have an arbi-
trary number of rows in group headers
and footers. The second detail row
displays reseller sales.

At this point, your report layout should match the one shown in Figure 5.10. Notice that In-
ternet and Reseller rows are detail rows that are associated with the Details group as the active
group indicator shows. Later, we’ll bind the cells from the second row to the Reseller-related
fields.

 Working with table headers and totals
As it stands, the table region has a single header row that contains the column captions. Sup-
pose you need to display additional information below the first row. For example, you may to
show the currency symbol under the column caption. Let's add a second table header row to
address this requirement.

TIP Instead of adding a new header row, you can add a new paragraph (press Enter) to each header textbox. Or, you
can press Shift+Enter to force the text to flow to the next line. However, a separate header row is preferable in this case
as it facilitates formatting the cells in that row. For example, you can click the row selector to select all cells and apply
the same formatting style in the Properties window.

1. Right-click the table header row and click Insert Row Below.
2. In the first cell of the new row, enter Count: and add a space.
3. With the mouse cursor at the end of "Count: ", right-click and click Create Placeholder.
4. In the Placeholder Properties dialog box, enter the following expression in the Value property:

= CountRows("Products")

This expression uses the Reporting Services CountRows function to return the number of
products in the Products dataset. The entire textbox text should now read "Count: <<Expr>>"
without the quotes.

5. Right-click the right-most table column and click Insert Column Right to add a new col-
umn. Repeat this step six more times to create enough columns for all numeric fields that we
want to display on the report.

6. Bind Internet-related numeric fields to the cells in the Internet row. Bind reseller-related nu-
meric fields to cells in the Reseller row.

7. Rename the Internet Unit Price and Internet Order Quantity column headers to Unit Price and
Order Qty. Enter column captions for the remaining columns in the first table header row. En-
ter ($) in the second header row for all currency fields and (Units) for the Order Qty column.

8. Add aggregate expressions in the ProductSubcategory, ProductCategory, and Grand Totals
rows for each numeric column to sum the Internet and reseller fields in that column. For ex-
ample, use the following aggregate expression for the Unit Price column:
=Sum(Fields!InternetUnitPrice.Value + Fields!ResellerUnitPrice.Value)

DESIGNING TABLIX REPORTS 175

This function sums the InternetUnitPrice and ResellerUnitPrice fields horizontally and
aggregates the result vertically for all rows in the group. Alternatively, you could use the
expression:
=Sum(Fields!InternetUnitPrice.Value) + Sum(Fields!ResellerUnitPrice.Value)

This expression aggregates the fields vertically and then sums the two values.

 Formatting the report
Let's spend some time polishing the report layout:

1. Hold the Ctrl key and select the two table header rows. This selects all cells within the row so
that you can apply format settings in one step.

2. In the Properties window, change the BackgroundColor property to DarkSlateBlue and Color
to White.

3. Select the first table header row only and change the font style of all cells to Bold.
4. Select the ProductCategory group header and change its background color to WhiteSmoke.
5. Click the first cell in this row and change its foreground color to DarkSlateBlue, font size to

14pt, and font style to Bold. Apply the same format settings to the ProductCategory group
footer row.

6. Select the ProductSubcategory group header and footer rows and change the font size to 9 pt
and font style to Bold.

7. Select the table footer row and change the font size to 10 pt and font style to Bold.
8. Select all rows and set BorderColor to DarkGray and BorderStyle to Solid to make the borders

visible.
9. Right-click any numeric cell inside the Unit Price column and click Textbox Properties. Click

the Number tab and format the textbox as Number, 0 decimal places, Use 1000 Separator,
and (12,345) sample format for negative numbers. Click OK and inspect the Format property
of the textbox in the Properties window. The format setting should be #,0;(#,0).

10. Select all numeric columns (except Order Qty) by dragging the mouse cursor. In the Proper-
ties window, change their Format property to #,0;(#,0). Alternatively, use the Text Box Proper-
ties dialog box (Number tab) to format the cells as numbers with no decimal places and a
thousand separator.

The textbox CanGrow property determines what happens when report content exceeds its
width. If CanGrow is True (default setting), the textbox content wraps vertically and continues
on a new line to accommodate its content. If CanGrow is False, the user can see only the con-
tent that fits the textbox width as though the text is truncated. The textbox width cannot ex-
pand dynamically. However, because tablix supports merging cells horizontally and vertically
within the same group, we can use a different technique to increase the field's width without
wrapping. Let's give the ProductCategory cells more space to the right by merging cells:

11. In the ProductCategory group header, select the ProductCategory cell and the adjacent cell to
the right. Right-click the selection and click Merge Cells.

12. Repeat the last step to merge the ProductCategory cell in the group footer with the next cell.

If you want to split a merged cell, right-click the cell and click Split Cells.

CHAPTER 5 176

 Sorting data
Reporting Services doesn't sort data by default. If a tablix region has groups, Reporting Servic-
es groups the underlying data by adding qualifying rows for each group instance in the order
they appear in the dataset. However, when you define a new group, Report Designer confi-
gures this group to sort data by its grouping field. You can overwrite this behavior if needed.

1. In the Report Data window, double-click the Products dataset. Preview the query results and
observe that data is not sorted and that the first row is associated with the Clothing category.

2. Preview the report and notice that the first group is Accessories.
3. To understand why data is sorted this way, double-click the ProductCategory group in the

Row Groups pane.

4. In the Group Properties dialog box, click the Sorting tab, as shown in Figure 5.11.

As noted, Report Designer pre-configures each group to sort data in ascending order by the
grouping field. Click OK.

5. Double-click the ProductSubcategory group. In the Group Properties dialog box, notice that
its sorts its data by ProductSubcategory. Consequently, Reporting Services will sort the report
data by product category first. Within each instance of the product category group, data will
be sorted by product subcategory. Suppose that you want to sort the details row within each
subcategory instance in descending order by profit.

6. In the Row Groups pane, double-click the Details group. In the Group Properties dialog box,
click the Sorting tab. Notice that detail data is not sorted.

7. Click the Add button and enter the following expression in the Sort By drop-down:
=Fields!InternetProfit.Value + Fields!ResellerProfit.Value

8. Change the Order column to Z to A and click OK. Preview the report.

The report is now sorted by product category in ascending order. Product subcategory sec-
tions within each product category are also sorted in ascending order. Within each subcate-
gory, individual products are sorted by their overall profit in descending order.

TIP You should delegate as much processing to the database server as possible, such as grouping, sorting, and filtering.
This is what database servers are designed to do. Consider report sorting only when doing so at the data source level is
not an option or when you need more flexibility, such as implementing dynamic sorting based on a parameter value.

Figure 5.11 Use the Tab-
lix Group Properties dialog
box to access the group
sorting options.

DESIGNING TABLIX REPORTS 177

 Working with external images
As noted in chapter 3, you can use external images on your reports. Similar to a shared data
source, external images can be centrally managed and shared across reports. Suppose you
want to add a background image to the report body to inform the user that this report is con-
fidential. In addition, suppose that you want all reports to reflect the changes when the image
has been updated. This can be accomplished by referencing the external image. Start by add-
ing the image file to the Report Server project:

1. In Solution Explorer, right-click the project node, and click Add Existing Item.
2. In the Add Existing Item dialog box, change the file filter to All Files (*.*). Navigate to the

Reports folder in the chapter source code and double-click the Confidential.jpg image to add
it to the project.

3. In the design area, click the report body section. Alternatively, expand the drop-down in the
Properties window and select the Body item.

4. In the Properties window, expand the BackgroundImage section.

5. Change BackgroundImage Source to External.

6. Enter Confidential.jpg in the BackgroundImage Value property.
7. Preview the report. The report should now show "Confidential" in the report body. If parts of

the image don't show, make sure that the BackgroundColor property of the overlapping cells
is set to Transparent.

Any external images that you use in a report will eventually need to be published to the report
server so it's available when the user requests the deployed report. When you do publish the
item, you might want to hide the image item from general view or move it into a folder that
contains other hidden items. You will need to modify role assignments to hide an image or a
folder by revoking the end users Browser rights to the image or its containing folder.

5.1.3 Working with Advanced Grouping Options
Although not immediately obvious, the tablix region supports additional grouping options to
support more advanced layout requirements, such as configuring tablix to repeat table header
rows. Before showing you how to work with the advanced grouping options, let's learn more
about the structure of the tablix data region.

 Understanding static and dynamic members
We'll use the collective term tablix member to refer to a tablix row or a column. A tablix mem-
ber can be either static or dynamic. Simply put, a static member (or simply static) corresponds
to a row in a tablix region when it's shown in design mode. Similarly, a static column corres-
ponds to a tablix column. Dynamic members (dynamics) represent row groups and column
groups respectively. By default, the Grouping pane doesn't show static members.

1. Expand the down arrow indicator located in the right-most corner of the Grouping pane.
2. Click Advanced Mode.

Advanced mode (see Figure 5.12) is a skeletal view of a tablix that describes all of its parts as
either static or dynamic members. Dynamic members are named and correspond to the row or
column groups you define. Static members are indicated as (Static), and you get to deduce
how it relates to a tablix item by where it appears in the tablix hierarchy.

CHAPTER 5 178

Figure 5.12 Turn on
the Advanced Mode
of the Grouping pane
to see tablix static
members.

Figure 5.12 shows the relationship between the first three rows and columns to tablix mem-
bers. Examining the tree view of the tablix members in the Row Groups pane, we can make
the following conclusions. The table region starts with two statics that represent the table
header rows. Next, we have a ProductCategory dynamic member. Recall that any row group
creates a dynamic member.

The static below the ProductCategory is intended because it belongs to the ProductCate-
gory dynamic. Therefore, it represents the ProductCategory group header. Similarly, the static
below ProductSubcategory represents the ProductSubcategory group header, while the two
statics below the Details group are the two detail rows. The statics below them represent the
group footers. The Column Groups pane has eleven static members because our tablix has
that many columns.

TIP As a first step of troubleshooting issues with tablix, I'd recommend you examine the Grouping pane in advanced
mode. Specifically, make sure that you don't have more statics than tablix rows. As it stands, Report Designer doesn't let
you delete static members. This leaves you with no other choice but to recreate the table report if you detect structural
inconsistencies.

 Repeating row and column headers
Let's now discuss the practical implications of the advanced mode. The Product Sales Stepped
report has many columns and is several pages long. Without repeating column headers on
each page, it may be difficult for the user to keep track of which data is in each column as he
or she pages through the report. Fortunately, you can configure tablix to repeat table header
rows on new pages.

1. In the Row Groups pane, click the first static member and change its RepeatOnNewPage
property to True, as shown in Figure 5.13. KeepWithGroup should be set to After.

2. Select the second static row and change RepeatOnNewPage to True.

The result of these changes is table header rows repeating on each new page. When Keep-
WithGroup is set to After, the static row will repeat on a new page if an instance of the next

DESIGNING TABLIX REPORTS 179

dynamic group (ProductCategory in our case) spills over onto the next page. If I want to re-
peat the ProductCategory footer on a new page as well, I could select the last static row and
change its RepeatOnNewPage to True and KeepWithGroup to Before.

3. Preview the report in Print Layout mode. The tablix header rows should now repeat on each
page.

While we are on the subject repeating headers, let's clear a potential source of confusion. Se-
lect the tablix region and examine its properties in the Properties window (or right-click a tab-
lix row and click Tablix Properties). In the General property group, you'll find RepeatColumn-
Headers and RepeatRowHeaders properties. These properties apply only to reports that have
row header and column header areas. The report has these areas if there is a double dashed
line that separates groups from the tablix body. Going back to Figure 3.26 in chapter 3 could
be useful to understand this. The Product Sales Stepped report doesn't have a row group area
because we removed the auto-generated tablix headers. It doesn't have a column header area
either because only crosstab reports have a column header area. Therefore, find RepeatCo-
lumnHeaders and RepeatRowHeaders don’t apply to the Product Sales Stepped report.

If your report has these areas, RepeatRowHeaders will make row headers repeat when the
tablix is horizontally paginated. Assuming that your tablix exceeds the page width and you
export to a hard-page renderer (PDF, Image, Print), when RepeatRowHeaders is set to True,
you'll see the tablix group headers repeated on the next page. With crosstab reports, Repeat-
ColumnHeaders will repeat the column headers vertically. During design time, preview the
report in Print Layout mode to test the effect of these properties. If the report doesn’t have row
header and column header areas, you can still repeat rows by setting the RepeatOnNewPage
property.

 Controlling pagination
Recall from chapter 3 that the report author can define logical page breaks to control how the
report paginates. Let's set up a logical page break to force a new page when the product cate-
gory changes:

1. In the Row Groups pane, click the ProductCategory member to select it.
2. In the Properties window, expand the Group section and change the PageBreak property to

Between.

Figure 5.13 Set RepeatOnNewPage to
True and KeepWithGroup to After to
repeat table header rows on new pages.

CHAPTER 5 180

Alternatively, to define a group page break, double-click the ProductCategory group in the
Row Groups pane. In the Group Properties dialog box, click the Page Breaks tab and check
the Between Each Instance of a Group checkbox.

3. Preview the report in Print Layout mode (click the Preview tab and click the Print Layout
toolbar button) to see how the report paginates.

Notice that a page break occurs each time the product category changes. Also, notice that a
page break sometimes occurs between the Internet and Reseller's two detail rows. Suppose
that you want to keep the detail rows together so they don't split between pages.

4. In the Row Groups pane, click the Details dynamic member and set KeepTogether to True.
5. Preview the report and notice that the Internet and Reseller detail rows stay together on the

same page.

As you can see, the KeepTogether and KeepWithGroup properties, which debut in Reporting
Services 2008, give you more control over the report pagination process. Besides setting it at a
group level, you can also turn on KeepTogether for data regions and rectangles if you want to
keep their content together on a single page. During report repagination, the renderer will
move the item to the next page so it stays in one piece if possible. The downside is that your
report may contain gaps.

It's also worth pointing out that Reporting Services does not support fitting a report to
size. By that, I mean there is no auto-adjustment to font size or row spacing that prints a larger
report onto a fixed number of pages. As a workaround, consider exporting the report to Excel
and using the Excel fit-to-page setup capabilities.

6. Preview the report and enter 2008 for the year parameter.

You will notice immediately that the report contains no data. It displays the two table header
rows and the table footer row. Other static members are not shown because there aren't any
instances of product category data for 2008. For reports that contain fixed headers and footers
but no data, you can improve overall appearance by removing the table footer when it is not
needed. Let’s do this now.

7. In the Row Groups pane, click the last static member and change its HideIfNoRows property
to True.

8. Preview the report for year 2008 and notice that the table footer is not shown.

5.1.4 Implementing a Balance Sheet Report
Standard financial reports, such as Balance Sheet, Income Statement, Statement of Condition,
and so on, are other examples of tabular reports. The Balance Sheet report (see Figure 5.14)
shows the current amount and the year-to-date amount of assets and liabilities accounts.
The % Total column is calculated by dividing the Amount value by the YTD value. The report
demonstrates the following design features:
 Expression-based group subtotals
 Grouping at detail level
 Conditional column visibility

The report accepts Organization, Fiscal Year and Current Period parameters.

DESIGNING TABLIX REPORTS 181

 Preparing the report dataset
Financial and accounting reports are based on a chart of accounts, which is a listing of all gen-
eral ledger accounts organized in categories, such as assets, liabilities, equities, and so on.
What makes financial reports interesting from a report design standpoint is the way data ag-
gregates. For example, asset accounts add up to the report total, while liability accounts sub-
tract. Since assets and liabilities must balance, the Balance Sheet report grand total should
produce zero. The DimAccount table in the AdventureWorks2008 database demonstrates a
chart of accounts.

Implementing the group aggregates on the report necessitates some data preparation. Specifi-
cally, the report query introduces a Sign column that has a value of 1 for asset accounts and -1
for liability accounts, as shown in Figure 5.15. To produce the year-to-date totals, the query
returns data for all months in the selected year. Conditional logic zeros out the CurrentA-
mount column for all periods that don't match the current period. This technique is discussed
in more detail in the Cross-Tab Reports article (see Resources).

TIP If you target Analysis Services, the server can aggregate the chart of accounts for you automatically. The DimAc-
count dimension table provides the necessary row and column structures. It includes an Operator column that defines
how the account aggregates, including an addition operator (+) for adding a value to the parent and a subtraction operator
(-) if the account needs to be subtracted from the parent value. The UnaryOperatorColumn property of the Accounts
parent-child hierarchy (Account dimension in UDM) is mapped to the Operator column. At run time, the server examines
the UnaryOperatorColumn property and aggregates data accordingly.

Figure 5.14 The Balance Sheet
report demonstrates expression-
based groups and conditional col-
umn visibility.

Figure 5.15 The Balance
Sheet report demonstrates
expression-based groups and
conditional column visibility.

CHAPTER 5 182

 Implementing report groups
The tablix details group aggregates data at the account level. After detail grouping is applied,
the resulting dataset contains one row per account, with the current period amount and an
aggregated year-to-date amount. The table footer uses expressions to calculate the grand totals.
For example, the grand total of the CurrentAmount column is calculated as follows:
=Sum(Fields!CurrentAmount.Value * Fields!Sign.Value)

As a result, asset accounts add to the grand total, while liability accounts subtract. Bear in
mind that this expression is not equivalent to the following expression, which should never be
used:
=Sum(Fields!CurrentAmount.Value) * Sum(Fields!Sign.Value)

The expression above is incorrect because we need to sign the value first before adding it to
the aggregated total.

 Implementing conditional column visibility
When the user selects January as a current period, the Amount and YTD values are the same.
Suppose that you want to hide the YTD column in this case. Your first impulse may be to se-
lect the YTD column and set up an expression-based Hidden property. However, recall that
when you click the column selector, you are actually selecting all cells in the column. Conse-
quently, when the Hidden expression resolves to True, it will hide all cells inside the column
but the column will still occupy a space on the report. Instead, follow these steps to condi-
tionally hide the entire column.

1. Switch the Grouping pane to advanced mode.
2. In the Column Groups pane, select the static member that represents the desired column.

In our case, the Column Groups pane shows two static members because we have two col-
umns that are not tablix headers. You need to select the second item because that is the one
that represents the YTD column.

3. Set the Hidden property of the second (Static) item to the following expression:
=Parameters!CurPeriod.Value=1

When the value of the CurPeriod parameter is 1 (January), the expression evaluates to True
and the column is hidden. The difference between hiding all cells in the column and hiding
the (Static) column is that in the latter case the column space is reclaimed. For example, if the
(Static) column for YTD is hidden, the % Total column moves to the left to take over the space
of the YTD column.

NOTE If your customization requirements go beyond what expressions and conditional visibility can deliver, consider
implementing a report definition customization extension. As its name suggest, this extensibility mechanism lets you
customize the entire report definition at run time, including adding or removing report regions, columns, etc., based on
the report parameter values and user identity. I cover report definition customization extension in chapter 22.

5.2 Designing Crosstab Reports
Another common report layout is a crosstab, also known as a pivot. A crosstab report has dy-
namic columns that expand to accommodate data. Behind the scenes, a crosstab report rotates
(pivots) data from dataset rows to columns. For example, if the dataset groups data by product

DESIGNING TABLIX REPORTS 183

category and year, a crosstab might show data broken down by product category on rows and
time on columns.

5.2.1 The Anatomy of the Matrix Region
You can implement crosstab reports with a matrix region, whose main elements are shown in
Figure 5.16. The report illustrated in this figure is the Product Sales Crosstab report, which
you will author in the next practice. This report demonstrates:
 Nested dynamic groups
 Inner static groups
 Calculating growth with the Previous function
 Adjacent dynamic groups
 Repeating matrix headers and conditional formatting

 Dynamic groups
Similar to dynamic row groups, dynamic column groups expand at run time to show the un-
derlying data. The Product Sales Crosstab report includes CalendarYear, CalendarQuarter,
Region, and Country dynamic groups. Dynamic column groups give the matrix region the
crosstab look. For example, when you run the report, Reporting Services groups data by year
and shows the years on columns.

Dynamic groups can be nested. The CalendarQuarter dynamic group is nested inside the
CalendarYear dynamic group. In Reporting Services parlance, the CalendarQuarter group is a
child group whose parent group is CalendarYear. Similarly, the Country group is a child
group of the Region group. Consequently, the report shows data broken down by years and
quarters, as well as regions and countries, as shown in Figure 5.17.

 Adjacent columns
You can have adjacent dynamic columns that are parallel to each other. For example, the Re-
gion group is parallel with the CalendarYear group. Consequently, the matrix region produces
two column group sections side by side that show data by year and region. If the Region

Figure 5.16 The matrix
region supports dynamic
and static groups to let you
implement crosstab reports.

CHAPTER 5 184

group was nested inside the CalendarYear group, the report would show results broken by
years followed by regions that have data for the parent year. However, when the columns are
adjacent, they are independent of each other.

 Subtotals
Subtotals let you aggregate data across instances of a group. For example, the Product Sales
Crosstab report has a subtotal for the CalendarQuarter dynamic group and a subtotal for the
Region group. There isn't a subtotal for the Growth static group because it cannot be meaning-
fully aggregated by summing up the quarter growth values. The report also includes a Region
subtotal that sums profit across regions.

Unlike matrices in previous releases of Reporting Services, the new matrix (tablix) gives
you complete control over the dynamic group subtotals. You can use whatever aggregate func-
tions (Sum, Avg, and so on) or expressions you need in subtotals. This is a huge step forward
from previous releases where Reporting Services supported only limited customization for
subtotals via the InScope function.

REAL LIFE Matrix subtotal limitations made us abandon the Reporting Services 2005 matrix region in one of my
projects where we had to report-enable a custom financial application. The report requirements called for expression-
based aggregates to produce matrix subtotals. It quickly became obvious that this level of customization surpassed the
matrix capabilities. The only workaround we found was generating a table report with static columns programmatically.
Since tablix group subtotals are now in par with row group subtotals, this predicament simply disappears with tablix.

 About the Product Sales Crosstab Start report
Next, I'll walk you through the steps of implementing the Product Sales Crosstab report. The
Product Sales Crosstab Start report represents the starting point for this practice. This report is
similar to the Product Sales Stepped report, with the following significant changes:

1. The Products dataset now groups by Region and Country. To simplify calculating the group
subtotals, I added a Sales Amount calculated field to the Products dataset that has the follow-
ing expression:
=Fields!InternetSalesAmount.Value+Fields!ResellerSalesAmount.Value

2. Next I changed the query WHERE clause to:
WHERE T.CalendarYear IN (@Year))

Figure 5.17 The Product Sales Crosstab cross-tab report shows data by time and territory on columns.

DESIGNING TABLIX REPORTS 185

3. I deleted the Month parameter, and then configured the Year parameter as a multivalued pa-
rameter.

4. I deleted all static numeric columns with the exception of Sales.
5. I used the following group expression for the Details group:

=Fields!ProductName.Value

This was needed to aggregate data by product.
6. I changed the expression in the first cell of the second table header to:

Count: =CountDistinct(Fields!ProductName.Value)

Because the grouping of the dataset changed, the previous expression, which used the Count-
Rows function to count the dataset rows, was no longer accurate. To get the correct count, I
used the CountDistinct function to count the distinct products. I labeled the expression place-
holder with a CountDistinct custom label.

5.2.2 Working with Dynamic Column Groups
Start by adding two dynamic column groups to group data by calendar year and quarter. Re-
call that we removed the tablix group headers when we designed the stepped report. In this
exercise, we add them back. The tablix groups are needed because they allow us to place the
dynamic column groups alongside the static columns. If you do not create the tablix group
first, adding a dynamic column group will enclose all static columns, which is not what you
are after.

 Create a dynamic group
Follow these steps to create a dynamic column group that groups data by calendar year:

1. Right-click any cell in the Sales column and click Add Group Parent Group.
2. In the Tablix Group dialog box that follows, expand the Group By drop-down list and select

[CalendarYear] to bind the group to the CalendarYear field. Click OK.

Report Designer adds a Group1 group to the Column Groups pane and adds a new row for
the dynamic group in tablix, as shown in Figure 5.18. A double dotted line separates the
group area from the other rows. All cells in the Sales column are in the scope of the new col-
umn group. Consequently, they will be repeated for each year as the column group expands at
run time.

3. In the Grouping pane (advanced mode), double-click the Group1 member in the Column
Groups pane. Alternatively, to access the group properties, right-click the Group1 member
and click Group Properties.

4. In the Group Properties dialog box (General tab), rename the group to CalendarYear.
5. Click the Sorting tab. Verify that the group will sort data by the CalendarYear field. Click OK.

Figure 5.18 A dynamic column
group pivots the report results.

CHAPTER 5 186

6. In the tablix region, right-click the CalendarYear cell and click Expression. Note that the
group uses the following expression for the column header:
=Fields!CalendarYear.Value

You can change this expression if needed. For example, if you want to prefix each year with
"CY", you can enter:
CY [CalendarYear]

This works because the [CalendarYear] placeholder is a substitute for the expression
=Fields!CalendarYear.Value.

7. Preview the report.

Notice that the CalendarYear group pivots the report data by years 2003 and 2004, which are
the default values of the Year parameter.

8. Click the CalendarYear cell and use the Properties window to change its Font FontStyle to
Bold and Font Font Family to Arial Narrow.

 Creating a child group
You can add an arbitrary number of child groups to see additional level of detail in the cross-
tab report. In the following steps, you will add a child group to the CalendarYear group to
pivot data by quarter:

1. Right-click the CalendarYear cell and click Add Group Child Group. Alternatively, you can
right-click the CalendarYear member in the Column Groups pane and click Add Group
Child Group.

2. In the Tablix Group dialog box, expand the Group By drop-down list and click [Calendar-
Quarter] to bind the new group to the CalendarQuarter field. Click OK.

3. Double-click the Group1 group in the Column Groups pane. In Group Properties, rename the
group to CalendarQuarter. Click OK. Your report layout should match Figure 5.19.

4. Preview the report.

The report should now pivot by year and quarter.

5.2.3 Working with Static Groups and Totals
A dynamic group can have an arbitrary number of inner static groups. As it stands, the Prod-
uct Sales Crosstab report has a single static group (Sales). It is not uncommon for a crosstab
report to pivot on several numeric columns.

 Adding a static group
Suppose that report users have requested a new column that shows the growth in sales from
the previous quarter side by side with the Sales column.

Figure 5.19 The Product Sales
Crosstab pivots first by year and
then by the quarter child group.

DESIGNING TABLIX REPORTS 187

1. Click any cell in the Sales column. Observe that tablix shows an orange active group indicator
above the CalendarQuarter dynamic group so the innermost group is CalendarQuarter.

2. Right-click the CalendarQuarter cell and click Insert Column Inside Group – Right.

A new column is added to the tablix region. The CalendarQuarter group spans the Sales col-
umn and the new column. Consequently, both columns will pivot on quarter.

Figure 5.20 You can have more
than one static column associated
with a dynamic column.

3. Enter Growth as a column header in the first static row and (%) in the second static row, as
shown in Figure 5.20.

If you preview the report at this point, the report should repeat an empty Growth column for
each quarter alongside the Sales column.

 Defining growth expression
Next, you need to define expression-based totals to calculate the sales growth from the pre-
vious quarter:

1. Right-click the intersecting cell of the Growth column and the Product Name row with Inter-
net sales, and click Expression.

2. In the Expression dialog box, enter the following expression:
=(Sum(Fields!InternetSalesAmount.Value)-Previous(Sum(Fields!InternetSalesAmount.Value),"CalendarQuarter"))/
Sum(Fields!InternetSalesAmount.Value)

The first operand returns the aggregated sales value for the current quarter. The second ope-
rand used the Previous function to return the sales for the previous quarter. Because referenc-
ing a previous or parallel time period is a common reporting requirement, Reporting Services
2008 has extended the Previous function to take scope as an argument. Because the scope is
set to the CalendarQuarter group, the Previous function returns the aggregated value from the
previous quarter. If you want to reference the parallel quarter for last year, set the scope to
"CalendarYear" instead.

3. Preview the report.

Although the expression is working, there are many cells with NaN and #Error values. The
NaN values result from 0/0 or Null/Null operations, which occur because we are missing some
quarterly sales data. The #Error values are caused by run-time errors. In our case, we get #Er-
ror values when there are results for the previous quarter, but not for the current quarter. This
results in a division by zero error. To fix these issues, we need to check the expression ope-
rands. In our first attempt, we could try the Iif() function. Unfortunately, this function ex-
ecutes both the true and false parts of the expression, so using it to avoid division by zero is
not so simple.

TIP If you want to use the Iif() function to check for Null or Zero conditions, you can nest two Iif functions so both the true
and false parts execute successfully, such as =IIF(Field!B.Value=0, 0,Field!A.Value / IIF(Field!B.Value =0, 1,Field!B.Value)).

CHAPTER 5 188

Instead, we will use a simple embedded function to check the expression arguments:
4. Right-click the report design area outside the report body, and click Report Properties.
5. In the Report Properties dialog box, click the Code tab, and enter the following function:

Public Function GetGrowth(ByVal CurrentValue, ByVal PreviousValue) As Object
 If IsNothing(PreviousValue) OR IsNothing(CurrentValue) Then
 Return Nothing
 Else if PreviousValue = 0 OR CurrentValue = 0 Then
 Return Nothing
 Else
 Return (CurrentValue - PreviousValue) / CurrentValue
 End If
End Function

This function performs the growth calculation only if the input arguments are not zero or
Null.

6. Right-click the intersecting cell of the Growth column and Internet row, and change its ex-
pression to:
=Code.GetGrowth(Sum(Fields!InternetSalesAmount.Value),
Previous(Sum(Fields!InternetSalesAmount.Value), "CalendarQuarter"))

Don't worry if you don’t understand the Code keyword. For now, simply note that it allows us
to execute custom functions. We’ll cover the Code keyword in more detail in chapter 7.

7. Right-click the intersecting cell of the Growth column and Reseller row, and enter the follow-
ing expression:
=Code.GetGrowth(Sum(Fields!ResellerSalesAmount.Value),
Previous(Sum(Fields!ResellerSalesAmount.Value), "CalendarQuarter"))

8. Enter the following expression in the ProductSubcategory and ProductCategory group footers,
as well as in the table footer subtotals in the Growth column:
=Code.GetGrowth(Sum(Fields!SalesAmount.Value),
Previous(Sum(Fields!SalesAmount.Value), "CalendarQuarter"))

9. Format the Growth cells as percentages with no decimals (P0 format setting).
10. To show the negative growth numbers in red, use the following expression for the Color

property for the Growth cells in the detail rows:
=Iif(Me.Value < 0, "Red", "Black")

Now that you have defined the groups, you are ready to add dynamic group totals that show
subtotals for each product category and subcategory.

 Adding dynamic group totals
Similar to row groups, dynamic groups can have subtotals. Let's add a subtotal to the Calen-
darQuarter group to show the total sales amount:

1. Right-click the CalendarQuarter cell in the tablix region and click Add Total. By default, the
tablix adds the subtotal after the group.

Report Designer adds two tablix group header columns because the CalendarQuarter group
spans two columns. The new columns are pre-populated with subtotal expressions from the
Sales and Growth columns.

2. We don't need a subtotal for the Growth column because its values cannot be meaningfully
aggregated. Right-click the column header of the second column and click Delete Columns.

DESIGNING TABLIX REPORTS 189

Note that you have the same control over column group subtotals as over row group subtotals.
For example, you can use the Sum aggregate function in one group footer to roll up data and
the Avg function in another to calculate averages. This was very difficult to implement with
the Reporting Services 2005 matrix data region.

Figure 5.21 Unlike previous releases,
Reporting Services 2008 gives you com-
plete control over dynamic group subtotals.

3. Click a cell in the CalendarYear column and note that its scope is the CalendarYear group, as
shown in Figure 5.21.

4. Preview the report.

The Subtotals values are produced by summing the values for all quarters within the year. If
you want the report to show a grand total column for all years, you could add a total for the
CalendarYear group (right-click CalendarYear and click Add Total).

I'd like to mention one cautionary note about subtotals and semi-additive measures. Al-
though you can use any aggregate function, remember that the subtotals are produced over all
detail values. For example, if you replace the Sum function with Avg, you will find that a quar-
ter subtotal is not the average of the individual quarter sales. For example, the ProductSubca-
tegory subtotal is under the dynamic scope of the ProductSubcategory and the CalendarYear
groups. If you check all the detail rows that go into that particular product subcategory and
year, you will see that average subtotal is actually the correct average value of the detail rows.

TIP What's really needed to produce average subtotals over displayed values is an expression like
Avg(Sum(Fields!Sales.Value)). However, Reporting Services doesn't currently support aggregates over aggregates. In-
stead, you can produce simple averages by summing the sales and dividing by the number of quarters, such as by using
the following expression =Sum(Fields!Sales.Value) /CountDistinct (Fields!CalendarQuarter.Value, "CalendarYear"). Since
the CountDistinct function is scoped for the CalendarYear group, it returns the number of quarters in each group instance.

5.2.4 Implementing Adjacent Groups
The matrix data region doesn't limit you to one parent dynamic group on columns. You can
add adjacent groups to implement side-by-side crosstab sections. For example, the first sec-
tion can show sales by time while the second section can show profit by territory.

 Adding adjacent groups
Suppose that you want to add another section that shows the sales profit by territory. You can
address this requirement by implementing an adjacent group to the CalendarYear group:

1. Right-click the CalendarYear cell in tablix and click Add Group Adjacent Right. Alternative-
ly, to add an adjacent group, right-click the CalendarYear member in the Column Groups
pane, and click Add Group Adjacent After.

2. In the Tablix Group dialog box, bind the new group to the [Region] field. Click OK.
3. Rename the new group to Region.

CHAPTER 5 190

Figure 5.22 The Region group is
implemented as an adjacent group
to the CalendarYear group.

Report Designer adds the Region group next to the CalendarYear group, as shown in Figure
5.22. Adjacent groups need not be balanced. In other words, they don't need to have the same
number of child groups. In our case, to show profit broken down by region and country, you
need to add a child group to the Region group.

4. Right-click the Region cell in the tablix and click Add Group Child Group. Alternatively,
right-click the Region member in the Column Groups pane and click Add Group Child
Group.

5. In the Tablix Group dialog box, bind the group to the [Country] field. Click OK. Rename the
new group to Country.

Figure 5.23 You can eliminate
extra rows by merging cells and
deleting the unwanted rows.

At this point, Report Designer creates somewhat of a mess which I affectionately call messlix. It
adds a new row to accommodate the Country group (see Figure 5.23) while it should have
reused the existing row of the CalendarQuarter group. Fear not, however, as you can fix this
easily.

6. Select the CalendarQuarter cell and the one above it. Right-click the selection and click Merge
Cells.

7. Copy the Total cell to the cell above it.
8. Right click the third row where the original Total cell is located, and click Delete Rows.

The end result is that CalendarQuarter, Total, and Country cells are on the same row.
9. Enter the following expression in the intersecting cell of the detail row for Internet sales and

Country column:
=Sum(Fields!InternetProfit.Value)

10. Enter the following expression in the intersecting cell of the detail row for Reseller sales and
Country column:
=Sum(Fields!ResellerProfit.Value)

11. Enter the following expression in ProductSubcategory, ProductCategory, and the table footer:
 =Sum(Fields!InternetProfit.Value + Fields!ResellerProfit.Value)

12. Format all numeric cells in the Country column as #,0;(#,0).
13. To include a grand total, right-click the Region cell and click Add Total.

DESIGNING TABLIX REPORTS 191

14. To add a static row for the section headers, right-click the CalendarYear cell, and click Insert
Row Outside Group – Above.

15. In the merged cell above the CalendarYear cell, enter By Time.
16. Select the two cells above the Region column and its subtotal column. Right-click the selection

and click Merge Cells. In the merged cell, enter By Territory.

Use your artistic skills to format the report as needed.

 Implementing repeating matrix headers
Preview the Product Sales Crosstab report and notice that it is three pages long. However, the
headers of the dynamic groups appear only on the first page. Consequently, it may difficult for
end users to guess where a crosstab section starts and ends. Fortunately, adding repeated ma-
trix headers only takes a mouse click with reports that have column group area.

1. Select the tablix region.
2. In the Properties window, set RepeatColumnHeaders to True.
3. Preview the report.

Notice that the column headers repeat on new pages.

TIP You can easily invert a crosstab report to show row headers on the right followed by columns on the left by chang-
ing the tablix LayoutDirection property to RTL (right-to-left). If you want the column header text to be written vertically,
change the WritingMode of the textbox to Vertical. Unfortunately, Reporting Services doesn't support full text rotation so
you are stuck with top to bottom, right to left rotation.

5.3 Designing Freeform Reports
As its name suggests, a freeform report layout arranges report items arbitrarily on a page. Con-
sider a freeform report layout when you find a tabular layout too restrictive. For example, an
order header section might not be easily arranged in columns, or you might want to show text
information vertically with an image on the side. While you may be able to implement such
requirements by merging cells, this approach doesn't give you complete control over the item
positioning. Besides, you can merge tablix cells only if they share the same group. Instead,
when the report layout is not strictly tabular, consider the list data region, which lets you posi-
tion items wherever you want to.

Figure 5.24 The list data
region is a tablix with a single
row, a single column, and an
embedded rectangle.

CHAPTER 5 192

5.3.1 The Anatomy of the List Region
The list region lets you implement freeform reports. As Figure 5.24 illustrates, the list region is
nothing more than a tablix with a single cell. The report illustrated in this figure is the Sales
Crosstab by Product report which you will author in the next practice. This report demon-
strates:
 Freeform report design
 Nested data regions
 Database images

 Rectangle
The list region cell includes a rectangle report item. The rectangle is what lets you place items
anywhere on the report. You can place any number of report items in the rectangle, including
textboxes, images, and nested data regions. For example, the list in the Sales Crosstab by
Product report includes several textboxes for displaying product information, an image item
that displays the product image, and a matrix data region that shows a crosstab report with
product sales by territory and time.

 Details grouping
Similar to the table region, the list region includes a pre-defined Details group, which does not
have a grouping expression. You can use this group to sort or group the data before it's fed to
the list. If no grouping expression is defined, the Details group represents a row in the under-
lying dataset. Consequently, at run time Reporting Services will generate the list for each row.
If there is a grouping expression defined, the list will be repeated for each group instance.

The context of the Details group is passed to nested regions. To display the sales for the
current product in the matrix, we need to group the list on products. This will cause the list to
pass only the dataset rows associated with the current product to the nested matrix. If you
don't define a grouping expression in the list Details group, you will get the following error
when you run the report:
[rsInvalidDetailDataGrouping] The tablix ‘Table’ has a detail member with inner members. Detail members can only
contain static inner members.

 About the Sales Crosstab by Product Start report
Now that you have an understanding of how list regions work, let’s walk through the steps of
implementing the Sales Crosstab by Product report, shown in Figure 5.25. It has a Product
Category parameter, and a Subcategory cascading parameter that depends on the Product Cat-
egory parameter. When the user views the report, the report displays product information ar-
ranged in a freeform format. The matrix section that follows displays the sales for this product
by territories on rows and time on columns.

The Sales Crosstab by Product Start report represents the starting point for this practice. It
contains the datasets and the minimal layout you will use to build the report. If you have been
stepping through all of the demos, you will find that this report is similar to the Product Sales
Crosstab report with the following significant changes:

1. In the Sales Crosstab by Product Start report, the Products dataset includes the following new
columns from the DimProduct table: LargePhoto, ProductLine, Style, and ModelName. Be-
cause the report has a Subcategory parameter, I changed the dataset WHERE clause to:
WHERE (P.ProductSubcategoryKey = @ProductSubcategory)

DESIGNING TABLIX REPORTS 193

Figure 5.25 The Sales Crosstab
by Product report generates a
crosstab section for each product.

2. I created ProductCategory and ProductSubcategory datasets for the available values of the
report parameters.

3. I created ProductCategory and ProductSubcategory parameters. I configured the ProductSub-
category parameter as a cascading parameter that depends on the ProductCategory parameter.

4. I added a matrix region to the report.
5. I added the InternetProfit and ResellerProfit columns side by side in the tablix body.
6. I used tablix group headers for the row groups. I implemented them by adding the Region and

Country columns to the Row Groups pane. This created two dynamic row groups that group
report data by region and country.

7. I added the CalendarYear and CalendarQuarter columns to the Column Groups pane to create
two dynamic column groups that group report data by year and quarter. I also changed the
CalendarQuarter column header to show the quarter prefixed with "Q", such as Q1, Q2, and
so on. To do so, I configured the CalendarQuarter cell with two textruns, as follows:
Q[CalendarQuarter]

8. Finally, I added a row outside the Region group for the column headers for the two static
columns. I entered Internet and Reseller as column captions.

5.3.2 Designing a Freeform Layout
Now that we understand what is in the Sales Crosstab by Product Start report, let’s get to
work on configuring the list region. This involves designing the freeform section of the report
that shows the product details and nesting the matrix region inside the list.

 Working with the List region
Start by adding the list region to the report:

1. In the Toolbox, double-click the List item to add an empty list region to the report.
2. Resize the list region 6" wide and 3" tall.

CHAPTER 5 194

3. Drag the ProductName field from the Report Data window and drop it on the list. This binds
the list to the Products dataset, as you could verify by checking the list DataSetName property.

TIP If you click inside the list, Report Designer will select the embedded rectangle and not the list. Click Esc to select the
list. The drop-down selector of the Properties window should show Tablix if the list is selected.

Next, you will add report items to the list to define the report layout:
4. Drag the ProductLine, Style, and ModelName fields from the Report Data window and drop

them on the list. This will create three textboxes nested inside the list.
5. Double-click each of these textboxes and type in a static label in front of the placeholder. For

example, double click the Product Line textbox and enter Product Line: before the placeholder.

TIP There aren't any guidelines as far as how much content you should fit into a single "rich" textbox. If the field posi-
tioning doesn't vary too much, you could try consolidating the content into fewer textboxes. For example, instead of three
textboxes, you can use a single textbox to accommodate the ProductLine, Style, and ModelName fields.

6. Arrange the textboxes vertically, as shown in Figure 5.24. Format them as needed.
7. Drag the EnglishDescription dataset field and position under the Model Name textbox.
8. Select the matrix and drag it inside the list. Position it below the textboxes.

The next two steps are required when nesting regions inside the list.
9. Click the list region to select it. In the Row Groups pane, double-click the Details group.

10. In the Group Properties dialog box (General tab), click Add and group on [ProductName].
11. Click the Page Breaks tab and check Between Each Instance of a Group. As a result, the list

will display each product on a new page.
12. Preview the report.

The list should repeat for each product. The matrix should show the sales for the product dis-
played in the list.

 Working with database images
If the database contains images, you can use the Image report item to display these images on
the report. The LargePhoto column in the DimProduct table stores the product image. To use
an image on the report, do the following:

1. Drag the Image item from the Toolbox and drop it inside the list.
2. In the Image Properties dialog box (General tab), expand the Select the Image Source drop-

down list and select Database.
3. Expand the Use This Field drop-down list and select [LargePhoto] to bind the image to the

LargePhoto dataset field.
4. Expand Use this MIME Type and select image/jpeg.
5. Click the Size tab. Select Fit To Size display option to size the image proportionally within the

bounds of the image report item. Click OK.
6. Resize the image as needed.
7. Preview the report.

The report should show the product image if it is available. Products that don’t have images
should show No Image Available.

DESIGNING TABLIX REPORTS 195

5.3.3 Working with Subreports
The Sales Orders by Date report, which I discussed in chapter 4, demonstrates another exam-
ple of a freeform report layout. It uses a list region for the order header section and a nested
table region for the order details. As I mentioned in that chapter, Reporting Services doesn't let
you join datasets on the report. To work around this limitation, the Sales Orders by Date re-
port used a single query to return the order header and order details rows. Another worka-
round, which I will demonstrate next, is to use a subreport for the order details.

 Understanding subreports
A subreport is a report that is embedded inside another report. You can use any report as a
subreport. The master (parent) report can include more than one subreport. Both the master
report and a subreport have separate report definitions, which are usually stored together in
the same folder when the reports are deployed. The master report can pass parameters to the
subreport to get related data. Subreports are useful in the following scenarios:
 When your report has multiple sections with one-to-many relationship, such as order

header-to-order items, as I will demonstrate shortly.
 When you need to reuse a subreport in multiple parent reports. For example, you may

need to show a summary section in multiple reports. You can refactor this section as a
stand-alone report to simplify overall maintenance.

 When you want to group several smaller reports into a single larger report. Suppose that
you want to create a shareholder report by assembling several existing report definitions
into a single report package. You can accomplish this by creating a master report consist-
ing of subreport items that reference the financial reports you want to include.

Subreports are subject to certain limitations. First of all, subreports cannot pass information
back to the master report. You can only have a one-way data exchange from the master to the
subreport by passing report parameters. Second, subreport page headers and footers are ig-
nored when the master report is rendered. Third, you cannot execute subreports conditional-
ly. For example, you cannot disable an order details subreport if the parent query indicates
that there are no orders for a given date. In other words, the subreport and its queries are al-
ways executed.

Finally, the master report cannot have a mixed page layouts that include both landscape
and portrait orientations. If one of the subreports has a landscape page layout, you must set
the master to accommodate the widest subreport (landscape in this case). The page layout of
the master page ultimately determines the page layout of all the subreports. The Sales Order
Header report demonstrates working with subreports. It produces the same output as the
Sales Orders by Date, but it references the Sales Order Items subreport to produce the order
details section.

 Implementing subreports
Start by creating the Sales Order Items subreport:

1. Create a new report and name it Sales Order Items.
2. Open the chapter 4 Reports project in BIDS. Open the Sales Orders by Date report in Report

Designer.
3. Select the OrderDetail table region and copy it (Ctrl+C).
4. Paste the OrderDetail table region in the body section of the Sales Order Items report.

CHAPTER 5 196

5. Create a data source reference to the AdventureWorks2008 database.
6. Create a SalesOrderDetail dataset. Import the query statement from the SalesOrderDetail.sql

file, which is included with the book source code.
7. Examine the Parameters node in the Report Data window. It should contain a SalesOrder-

Number report parameter.
8. Optionally, set the default value of the SalesOrderNumber parameter to 50750, so you don't

have to enter an order number each time you preview the report while testing it.

 Implementing the master report
Follow the next set of steps to author the master report:

1. Copy the Sales Orders by Date report definition from the chapter 4 Reports project and in-
clude it in the chapter 5 Reports project. Rename the report to Sales Order Header.

2. Open the Sales Order dataset in design mode and add the SalesOrderID column from the
SalesOrderHeader table in the Products dataset query.

3. Remove the SalesOrderDetail table from the query statement. You don’t need this table be-
cause the subreport will handle the order details.

4. Remove the Top 50 clause from the query.
5. In the report design area, select the OrderDetail table region and delete it.
6. Drag the Subreport item from the Toolbar and drop it inside the list region in the same place

where the OrderDetail table was. The subreport item must be nested inside the list region.
7. Click the subreport item and change its Name property in the Properties window to OrderI-

tems.
8. Right-click the subreport item and click Subreport Properties.
9. In the Subreport Properties dialog box (General tab), expand Use this Report as a Subreport

drop-down list and select Sales Order Items.

The Sales Order Items report accepts the sales order number as a parameter called SalesOr-
derNumber. To show data about the same order in both reports, you need to configure the
master report to pass the sales order number to the subreport. This process is similar to confi-
guring query parameters.

Figure 5.26 The Sales Order Header
report passes the SalesOrderID field to
the SalesOrderNumber parameter of
the Sales Order Items subreport.

10. Click the Parameters tab and click the Add button to define a new parameter.
11. Expand the Name drop-down and click the SalesOrderNumber parameter.

DESIGNING TABLIX REPORTS 197

12. Expand the Value drop-down list and click [SalesOrderID], as shown on Figure 5.26.

As a result of these changes, the list region will repeat the SalesOrderItems subreport for each
sales order. The list will pass the value of the SalesOrderID field to the SalesOrderNumber
parameter of the subreport. At this point, previewing the Sales Order Header report should
work. The rendered report should look the same as the Sales Orders by Date report. If for
some reason the subreport fails, you'll see the following error in its location on the master re-
port:
Error: Subreport could not be shown.

Unfortunately, the error message doesn't give any indication about what went wrong with the
subreport. To troubleshoot the subreport execution, try previewing the subreport as a stand-
alone report.

5.3.4 Implementing Multicolumn Reports
A multicolumn report has a newspaper-like layout where data flows down multiple adjacent
columns. When the server processes a multicolumn report, it creates a series of very narrow
pages that are rendered on the same physical page, giving the appearance of multiple columns.
Consequently, if you set up a logical page break, such as between group instances, the report
will flow to the next column. The multicolumn report layout is subject to the following limita-
tions:
 The layout applies to the entire report—For instance, the report cannot start with a multi-

column layout and change to a tabular layout. Put another way, you set the multi-column
layout at the report level and not at the data region level.

 For master report and subreport combinations, the column layout must be the same
across the entire set of reports. Subreports inherit the column settings from the parent. If
the subreport is configured for a multicolumn layout but the parent is not, the subreport
will ignore the multicolumn layout.

Figure 5.27 The Inventory by Category report has three columns to conserve horizontal space.

The Inventory by Category report, which Figure 5.27 shows, features a multicolumn report
layout. It shows the product inventory counts grouped by product subcategory for the current
date.

CHAPTER 5 198

 Determining the column width
When working with multiple columns, you need to make sure that the page width can ac-
commodate all columns. You can use the following formula to calculate the column width:
column width <= (page width - (left margin + right margin) - (number of columns – 1)
* column spacing) / number of columns

For example, the Inventory by Category report has three columns with a half-inch gap be-
tween columns. Assuming a landscape page layout with 0.5" left and right margins, the col-
umn width will be:
(11" – (0.5"+0.5") – (3 – 1) * 0.5") / 3 = 3"

This will result in a column width that is 3" or less.

Figure 5.28 Report Designer
divides the report body into col-
umn sections.

 Designing the multicolumn layout
Once you have determined the column width, setting up the report layout is straightforward:

1. In Report Designer, click outside the report body. In the Properties window, set Columns
Columns property to 3 and Columns ColumnSpacing property to 0.5in.

2. Set Margins Top to 1in, Margins Bottom to 1in, Margins Left to 0.5in, and Margins
Right to 0.5 in.

3. Set PageSize Width to 11in and PageSize Height to 9in.

4. Click the report body area and set its Size Width to 3in.

Report Designer divides the report body in three sections that represent the report columns, as
shown in Figure 5.28. Only the first column (Column 1) is accessible.

5. Drop a list region. Group the list region by [SubCategory]. Add a textbox and bind it to [Sub-
Category] to show the product subcategory.

6. Nest a table region inside the list. Bind the first detail cell to [Product] and the second to
[Quantity].

7. Add a row outside and below the detail group in the table region and enter the following ex-
pression in the Quantity column:
=Sum(Fields!Quantity.Value)

8. Preview the report.

TIP You can limit the number of rows displayed by using the Ceiling function. For example, to break on 20 rows, use the
following expression in the list details group =Ceiling(RowNumber(Nothing)/20) and set it to page break between group
instances. The RowNumber () function returns the positional number of the current dataset row. The System.Math.Ceiling
function returns the smallest number that is not less than the argument. Thus, the group expression returns 1 for the first
20 rows, 2 for the second 20 rows, and so on. This makes the group break on each batch of 20 rows.

DESIGNING TABLIX REPORTS 199

5.4 Implementing Interactive Reports
Your report can go beyond the dull presentation of static data. Reporting Services supports a
variety of interactive features that let the user interact with the report. Consider adding inte-
ractivity to your reports to improve the user experience and make your report more intuitive.

5.4.1 Understanding Report Interactivity
You have already witnessed the most popular interactive feature—report parameters. The user
can pass parameter values to the report to customize the report data and layout. Besides para-
meterized reports, you can extend your reports with other features that allow for interaction at
run time.

 Toggled visibility
Each report item has a set of properties that determine item visibility. You can use these prop-
erties to hide items on a report, conditionally hide data based on other data in the report, or
provide a toggle switch so that the user can expand or collapse a report section. For example,
you can use toggled visibility to implement report drilldown. When the report opens initially,
report groups are hidden to reduce the data shown on the report. If the user wants to see
more data, he or she can expand a group to the see the next level of detail. Toggled visibility
can be set on any element but it is most commonly used to control visibility of groups, rows,
and columns.

 Hyperlink actions
Hyperlink actions are links that the user can click to navigate to other resources, such as an
external web page. Reporting Services supports three link types:
 A bookmark link provides a link to a bookmark, or anchor, within the current report. For

example, similar to HTML pages, the user can click a link to jump to another location in
the report.

 A drillthrough link lets the user navigate to another report. For example, the user may
start with a summary report and click on a link to see a more detailed report, such as the
orders submitted by a customer on a given date.

 A URL link provides a link to an external web page. For example, a URL link can redirect
the user to a web page that lets the user update the data shown on the report.

Actions can be applied at textbox, paragraph, and textrun levels. Higher-level actions over-
write lower-level actions. For example, if you have an URL action defined for the textbox and
another action defined for a textrun, only the textbox action will be available to the end user.

 Document map
Think of a document map as a table of contents in a book that helps the user navigate through
long reports. A document map summarizes report content into a hierarchical set of links.
When the user clicks a link, focus is immediately set to the corresponding location in the re-
port.

 Interactive sorting
This feature lets the user customize the way the data is sorted on the report. When enabled on
a textbox, interactive sorting displays a sort indicator inside the textbox. The user can click the

CHAPTER 5 200

sort indicator to sort the report data. Each time the sort indicator is clicked, interactive sorting
toggles between ascending and descending order.

 Understanding rendering support
Not all of the report renderers support the full range of interactive features. Table 5.1 helps
you determine whether the interactive feature is supported in specific renderers.

Table 5.1 Rendering support for interactive features

Feature HTML GDI Excel Word PDF MHTML

Toggled visibility

Navigation actions

Interactive sorting

Document map

In case it's not immediately obvious, the GDI renderer is used by the Windows Forms Re-
portViewer control. Other output formats that don’t support interactivity in any way are not
included in the table. Specifically, interactive features are not available with data renderers
(XML and CSV) or the Image renderer, which exports reports to binary images, such as TIFF
or GIF.

5.4.2 Implementing Toggled Visibility
Toggled visibility is typically used to reduce the perceived complexity of a complex report. In
this next section, I'll discuss two reports that demonstrate toggled visibility. Since you are al-
ready familiar with the tablix region, I won't do too much hand-holding in this section but I
will give you the necessary background to understand the final solution.

 Hiding rows and columns
The Toggled Visibility report builds upon the Product Sales by Category report that you au-
thored in chapter 3. However, the similarity ends once you begin adding interactive features.
In the Toggled Visibility report, only a subset of the report data is shown when the report is
initially run. Specifically, the Discount column appears only when it is greater than zero, and
the product subcategory and detail rows appear only if certain conditions are met.

1. Open the Toggled Visibility report in Report Designer. Right-click the column selector of the
Discount column and click Column Visibility (see Figure 5.29).

2. Notice that the Discount column uses the following expression that controls its visibility:
=(Fields!InternetDiscountAmount.Value+Fields!ResellerDiscountAmount.Value)=0

Consequently, the column will be shown only on those pages where there is at least one row
with a discount value greater than zero. The user can click the plus indicator of the Product
cell (the leftmost cell in the table region) to see the Discount column if needed.

3. Right-click the ProductSubcategory row and click Row Visibility. Notice that this row uses the
following expression that controls its visibility:
=Sum(Fields!InternetSalesAmount.Value+Fields!ResellerSalesAmount.Value) < 100000

DESIGNING TABLIX REPORTS 201

Figure 5.29 The Discount column
is hidden when the discount value
is zero but can be toggled by the
Product item.

4. Check the Display can be Toggled by This Report Item checkbox and select the Category item.

As a result, this row will be hidden if the total sales amount for the current group instance is
less than 100,000.

5. Right-click the Internet detail row and click Row Visibility.

Note that the row is hidden if Internet sales are less than 100,000, but can be toggled when
the user expands the Category field. A similar expression is defined to control the visibility of
the Reseller row.

6. Preview the report.

The report displays a summarized view that shows only the subtotal rows for the product sub-
categories in the Accessories category.

7. Click the plus sign of the Accessories category to see all rows.
8. Click the plus sign of the Product cell to see the Discount column.

The report expands vertically to show more rows and horizontally to show the Discount col-
umn. Optionally, export the report to Excel and observe that the exported report supports
row toggled visibility via Excel collapsible outlines. However, toggled column visibility is not
supported.

 Implementing drilldown
Besides rows and columns, you can set toggled visibility on report groups. This lets you im-
plement a drilldown effect that you may be familiar with if you have worked with OLAP
browsers, such as Excel PivotTable reports. Similar to OLAP drilldown, the user can expand
rows and columns to see more data on the report.

However, there is one important difference. Unlike OLAP browsers that generate queries
and fetch data with each drilldown action, the report server always retrieves all data at once
and caches the data in the report database. This is standard behavior for all report execution,
including processing of a drillthrough report. Interestingly, the report server doesn't send the
entire report to the client. As the user drills down data, subsequent requests are made to the
server to render the report in chunks. Therefore, although report drilldown doesn't optimize
data retrieval, it may reduce the report processing and rendering time with large reports be-
cause report sections are generated on demand.

CHAPTER 5 202

The Product Sales Crosstab report, which you authored in this chapter, could be over-
whelming for the end user to analyze. To create a more usable version of the report, the Prod-
uct Sales Crosstab Drilldown report (see Figure 5.30) builds upon the Product Sales Crosstab,
but displays summary data when the report is first loaded. For example, the row groups are
collapsed at the subcategory level, and column groups are collapsed at year and territory le-
vels. The user can click the plus sign indicators (no, you cannot use custom indicators) to ex-
pand the collapsed sections and see the detail rows. Implementing report drilldown takes just
a few mouse clicks.

Figure 5.30 The Product
Sales Crosstab Drilldown
report shows summary data
when the report is first
loaded and shows detail
rows when the user ex-
pands a section.

1. Start by assigning meaningful names to the textboxes that will toggle the group visibility so
you can locate them easily. For example, rename the first cell in the product category group
header to ProductCategory, the first cell in the product subcategory group header to Product-
Subcategory, and so on.

2. In the Row Groups pane, double-click the Details group.
3. In the Group Properties dialog box, click the Visibility tab.
4. Set the When the Report is Initially Run section to Hide.
5. Check the Display Can be Toggled by This Report Item. Expand the drop-down list below and

select the ProductSubcategory textbox.
6. Follow similar steps to configure the visibility for the CalendarQuarter group to be toggled by

the CalendarYear textbox and the Country group to be toggled by the Region textbox.
7. Preview the report and verify that the report shows summary information. Click the plus sign

indicator of the collapsed section to test the drilldown feature.

TIP If drilldown doesn’t work or it doesn't hide all rows within the group, switch the Groupings pane to advanced mode
and verify that you don't have an extra static member in the group.

5.4.3 Implementing Hyperlink Actions
As noted earlier, you can add bookmark, drillthrough, and URL actions to your reports to let
the user navigate within the report and away from the report to view external resources. Ex-
amples that demonstrate these three action types are covered next.

DESIGNING TABLIX REPORTS 203

 Bookmark actions
The Product Sales Crosstab report, which you implemented in this chapter, lets the user ana-
lyze Internet and reseller sales by the product natural hierarchy (category, subcategory, and
product), time, and territory. Suppose a business analyst would prefer a quick way to jump to
the bikes product category. This is where a bookmark action can help.

Figure 5.31 The user can
click the link to jump to the
Bikes section on the report.

The Bookmark Action report (see Figure 5.31) extends the Product Sales Crosstab report with
a bookmark action. When the user clicks the To Bikes link, the user navigates to the Bikes
product category instance on the report even if this instance is located on a different page.
Start implementing the bookmark action by defining a bookmark identifier that serves as the
action target. The bookmark identifier could be data-driven or static text. In our case, we want
the user to jump to the Bikes product category. Since this product instance is not known at
design time, we need a data-driven bookmark identifier. Complete the following steps to im-
plement a bookmark action:

1. Open the Product Sales Crosstab report.
2. Click the ProductCategory textbox. This is the first cell in the ProductCategory group header.
3. In the Properties window, enter the following expression in the Bookmark property:

=Fields!ProductCategory.Value

As a result of this change, when the report is rendered, the bookmark identifier will match the
group header (that is, it will be Accessories, Bikes, or Clothes). Next, you need to implement
the actual bookmark link. This will require adding a new textrun inside the Product textbox.

1. Double-click the Product textbox to enter edit mode.
2. Position the cursor after "Product" and type "To Bikes".
3. Select the "To Bikes" text, right-click the selection and click Text Properties.
4. In the Text Properties dialog box, select the Action tab.
5. Click the Go to Bookmark option and enter Bikes in the Select Bookmark drop-down below.
6. Select the Font tab and change the textrun font style to bold, italic, with Underline effect and

Blue color. Click OK.
7. With the textbox still in edit mode, move the cursor after "Product" and add spaces to move

"To Bikes" to the right.
8. Preview the report to the test the bookmark action.

Clicking the To Bikes link should take you to the Bikes product group instance.

CHAPTER 5 204

 Drillthrough actions
The Product Sales Crosstab Drilldown report, which you implemented in this chapter,
presents a cross-tab view of sales data aggregated at the product level. Suppose that the end
user would like to see the detail data behind a cell. You can implement a drillthrough action
that lets the user jump to another report and pass the current context to the drillthrough re-
port so it can show more detailed information.

The Drillthrough Action report, shown in Figure 5.32, extends the Product Sales Crosstab
Drilldown report to let the user drill down on Internet sales to see the sales orders that contri-
bute to the clicked cell on the parent report.

Figure 5.32 A drillthrough action lets the user navigate to another report.

To reduce the data shown on the drillthrough report, the drillthrough action is available only
at product and quarter levels and on non-empty Internet cells. Clickable cells are underlined
on the report. When the user clicks a cell, the drillthrough action launches the Sales Orders
report. This report is very similar to the Sales Orders by Date report you authored in chapter
4. The only difference is that the Sales Orders takes year, quarter, and product number as pa-
rameters. The Drillthrough Action report passes these values to the drillthrough Sales Order
report.

1. Open the Product Sales Crosstab Drilldown report in Report Designer
2. Right-click the intersecting cell (named InternetSales) of the CalendarQuarter column group

and ProductName row group and click Text Box Properties.
3. In the Text Box Properties dialog box (Action tab), select the Go to Report option, as shown in

Figure 5.33.

If you want the drillthrough action to be always available, expand the Select a Report drop-
down list and select a drillthrough report from the list of reports in the project. Since we want
to narrow the scope of the drillthrough action, we need to define an expression that limits the
action scope:

4. Click the fx button next to the Select a Report From the List field and enter the following ex-
pression:
=Iif(InScope("CalendarQuarter") and Sum(Fields!InternetSalesAmount.Value)>0, "Sales Orders", Nothing)

DESIGNING TABLIX REPORTS 205

The Iif function uses the InScope function to check if the cell is inside the CalendarGroup
scope and if the aggregated Internet sales amount is greater than zero. If this is the case, the
expression returns Sales Orders, which is the name of the drillthrough report. Otherwise, the
expression returns Nothing, so the cell is not clickable.

5. Click the Add button to define a parameter that will be passed to the drillthrough report.

Because the name of the drillthrough report is expression-based, expanding the Name drop-
down doesn't show the parameters of the Sales Orders report. You will need to enter them
manually.

6. In the Name column, enter Year. Expand the Value drop-down list and select [CalendarYear]
to bind the Year parameter of the drillthrough report to the CalendarYear field.

7. Add a Quarter parameter and bind it to [CalendarQuarter].
8. Add a Product parameter and bind it to =First(Fields!ProductAlternateKey.Value). You need to

use the First aggregate function because the cell contains an aggregated value.

If you check the Omit checkbox of a parameter, the parameter will be ignored. This could be
useful if the parameter has a default value that you don't want to overwrite. This Omit check-
box is always disabled. To omit the parameter, click the fx button next to the checkbox and
enter True as the expression text.

9. To underline cells conditionally, select the Font tab, and enter the following expression in the
Effects drop-down list:
=Iif(InScope("CalendarQuarter") and Sum(Fields!InternetSalesAmount.Value)>0, "Underline", "Default")

This expression evaluates the same condition as the drillthrough action. If the condition is
true, the cell will be underlined. Click OK to close the Text Box Properties dialog.

Figure 5.33 Configure a drill-
through action that launches
another report by configuring the
report name and parameters.

CHAPTER 5 206

10. Preview the report. Because the CalendarQuarter and ProductName groups are collapsed by
default, you cannot drill through any cell.

11. Expand the CalendarYear group and ProductSubcategory groups. Notice that non-empty cells
are now clickable.

12. Click any of the clickable cells.

You will be navigated to the Sales Orders report which shows the sales orders for the current
selection. You can click the Back to Parent report toolbar button to return to the Drillthrough
Action report.

 URL actions
URL actions let you extend your reports in versatile ways. For example, Reporting Services
doesn't support data writeback (that is, letting the user update the underlying data). However,
you can implement a URL action to navigate the user to a custom web page that can update
the report data.

The Sales Order Header report (see Figure 5.34) demonstrates this scenario. If the user
discovers data inconsistencies with an order line item, the user can click the line number. The
URL action launches the Writeback Demo ASP.NET page that shows the line item informa-
tion. The user can use the page to make corrections and update the order. Follow these steps
to add a URL action:

1. Open the Sales Order Items report in design mode.
2. Right-click the first cell in the tablix detail row, which is named LineNumber, and click Text-

box Properties.
3. In the Textbox Properties dialog box, click the Action tab, and select the Go to URL option.
4. Click the fx button next to the Select URL drop-down, and enter the following expression:

=String.Format("http://localhost:1966/Web/Writeback.aspx?SO={0}&LN={1}",
Fields!SalesOrderID.Value, Fields!SalesOrderDetailID.Value)

Figure 5.34 The Sales
Order Header report uses a
URL action to let the user
update the order line item.

DESIGNING TABLIX REPORTS 207

This expression constructs the URL address of the writeback page (Writeback.aspx). This page
is included in the Web project inside the chapter 5 solution. The project uses the local
ASP.NET Development Server, which is configured to listen on port 1966. Assuming that the
user clicks on a line number with SalesOrderID of 50750 and SalesOrderDetailID of 35137,
the resulting URL link will be:
http://localhost:1966/Web/Writeback.aspx?SO=50750&LN=35137

Writeback.aspx parses the query parameters and queries the AdventureWorks2008 database
to display the line item details. The user can make corrections as needed. To avoid making
changes to the AdventureWorks2008 sample database, the Update Order link doesn't actually
write back the changes, but enhancing the page to support that action is straightforward:

5. In Solution Explorer, right-click the Writeback.aspx page and click View in Browser to start
the ASP.NET Development Server. An icon that says ASP.NET Development Server – Port
1966 should appear in the Windows taskbar.

6. Preview the Sales Order Header report for Date 7/4/2004 and Sales Order Number SO74253.
7. Hover on the line number of any line number and notice that the mouse cursor changes to a

hand cursor to indicate that the cell is clickable. Click the line number.

The writeback page should pop up and should show the line order details.

TIP You can use JavaScript if you need more control over the URL link, such as to size the window. For example, the
following link opens the page in a new window and sizes the window to 740 pixels wide and 400 pixels tall.
=String.Format("javascript:void window.open ('http://localhost:1966/web/writeback.aspx?SO={0}&LN={1}', '_blank',
'resizeable=1, toobar=0,status=0,menu=0,top=20,left=20,width=740,height=400')",
Fields!SalesOrderID.Value,Fields!SalesOrderDetailID.Value)

Note that JavaScript links don't work in report preview with Report Designer. To test the link you need to deploy and run
the report on the server.

5.4.4 Implementing Interactive Sorting
Users frequently request the ability to sort report data interactively. One approach is to use a
report parameter and an expression-based sort order. The downside is that this approach
won’t work if you require more advanced sorting capability, such as sorting by multiple col-
umns, sorting within groups, and so on. Fortunately, Reporting Services supports very power-
ful interactive sorting capabilities, as demonstrated by the Interactive Features report (see
Figure 5.35). This report extends the Product Sales Stepped report by adding different ways to
sort report data.

 Sorting groups
Suppose that the user would like to sort the product category group alphabetically in ascend-
ing or descending order by clicking its column header:

1. Right-click the first cell in the first header row (Products) and click Text Box Properties.
2. In the Text Box Properties dialog box, select the Interactive Sort tab.

This tab lets you configure the interactive sort scope and which field or expression the sort
will be based on.

3. Turn on the Enable Interactive Sort on This Text Box checkbox.

CHAPTER 5 208

4. Click the Groups option and select the ProductCategory group in the drop-down list below.
5. Expand the Sort By drop-down list and select the [ProductCategory] field, as shown in Figure

5.36.

6. Preview the report.

Notice that a sorting indicator is added to the column header. By default, this indicator has up
and down arrows to indicate that the group is not sorted interactively (dataset or group sort-
ing orders are still applied). You can click the indicator to sort data. Each time you click it,
interactive sorting toggles between ascending and descending order.

NOTE Reporting Services doesn't support pre-selecting the interactive sort order at design time. For example, you
cannot set the interactive sort order to descending. By default, interactive sort is not applied and data won't be sorted
unless it is pre-sorted in the report query or groups.

7. Click the sort indicator. Notice that the product category group is sorted alphabetically in
ascending order: Accessories, Bikes, and Clothes.

Figure 5.35 This report
demonstrates different
ways to sort report data
interactively.

Figure 5.36 This interactive
sort configuration enabled in-
teractive sort on the Product-
Category group.

DESIGNING TABLIX REPORTS 209

8. Click the sort indicator again to toggle the sort order. Notice that now the Clothes category is
on top because the group is sorted in descending order by the ProductCategory field.

 Sorting by aggregates
Suppose you want to sort on aggregated values or any other field that gets its value through an
expression. To do this, you can implement expression-based interactive sorting:

1. Right-click the Sales column header, click Text Box Properties, and select the Interactive Sort
tab.

2. Turn on the Enable Interactive Sort on This Text Box checkbox.
3. Click the Groups option and select the ProductCategory group in the drop-down list below.
4. Click the fx button next to the Sort By drop-down and enter the following expression:

=Sum(Fields!SalesAmount.Value)

This expression sorts the product category group by the aggregated Sales Amount.
5. Preview the report and click the sort indicator in the Sales column header to sort the product

group in ascending order. This should show the Clothing group on top because it has the least
sales.

6. Click the sort indicator again to sort the product group in descending order.

Notice that Bikes appears on top now because this product group has made the most sales.

 Sorting within groups
Suppose that you want to sort the detail rows by sales amount within each instance of the
group:

1. Right-click the last cell in the ProductSubcategory group header whose textbox is named
SortDetails and click Text Box Properties. Select the Interactive Sort tab in the Text Box Prop-
erties dialog box.

2. Turn on the Enable Interactive Sort on This Text Box checkbox.
3. Select the Detail Rows sort option.
4. Expand the Sort By drop-down list and select [SalesAmount].
5. Preview the report and click the new sort indicator to sort the detail rows within each instance

of the product subcategory group, as shown in Figure 5.37. Because SalesAmount is a dataset
calculated field that sums InternetSalesAmount and ResellerSalesAmount, the group is sorted
by the combined sales in ascending order.

Figure 5.37 Clicking the sort
indicator sorts on the SalesA-
mount, which is a calculated field
that sums InternetSalesAmount
and ResellerSalesAmount.

CHAPTER 5 210

 Sorting other regions
Suppose that you have a chart region side-by-side with the table region and you want to sort
the chart interactively as you sort the table:

1. Drop a chart region next to the table region and accept the default chart type (Column).
2. Drop the ProductCategory field in the Drop Category Fields Here area of the chart and Sale-

sAmount in the Drop Data Fields Here area.
3. Preview the report and notice that interactive sorting of the table region doesn’t affect the

chart.
4. In the Interactive Sort tab of the Products cell, check the Also Apply This Sort checkbox.
5. In the drop-down below it, enter Products.

Products is the name of the dataset that the table and chart regions are bound to. When you
sort the product category interactively, the sort order will be applied to the Products dataset.
As a result, all regions that are bound to the Products dataset will pick up the sort order.

6. Optionally, apply the same changes to the Sales column header cell.
7. Preview the report and click the sort indicator in the Products cell.

Note that data in both the table and chart regions are sorted in the same way. Specifically, if
the product group is sorted in ascending order, both regions show Accessories, Bikes, and
Clothing product categories in this order.

 Configuring fixed headers
You can configure table row and column headers to remain visible when the user scrolls
through the report. This could be useful with long or wide reports when you need to keep
specific rows and columns visible. Report fixed headers are analogous to the frozen rows and
columns used in Excel. How are report fixed headers different from repeating headers that we
looked at in section 5.2.3? Unlike repeating headers, which repeat on each new page when the
report is rendered and printed, fixed headers are only active when the user interacts with the
report and scrolls off the header area. As a user-oriented feature, fixed headers don't affect the
printed page.

Suppose that you want to keep the two header rows and the first column in the Interactive
Features report always visible. If the report has row area and group area (there is a double
dashed line separating the tablix body from the groups), you can configure fixed headers by
turning on FixedRowHeaders and FixedColumnHeaders options in the tablix properties. The
Interactive Features report doesn't have row and group areas but you can configure fixed
headers as follows:

1. Expand the down arrow indicator in the right top corner of the Grouping pane and click Ad-
vanced Mode.

2. In the Row Groups pane, click the first static member, which represents the first table header
row. In the Properties window, change FixedData to True.

3. Repeat the last step to configure the second static member.
4. Preview the report and scroll down the page.

As you scroll down, the table header rows should remain visible on the top of the page, as
shown in Figure 5.38.

DESIGNING TABLIX REPORTS 211

5. Since the Interactive Features report is not very wide, you may need to resize the BIDS win-
dow so that a horizontal scroll bar appears. Alternatively, you could reduce the InteractiveSize
 Width property to decrease the page width of the interactive page.

6. Preview the report and scroll to the right.

The row headers under the Product column should remain visible as you scroll down.

5.4.5 Implementing a Document Map
End users may find it difficult to navigate through a large report to find the right information.
If you are producing a report that contains data about hundreds of individual products, you
can quickly appreciate how navigating such a report might be problematic. In the absence of
navigational links, a user has no choice but to page through the report or search text to locate
a specific product. This is where a document map can help.

 Understanding document maps
The Interactive Features report implements a document map, which is shown in Figure 5.39.
Each node in the tree represents an instance of a row group. Because the ProductCategory,
ProductSubcategory, and ProductName rows groups are nested, the map links are organized
in a tree structure based on the inner and outer groups.

The end user can click a link to jump to a particular part of the report. For example, if the
user wants to see the sales for the Mountain-500 Silver bike, the user can expand the Bikes

Figure 5.38 Fixed headers are
always shown on the page as the
user scrolls down the page.

Figure 5.39 A doc-
ument map can sim-
plify navigation
through large reports.

CHAPTER 5 212

and Mountain Bikes sections, and click the Mountain-500 Silver link. The user can hide the
document map by clicking the Show or Hide Document Map.

 Implementing document maps
Implementing a document map is remarkably simple. Follow these steps to extend the Inter-
active Features report with a document map that shows a link of each instance of the row
groups on the report:

1. In the Row Groups pane, double-click the ProductCategory group.
2. In the Group Properties dialog box (General tab), expand the Document Map drop-down list

and select the [ProductCategory] field.

The Document Map setting lets you specify the link label, which can be expression-based. For
example, the following expression marks product groups that exceed 100,000 of sales by add-
ing an exclamation point after the group name:
=Iif(Sum(Fields!SalesAmount.Value)>100000, Fields!ProductCategory.Value & " !", Fields!ProductCategory.Value)

With the exception of link text, you do not have control over the document map appearance.
Specifically, you cannot change font style, color, or add custom graphics to the map.

3. Repeat the last two steps to bind the Document Map property for the ProductSubcategory and
ProductName groups to the [ProductSubcategory] and [ProductName] fields, respectively.

4. Preview the report.

Notice that the report has a document map whose nodes are clickable.

5.5 Summary
Tablix is a versatile control that lets you implement reports with tabular, crosstab, and free-
form layouts. By default, tablix generates tablix group headers for each row group. Tablix
headers simplify working with totals but may get in the way when you need more control over
the report layout. In such cases, re-configure tablix by adding rows and groups as needed.

Crosstab reports pivot report data from rows to columns. Dynamic groups can be nested
to let the user drill down from summaries to details. Adjacent dynamic groups let you imple-
ment side-by-side crosstab sections. Freeform reports allow you to place items anywhere on
the report, such as to group reports on pages or implement multi-column reports.

Consider enhancing your report with interactive features to improve the user experience.
You can configure report sections for toggled visibility to let the user drill down into the data.
Add bookmark hyperlinks to jump to significant locations in the report. Implement drill-
through links that launch other reports. URL links navigate the user to other URL-addressable
resources, such as ASP.NET web pages. You can let the user sort report data interactively on
details, across and within groups, by aggregates, and across data regions. Finally, to simplify
navigating large reports, consider implementing document maps.

5.6 Resources
Cross-tab Reports

(http://tinyurl.com/32kaw4)—Learn how to create T-SQL queries that pivot data.

213

CChhaapptteerr 66

Designing for Data Visualization

6.1 Designing Chart Reports 213
6.2 Working with Chart Types 225
6.3 Designing Gauge Reports 240

6.4 Summary 252
6.5 Resources 252

Sometimes a picture is worth more than a thousand words. This is especially true when pre-
senting data on reports. Decisions makers love charts and graphs! Offer them text-based and
graphical versions of the same report and they will undoubtedly prefer the latter. That’s be-
cause conveying information graphically can help users analyze large volumes of data and spot
trends that are not easily discernable when that same information is presented as text.

In this release, Reporting Services supercharges its data visualization capabilities with an
upgraded chart region and a brand new gauge region. In this chapter, I will show you how to
author feature-rich and visually appealing charts that can help users quickly grasp the mean-
ing of data. You will also learn how to leverage the gauge region to present Key Performance
Indicators (KPIs) and other numeric data.

6.1 Designing Chart Reports
A chart report presents data in a visual format. A chart is a drawing that displays relative sizes
of numerical quantities. It often conveys information more effectively than can tabular or
crosstab views of data. Business users who typically benefit the most from chart reports are
decision makers, such as executives, managers, and marketers. Charts help such users get "a
big picture" of the company business. For example, board reports and dashboard reports
usually include charts to help business users quickly answer the most important question
"How are we doing?"

6.1.1 Understanding the Chart Region
Reporting Services has been supporting charts since its first release. In Reporting Services
2008, charting really comes of age. The upgraded chart region brings new chart types and fea-
tures that were either previously not supported or required significant implementation effort.
At the same time, the new chart region is as easy to use as the chart controls included in Mi-
crosoft Excel and Access.

 About Reporting Services charting
The older version of the Reporting Services chart was based on Dundas Charts, developed by
Dundas Software (see Resources). Report authors could easily add charting capabilities to re-
ports by binding the chart region to a dataset, just as they would do with tables and matrices.

CHAPTER 6 214

The original chart region, however, had its own limitations which was a major factor in
putting chart enhancements at on the top of the wish list for this release.

Meanwhile, Dundas enhanced its Chart for Reporting Services component and made it
available as a commercial product. In June 2007, Microsoft acquired the Dundas data visuali-
zation technology, including the Dundas chart, gauge, map, and calendar controls. Due to
time constraints, only the first two components are included in the release version of SQL
Server 2008. The map and calendar controls are slated for a future release of SQL Server.

The upgraded chart region brings welcome features, such as multiple axes, scale breaks,
custom palettes, and new chart types, including polar, radar, funnel, and pyramid chart types.
One of my favorite features is the ability to configure the chart interactively at design time by
selecting a chart element and accessing its properties. Another design-oriented feature is up-
dating the design-time chart image before the property value is committed so you can imme-
diately see the effect of the change. No more guessing which knob to turn on or having to
undo wrong settings!

NOTE Interactive features that facilitate chart configuration are available only at design time. When the user exports
the report, the chart gets rendered as a static image and the end user cannot access the chart properties to reconfigure
the chart. At run time, the chart supports only limited interactivity via actions, such as letting the user drill through to
another report to see more details.

 Upgrading from previous chart controls
The SQL Server 2008 setup program will automatically upgrade deployed reports with RDL
2005 charts to the new chart control. Report Designer will prompt you to upgrade RDL 2005
report definitions to RDL 2008 the first time you open them. If for some reason you prefer to
work with RDL 2005 charts, you can continue using the BIDS 2005 Report Designer and dep-
loy to Reporting Services 2008. Recall from chapter 2 that you can deploy RDL 2005 report
definitions to a report server running Reporting Services 2008.

If you purchased the Chart for Reporting Services component from Dundas and used it in
your reports, you will be glad to know that Reporting Services supports a partial upgrade path
from the Dundas Chart to the new native chart region in Reporting Services 2008. Custom
code-based features are not supported and will not upgrade, including code-behind events,
such as PostInitialize, CustomizeChart, annotations, and custom legends.

At design time, you can upgrade to the native chart region by opening the report defini-
tion in Report Designer. Report Designer will analyze the Dundas chart for the unsupported
features. If none found, it will silently upgrade; otherwise a dialog box will be displayed with
options. Once you confirm the upgrade prompt, the Dundas chart control will be upgraded to
the native chart region. This is a one-way conversion process and you cannot downgrade back
to the Dundas chart control. In any case, before the upgrade, a backup file will be created.

If you prefer to continue using the Dundas chart control, you must leave your reports in
RDL 2005 format and use BIDS 2005 to edit your reports. Since Dundas Chart is designed as
a custom report item, legacy report definitions will continue to work via the backward compa-
tibility interfaces on the server.

NOTE Dundas is currently working on the 2008 version of Dundas Chart. Customers will be able to upgrade from the
2005 version to 2008. As before, the 2008 control is implemented as a Reporting Services custom report item.

When you upgrade a report server, the upgrade process will detect whether published reports
that contain Dundas charts can be upgraded. As long as charts contain only supported fea-
tures, Reporting Services will upgrade the chart in the report in place. Report definitions that

DESIGNING FOR DATA VISUALIZATION 215

use custom chart code will not get upgraded to RDL 2008 and will continue to reference the
Dundas chart control.

 How to choose a chart type
Reporting Services supports many chart types, so it's important to select the most appropriate
chart type for the task at hand. Table 6.1 can help you select the right chart based on the re-
port data.

Table 6.1 How to choose a chart type

Chart Type Linear Data Ratio Data Multivalued Data

Column

Line

Shape

Bar

Area

Range

Scatter

Polar

Analyzing linear data, such as sales over time, is a very common requirement. Hence, it is
supported by many charts, including column, line, bar, area, range, and scatter charts. Visua-
lizing data as a proportion of a whole, such as plotting the contribution of individual regions
to overall sales, is best achieved with shape charts, such as pie charts, as well as scatter and
polar charts.

A range chart can display a set of data points that are each defined by multiple values. For
example, a stock chart, which is one of the supported range charts, is designed for financial or
scientific data that uses up to four values per data point.

6.1.2 The Anatomy of a Chart Region
The chart region is packed with features and it may take some time for novice users to get
used to it. It is composed of various elements, such as series, axes, legends, and so on. Figure
6.1 illustrates the main elements of a chart. The sample chart is included in the Sales by Re-
gion report that you will author in the next practice.

To understand how the chart region works, it makes sense to compare it to the matrix re-
gion you are already familiar with. When you configure the chart at design time, you specify
category groups, series groups, and values by adding dataset fields to the Drop Category Fields
Here, Drop Series Fields Here, and Drop Data Fields Here areas (shown in Figure 6.2).

CHAPTER 6 216

 Chart groups and values
A category group is equivalent to a matrix dynamic column group, as it lets you group data by
a dataset field or expression. A chart can have multiple category groups. For instance, the Re-
seller Sales chart groups by both year and quarter.

A series group is a grouping of related data and it is similar to a matrix row group. The
Reseller Sales chart has a single series group that groups on territory. Because Adventure
Works sells in three territories (Europe, North America, and Pacific), each series group has
three members.

Chart values are equivalent to matrix static column groups. For example, the Internet
Sales/Orders chart has Sales and Orders chart values which are plotted on the left and right
axes respectively.

Finally, you can think of a chart data point as a matrix cell. Each data point must belong
to a chart series. The chart type determines how data points will be plotted. A column chart
displays data points as bars, while a line chart displays them plotted as a line.

 Chart areas
A chart area is a rectangular area that contains chart elements, such as series, labels, axes, grid
lines, and so on. A chart region includes one or more chart areas. For instance, the chart
shown in Figure 6.1 has Reseller Sales and Internet Sales/Orders chart areas. All areas are
bound to the same dataset but they can have different chart types. The Reseller Sales chart

Figure 6.1 This chart data region is a complex control which consists of many elements.

DESIGNING FOR DATA VISUALIZATION 217

area displays only the Sales series, while the Internet Sales/Orders chart area displays Sales and
Order Quantity series. The Internet Sales/Orders chart is a hybrid chart that shows the Sales
series as a column chart and the Order Quantity series as a line chart.

 Axes
The chart area of most chart types, such as column and line charts, has an x-axis and a y-axis.
An axis can have an axis title that describes what's plotted on the axis. Chart values are shown
along the value axis (y-axis in Figure 6.1). Of course, this will only work if the underlying da-
taset fields are numeric. An axis usually has axis labels.

In auto-scale mode, the minimum value of the y-axis corresponds to the lowest chart val-
ue ($443,000 in the Reseller Sales chart). Similarly, the maximum value is set to the highest
chart value ($122,536,000). The chart region can automatically infer the axis intervals based
on the minimum and maximum chart values. However, you can overwrite the interval size if
needed. For example, you can set the chart y-axis Interval property to 10 to set the interval
size to $10 assuming the y-axis plots a currency amount. By default, the chart displays labels
for each interval. The chart region also supports minor intervals that divide the major intervals
into equal segments.

The values on the category axis (x-axis in Figure 6.1) are derived from the category values,
such Q1 for the first quarter. The major intervals are set for each category value. There are
four minor intervals within each major interval. You can optionally turn on the chart major
and minor grid lines to display lines for major and minor intervals respectively. You can also
enable major and minor horizontal and vertical tick marks, which usually occur in conjunc-
tion with major and minor grid lines. For example, in Figure 6.1, major tick marks show for
each quarter.

Sometimes, high y-axis values may eclipse the rest of the values and skew your chart,
crowding relevant data into an area too small to see. To remedy this problem, you can confi-
gure the y-axis to show a scale break. At run time, the chart automatically generates a y-axis
scale break when it detects an outlier value. For example, reseller sales for North America far
exceed the sales for the other territories. In the absence of scale breaks, the sales for other ter-
ritories would be barely discernable. The y-axis break at around 85 million prevents this from
happening. You can enable data point labels to show the data point values as text or markers
to emphasize data points.

If you need to display chart values that are measured in different units on the same chart
area, plotting them on the same axis may not make sense. However, the chart region supports
primary and secondary axes to support data series on additional axes. For example, the sales
values in Internet Sales/Orders chart area are plotted on the primary value axis on the left,
while the order quantity shows along the secondary value axis on the right.

 Legends
A chart can have one or more legends that describe the series plotted on the chart. You can
configure which series is displayed in a legend. For example, I chose not to display the order
quantity axis in the chart legend. You can customize the legend format settings and its posi-
tion, such as whether it is inside or outside the chart area.

CHAPTER 6 218

6.1.3 Designing a Column Chart
Consider a column chart when you need to graphically summarize and display the differences
between groups of data, or identify outliers. Next, I will walk you through the steps of imple-
menting the Sales by Region report. I'll start with the Reseller Sales column chart. The Sales By
Region Start report provides the starting point for this practice. The Sales By Region report
demonstrates a cornucopia of chart features, including:
 Working with column and line charts
 Working with multiple chart areas
 Configuring scale breaks and secondary axis
 Using expressions to highlight data points

Before starting the practice, I highly recommend you review Robert Bruckner's excellent Get
More Out of SQL Server Reporting Services Charts article (see Resources). Although originally
written for Reporting Services 2005, most of the information presented there is still applicable
as it explains how the chart region works.

 Getting started with the chart region
Start by adding a chart region to the report and choosing a chart type:

1. Open the Sales by Region Start report.
2. Drag the chart data region from the Toolbox and drop it on the report body.

Report Designer pops up a Select Chart Type dialog box that shows the supported charts. The
charts are organized into the same chart types that appear in Table 6.1. Each chart type sup-
ports additional variations. For example, the column chart type has several variations, includ-
ing stacked column, 100% stacked column, and 3D effect variations.

3. Accept the default Column chart, which is a plain variation of the column chart type. Click
OK. Report Designer adds a column chart with a title of Chart Title.

4. Click different elements of the chart, such as the chart title, chart area, and legend.

Note that clicking a chart element selects the element and shows its properties in the Proper-
ties window. The Properties window exposes the full set of the element properties. A subset of
the most common properties are exposed in property dialog boxes that you can access by
right-clicking the element and clicking the appropriate context menu.

5. Resize the chart to a height of 3.5" and a width of 7.5".
6. Right-click an empty space on the chart area and click Chart Properties.
7. In the Chart Properties dialog box, select the Border tab, and select a Raised border type. Click

OK.
8. Click the chart title to select it. Double-click the title and rename it in place to Reseller Sales.

 Configuring chart groups and values
Next, you will configure the chart data.

1. Double-click an empty space on the chart area to put the chart in edit mode.

When the chart is in edit mode, additional areas, called adorner windows, surround the chart,
as shown in Figure 6.2. You can click the field selectors in these areas to configure the chart
data. Alternatively, you can drag dataset fields from the Report Data window.

DESIGNING FOR DATA VISUALIZATION 219

Figure 6.2 You can bind the chart
categories, series, and values by
dragging dataset fields and dropping
them in the chart areas.

2. Drag the ResellerSalesAmount field and drop it on the Drop Data Fields Here area to create a
new chart series.

Because the chart displays summary information, it uses the Sum function by default to aggre-
gate the data field.

3. Right-click the [Sum(ResellerSalesAmount)] field and click Series Properties. In the Series
Properties dialog box (Series Data), click the fx button next to the Value field.

Notice that [Sum(ResellerSalesAmount)] is a substitute for the expression
=Sum(Fields!ResellerSalesAmount.Value). Click OK. Next, you will configure the chart cate-
gory groups. Our chart will group values by year and quarter.

4. Drag the Date field on the Drop Category Fields Here area. Right-click the Date field and click
Category Group Properties.

5. In the Category Group Properties dialog box (General tab), enter the following expression in
both Label and Group On fields to group data by years:
=Year(Fields!Date.Value)

6. Preview the report.

The chart shows two column bars. The y-axis plots the sales amount and has major gridlines
and tick marks for every interval of 50 million. The x-axis shows years 2003 and 2004 which
are the default values of the Calendar Year multivalued parameter.

7. Drop the Date field again next to the existing Date field in the Drop Category Fields Here area
to create a nested category group for quarters.

8. Right-click the Date field and click Category Group Properties. In the Category Group Proper-
ties window, set the Label property (General tab) to the following expression:
=String.Format("Q{0}", DatePart(DateInterval.Quarter, Fields!Date.Value))

At run time, the String.Format function replaces the {0} placeholder with the quarter number.
Consequently, the labels will show more descriptive quarter names, such as Q1, Q2, and so
on.

9. Bind the Group On setting of the group to the following expression:
=DatePart(DateInterval.Quarter, Fields!Date.Value)

10. Select the Sorting tab and add a new sorting option to sort by the [Date] field in ascending
order.

CHAPTER 6 220

11. Preview the report and notice that the chart now shows a column bar for each quarter.
12. To show sales broken down by territory, we need a series group. Drag the TerritoryGroup

field on the Drop Series Fields Here area, which is located on the right of the chart when the
chart is in edit mode.

13. Preview the report and compare the output with the one shown in Figure 6.3.

Notice that the North America sales eclipse the sales of other regions because they are much
higher.

 Formatting the y-axis
Let's spend some time formatting the chart to improve its visual appearance:

1. Right-click the y-axis label area and click Axis Properties.
2. In the Axis Options tab, check the Enable Scale Breaks option to let the chart automatically

break the y-axis.

As noted, the chart automatically determines the axis scale, minimum value, maximum value,
and intervals. You can change the settings in the Set Axis Scale and Style section to overwrite
the automatic behavior if needed. For example, if you want all labels to be visible, set the In-
terval property to 1. Keep in mind that it may cause some labels to overlap.

3. Select the Labels tab. Clear the Labels Can be Offset and Labels Can be Rotated checkboxes.
Set the Font Can be Decreased To slider to 7pt.

Note that as you change the settings, the changes are applied to the design-time chart image in
real time so that you can immediately see the effects of your changes.

4. Select the Label Font tab and change the font to Trebuchet MS, 7pt.
5. Select the Label Format tab and format the labels as currency, no decimal places, with a thou-

sands separator. Check the Show Values In checkbox to show values in thousands.

You can use the Major Tick Marks and Minor Tick Marks tabs to configure the major and mi-
nor tick marks respectively, such as to enable minor tick marks (not shown by default). The
Line tab lets you format the y-axis line (for example, to change its color or border width if
needed).

6. Click OK to return to the design area. Double-click the Axis Title and rename it to In Thou-
sands.

7. Preview the chart and notice that the chart generates a scale break at around $85 million.

Figure 6.3 The chart
shows sales amount broken
down by years and quarters,
and grouped by territory.

DESIGNING FOR DATA VISUALIZATION 221

TIP Not all element properties are exposed in the property dialog boxes. For example, the chart supports a Scale-
BreakStyle property that is not available in the Axis Properties dialog box. Select the element and use the Properties
window to access all properties.

8. In the chart area, click any of the horizontal major gridlines (the ones that have tick marks in
the y-axis). In the Properties window, change LineColor to #32418cf0 and LineStyle to Solid.

 Formatting the x-axis
Follow similar steps to format the X-axis:

1. Right-click the x-axis and click Axis Properties.

In the Axis Options tab, note that the Scalar Option is not enabled. The x-axis has two modes.
In category mode (default), the category group expression determines the individual category
values. The chart shows labels for the individual category values. In scalar mode, which is on-
ly applicable to DateTime and numeric group values, the chart scales the x-axis based on the
minimum and maximum group values. The Scale Modes report, which is included in the Re-
port project, demonstrates the difference between category and scalar modes. If you prefer
working in a chart scalar mode, turn the Scalar Option on.

2. Uncheck the Always Include Zero option. Set the Side Margins option to Disabled to avoid
gaps between the chart series and sides. Click OK.

3. To turn the major gridlines on, right-click the x-axis and click Show Major Gridlines.
4. In the chart area, click on any of the vertical major gridlines (the ones that have tick marks in

the x-axis). In the Properties window, change the LineColor to #32418cf0, LineStyle to Solid,
and LineWidth to 2pt.

5. To turn the minor gridlines on, right-click the x-axis and click Show Minor Gridlines
6. In the chart area, click any of the vertical minor gridlines (the ones between the major grid-

lines). In the Properties window, change the LineColor to #32418cf0 and LineStyle to Solid.

 Formatting the chart area
Follow these steps to format the chart area:

1. Click the empty space inside the chart. In the Properties window, click the ellipsis (…) button
inside the ChartAreas property.

2. In the ChartAreas Collection Editor, rename the chart area to ResellerSales. Change its Border-
Color property to #418cf0 and BorderStyle to Solid. Click OK.

 Formatting the chart series
You can apply global format settings to chart series.

1. Right-click any of the column bars in the chart and click Series Properties.
2. Select the Markers tab. To turn the data point markers on, expand the Marker Style drop-

down list and select Diamond. Set the marker color and border color to Black.
3. Select the Fill tab. Set the Fill Style to Gradient and Gradient Style to Center.

Suppose that you want to highlight data points based on some condition. For example, let's
say you want to change the border color to Red and the border width to 2pt for all data points
that exceed 100 million.

CHAPTER 6 222

4. Select the Border tab (see Figure 6.4). Enter the following expression in the Line Width prop-
erty:
= Iif(Sum(Fields!ResellerSalesAmount.Value)>100000000, "2pt", "1pt")

This expression sets the border width to 2pt if the data point value is greater than 100 million.
5. Enter the following expression in the Line Color property:

= Iif(Sum(Fields!ResellerSalesAmount.Value)>100000000, "Firebrick", "Black")

This expression checks if the data point aggregated value is greater than 100 million. If this is
the case, the border color will be set to Firebrick.

6. Change the Line Style setting to Solid.
7. Select the Shadow tab. Change the shadow offset to 2pt. Click OK to close the dialog box.
8. Right-click any of the column bars in the chart and click Show Data Labels.
9. Right-click any of the data labels and click Series Label Properties. In the Font tab, change the

font size to 8pt.
10. In the Number tab, format the series labels as numbers, with a thousands separator, and no

decimal places. Check the Show Values In checkbox to show values in thousands. Click OK.

TIP You can use chart keywords for the label text. The Label Data drop-down list in the General tab of the Series Label
Properties dialog box lists the available keywords. The keywords are replaced with the actual values at run time. For
example, you can select the #PERCENT keyword if you want the label to show the percentage contribution of data points
to the series total. You can also combine keywords. For example, #PERCENT of #TOTAL{C0} shows the percentage
contribution of the data point and the overall total formatted as currency with no decimal places. Don't precede the ex-
pression with an equal sign because Reporting Services will attempt to parse it, at which point it will fail because chart
keywords cannot be used in expressions.

11. In the chart area, click any of the bars to select the series.

In the Properties window, note that the Type property shows the chart variation, which in this
case is Column, Plain. You can click the … button inside the Type property to change the
chart type if needed.

Figure 6.4 Data points can have
expression-based properties to
highlight interesting values.

DESIGNING FOR DATA VISUALIZATION 223

12. In the Properties window, expand the Label category. Set Label Position to Top.
13. Enter the following expression in the Tooltip property:

=Fields!TerritoryGroup.Value

When the user hovers on a column bar, the chart will display the name of the associated terri-
tory group.

 Configuring the legend
By default, the chart legend is positioned to the right of the chart and takes up some of the
chart width. Let's position the legend below the chart to free up more space on the right:

1. Click the legend to select it.
2. Drag its resize handler to move the legend below the chart. Report Designer highlights areas

where the legend can be positioned.
3. Right-click the legend and click Legend Properties.
4. Select the Font tab and change the legend font to Microsoft Sans Serif, 8pt.
5. Select the Fill tab and change the Fill Style to Gradient. Click the fx button next to the first

gradient color, and enter #e6f2fc. Set the Gradient Style to Top Bottom.
6. Select the Border tab. Change Line Style to Solid and Line Color to #e6f2fc. Click OK.
7. In the Properties window, change EquallySpacedItems to True to space the items equally in

the legend. Change TextWrapThreshold to 50 to truncate legend labels if they exceed 50 cha-
racters.

If you preview the report at this point, your chart should look like the Reseller Sales chart area
shown in Figure 6.1.

6.1.4 Designing a Line Chart
Next, you'll implement the Internet Sales/Orders chart area. It's designed as a hybrid chart that
shows Internet sales amount as a column chart and Internet order quantity as a line chart. The
sales amount is plotted on the primary axis (left y-axis), while the order quantity is shown
along the secondary axis.

 Adding a chart area
A chart can have more than one chart areas. The first chart area, which the chart automatically
creates, is the primary chart area. All chart areas share the same dataset, category groups, and
series groups. You decide which series is shown on which chart area.

1. Select the chart and set its height to 7.5" to free up space for the second chart area.
2. Right-click an empty space on the chart and click Add New Chart Area.
3. In the Properties window, rename the chart area to InternetSales.
4. Set the BackgroundGradientEndColor property to LemonChiffon and BackgroundGradient-

Type to TopBottom to give the plot area a gradient background effect.
5. Drag the InternetOrderQty field from the Report Data window and drop it next to the Resel-

lerSalesAmount field in the Drop Data Fields Here area.
6. Drag the InternetSalesAmount field from the Report Data window and drop it next to the

InternetOrderQty field in the Drop Data Fields Here area.

CHAPTER 6 224

 Configuring the chart series
By default, the chart plots the series on the primary chart area (ResellerSales). Follow these
steps to reconfigure the new series to be shown on the InternetSales chart area:

1. Right-click the [Sum(InternetSalesAmount)] field in the Drop Data Fields Here area and click
Series Properties.

2. In the Series Properties dialog box, select the Axes and Chart Area tab, as shown in Figure 6.5.
3. Expand the Chart Area drop-down list and select InternetSales. The chart region shows the

InternetSalesAmount series on the InternetSales chart area. Click OK.
4. Right-click the [Sum(InternetOrderQty)] field in the Drop Data Fields Here area and click

Series Properties.
5. In the Axes and Chart Area tab, configure the series to be plotted on the InternetSales chart

area too.

Internet sales and order quantity are measured in different units and you may not want them
to share the same axis. Let's configure the InternetOrderQty values to be plotted on a second-
ary axis:

6. In the Axes and Chart Area tab, set the Value Axis setting to Secondary.

Suppose you don't want to display the InternetOrderQty series in the chart legend. Let’s re-
move it now:

7. In the Legend tab, check the Do Not Show This Series In a Legend checkbox. Click OK.
8. In the design area, right-click an empty space in the chart and click Add New Title.
9. Rename the new title in place to Internet Sales/Orders.

10. Drag the title above the InternetSales chart area. As you drag the title, the chart shows a blue
rectangle to indicate areas when you can drop the title.

11. Right-click the primary (left) y-axis and click Axis Properties. In the Axis Options tab, turn off
Enable Scale Breaks if checked.

Figure 6.5 Use the Series
Properties dialog box to as-
sign a series to a chart area.

DESIGNING FOR DATA VISUALIZATION 225

 Working with a line chart
As it stands, the InternetSales chart area shows both series as column charts. Suppose you
want to show the order quantity as a line chart:

1. Right-click the [Sum(InternetOrderQty)] field in the Drop Data Fields Here area and click
Change Chart Type.

2. In the Select Chart Type dialog box, click the Line tab and leave the default variation selected.
Click OK.

The InternetOrderQty series is now plotted as a line chart, as shown in Figure 6.6. Note that
the line chart is behind the column chart. That's because the order in which the fields appear
in the Drop Data Fields Here panes is significant. Because the InternetOrderQty field appears
in front of the InternetSalesAmount field, its series is plotted first on the chart area.

3. In the Drop Data Fields Here pane, drag the [Sum(InternetOrderQty)] field after the
[Sum(InternetSalesAmount)] field.

Now the line chart appears in front of the column chart.
4. In the Drop Data Fields Here pane, click the [Sum(InternetOrderQty)] to select it.
5. In the Properties window, change the BorderWidth property to 2pt to make the line ticker.

Alternatively, you can right-click [Sum(InternetOrderQty)] and click Series Properties to use
the Series Properties dialog to make the changes.

6. In the Properties window, change Marker Color property to Black, Marker MarkerType
to Diamond, and Marker Size to 6pt.

The InternetOrderQty line chart shows markers for each data point.
7. Format the chart as you did for the Reseller Sales chart, including renaming the axis titles,

formatting the axis labels, and so on.

At this point, your chart report should look like the one shown in Figure 6.1.

6.2 Working with Chart Types
The chart region lets you do much more than plain column and line charts. Next, I'll present
additional chart types that demonstrate more chart capabilities. For the sake of brevity, I'll
highlight the most important implementation steps that are relevant to each chart type.

Figure 6.6 You
can select differ-
ent chart types for
the chart series.

CHAPTER 6 226

6.2.1 Histogram Charts
A histogram chart is a type of a column chart that summarizes and displays the distribution of
data. The chart region constructs a histogram by segmenting the range of data into equal sized
bins, also known as segments, groups, or classes. The y-axis is labeled Frequency and shows
the number of data points in each bin. The x-axis shows the range of values for each bin.

 Understanding the Histogram Chart report
Figure 6.7 shows the Histogram Chart report. The chart shows the distribution of employee
sick leave hours. The data ranges from 20 to 80 sick leave hours. I configured the chart to di-
vide this range into bins of 10 hours which are shown on the x-axis. The y-axis shows the fre-
quency, which in our case is the number of employees. It ranges from 0 to 80 employees.

Analyzing the chart, we can deduce that for the most part the data distribution is relatively
even. There about 60 employees who have taken between 60 and 70 sick leave hours. There is
one outlier bin for an employee who has taken 70-80 hours.

NOTE Before alarming the Human Resources department about the excessive number of sick leave hours, note that
the report queries table HumanResources.Employee, which is not time-dependent. Most likely, this table captures the
overall employee's sick leave hours to date.

 Implementing a histogram chart
If you compare a histogram and a column chart side by side, you can see they both have ver-
tical columns, but the histogram has fewer of them. You implement a histogram chart in the
same way you implement a column chart, with the exception that the category group would
group on each dataset row. In our case, the category group (EmployeeID) groups on each em-
ployee. Of course, if you render the column chart without configuring it in histogram mode, it
will be hardly readable because it will plot as many columns as the number of employees. For-
tunately, turning the column chart into a histogram is a matter of changing a single property:

1. Click the SickLeaveHours series to select it.

2. In the Properties window, change CustomAttributes ShowColumnAs to Histogram.

There are additional custom properties you can set to configure the histogram. For example, I
changed CustomAttributes HistogramSegmentIntervalWidth to 10 to configure the bin size.

Figure 6.7 This histogram
chart shows the distribution of
employee sick leave hours.

DESIGNING FOR DATA VISUALIZATION 227

6.2.2 Pareto Charts
Vilfredo Pareto was an economist who is credited with establishing what is now widely known
as the Pareto Principle, or 80/20 law. This law states that, for many events, 80% of the effects
come from 20% of the causes. A Pareto chart summarizes and displays the relative importance
of the differences between groups of data.

 Understanding the Pareto Chart report
Pareto charts distinguish the “vital few” from the “useful many.” A Pareto chart is a column
chart that sorts columns in descending order so that the largest group contributors appear
first. A line chart shows the running total of the chart values as each one is measured. The
right y-axis displays the cumulative percentage, which always ranges from 0 to 100%.

The Pareto Chart report (see Figure 6.8) demonstrates a Pareto chart showing the accessory
sales for a given year. The Jerseys category has sold the most (about $100,000), followed by
Shorts, and so on. Analyzing the line chart, we can deduce that the combined sales of Jerseys
and Shorts have contributed to about 80% of the overall sales. The results deviate somewhat
from the Pareto rule, as they yield an 80/30 distribution (two categories out of six produce
80% of sales), but for our purposes it is close enough.

 Implementing a Pareto chart
Start implementing the Pareto chart as a column chart that has data fields, category fields, and
series fields. The Pareto Chart report groups by product category and uses the aggregated sales
amount for the chart series. Similar to histogram charts, configuring a Pareto chart requires
changing the ShowColumnAs property:

1. Click the Sales series to select it.

2. In the Properties window, change CustomAttributes ShowColumnAs to Pareto.
3. Adjust the series BorderWidth property to make the line chart more visible. In Figure 6.8, the

border width is set to 2pt.

As a result of these changes, the chart will auto-generate the y-axis and the line that shows the
running total.

Figure 6.8 A Pareto chart
shows the cumulative per-
centage of the chart value.

CHAPTER 6 228

6.2.3 Three-Dimensional Column Charts
Almost every chart type comes in a 3D version. The 3D versions are eye-catching but they
may be somewhat difficult to analyze. In addition, 3D charts don't support all of the features
of their two-dimensional counterparts. For example, scale breaks don't work with 3D. For
these reasons, I recommend you use 3D effects sparingly.

The 3D Column Chart report, shown in Figure 6.9, demonstrates the following features:
 3D column chart with custom drawing styles
 Series custom intervals and custom positioning
 Drillthrough actions

The report shows the Adventure Works gross sales, reseller sales, and Internet sales by year on
the x-axis and sales amount on y-axis. The user can filter the report data by the Country re-
port parameter (not shown on Figure 6.9).

 Working with 3D effects
Follow these steps to configure a 3D column chart:

1. Add a chart data region . In the Select Type Chart dialog box, select 3D Column chart.

TIP The 3D column chart is a pre-configured template for creating a new column chart with 3D effects. If you have an
existing 2D column chart, you can configure it as a 3D chart by right-clicking on the chart and clicking 3D Effects.

2. Bind the chart to CalendarYear as a category field, and then SalesAmount, InternetSalesA-
mount, ResellerSalesAmount as data fields. In the CalendarYear group properties, sort by the
CalendarYear field in descending order.

3. In the Chart Area Properties dialog box (3D tab), specify the 3D settings listed in Table 6.2.

Figure 6.9 This chart is
implemented as a 3D
column chart that shows
the Adventure Works
gross, reseller, and Inter-
net sales side by side.

DESIGNING FOR DATA VISUALIZATION 229

Table 6.2 3D settings for the chart in the 3D Column Chart report

Property Setting Property Setting

Enable 3D Projection Mode Perspective

Enable Series Clustering Perspective 7

Rotation 35 Wall Thickness 7

Inclination 35 Depth Ratio 100

Projection Mode Perspective Gap Depth 100

 Configuring the chart area
A 3D chart needs more real estate than its 2D counterpart. You can overwrite the default chart
area settings and specify custom plot and position settings. The CustomInnerPlotPosition set-
tings define the plot area on which the chart area will be drawn as a percentage of the entire
chart area. The CustomPosition property defines the custom positioning of the chart area.

1. Select the chart area by clicking one of its walls. The Properties window should show ChartA-
rea1 selected.

2. In the Properties window, specify the following settings:

Table 6.3 Additional chart area settings that define custom positioning and formatting

Property Setting Property Setting Property Setting

CustomInnerPlotPosition Enabled True CustomPosition Enabled True BorderColor #40404040

CustomInnerPlotPosition Height 97 CustomPosition Height 100 BorderStyle Solid

CustomInnerPlotPosition Left 0 CustomPosition Left 0 BackgroundColor OldLace

CustomInnerPlotPosition Top 0 CustomPosition Top 0 Area3DStyle Shading Simple

CustomInnerPlotPosition Width 100 CustomPosition Width 0

 Configuring the chart series
The chart region supports custom drawing styles to enhance the 3D effects of the chart series:

1. Select the InternetSalesAmount series by clicking the [Sum(InternetSalesAmount)] field in the
Drop Data Fields Here area or by clicking one of the column bars of the InternetSalesAmount
series in the chart.

2. In the Properties window, change Custom Attributes DrawingStyle Emboss.
3. Select the ResellerSalesAmount series and change its drawing style to LightToDark.
4. Select the SalesAmount series and change its drawing style to Wedge.
5. Preview the report.

Notice that the y-axis labels are rather congested. However, you can use expressions to set the
label intervals.

6. Click the y-axis to select it. Enter the following expression in the chart axis Interval property:
=SUM(Fields!SalesAmount.Value)/10

CHAPTER 6 230

This expression divides the y-axis into ten intervals based on the overall sales amount.
7. Set the Margin property for both axes to False to remove the side margins.

 Configuring series drillthrough
As with tablix reports, you can add navigation features to your charts. Suppose that the user
would like to drill through a column bar of the Sales Amount series to see the monthly sales.
You can meet this requirement by configuring a drillthrough action for the SalesAmount se-
ries:

1. Add an action to the series. For example, if you were adding drillthrough to show a level of
details behind the Sales Amount series, you would open the SalesAmount series properties
and select the Action tab, as shown in Figure 6.10.

2. Select the Go To Report option and select the drillthrough report to navigate to. In our case, I
selected the Bar Chart report, which I'll discuss in the next section.

3. Add parameters to pass to the drillthrough report, (for example, Year and Country parame-
ters). Map the Year parameter to CalendarYear field (enter [CalendarYear]) and Country para-
meter to the County report-level parameter (enter [@Country]).

4. Preview the report and click any of the column bars in the SalesAmount series.

Reporting Services launches the Bar Chart report, which I'll discuss next.

6.2.4 Bar Charts
A bar chart is closely related to a column chart. The difference is that this chart type displays a
series as a set of horizontal bars. In fact, the bar chart is the only chart type that displays data
horizontally by inverting the axes, so the x-axis shows the chart values and the y-axis shows
the category values. Bar charts are typically used to compare individual items, as they place
more emphasis on comparing values and less emphasis on time. Time is usually projected on
the y-axis. Because a bar chart inverts the axes, you cannot combine it with another chart type.

The bar chart has several variations. A stacked bar chart displays multiple series stacked
vertically. The percent stacked bar chart shows multiple series stacked vertically to fit 100% of

Figure 6.10 Use the Series Prop-
erties to configure a navigation
action for the entire series.

DESIGNING FOR DATA VISUALIZATION 231

the chart area. The 3D clustered variation shows individual series in separate rows on a 3D
chart. Finally, the 3D cylinder chart shapes the bars as cylinders with 3D effects.

 Understanding the Bar Chart report
The Bar Chart report (see Figure 6.11) compares the Internet sales and resale sales side-by-
side for a given year. This report is designed as a drillthrough report from the 3D Column
Chart report and it accepts the year and country as input parameters.

The y-axis shows the months with sales for the selected year. The x-axis plots the sales
amount. Glancing at the chart, we can see that resale sales outperform Internet Sales by far.

 Implementing a bar chart
Follow these steps to implement the bar chart report:

1. Drop a chart region and select 3-D Clustered Horizontal Cylinder chart type, which is the last
chart type in the Bar section on the Select Chart Type dialog box.

2. Drop the Date field in the Drop Category Fields Here area.
3. Drop the InternetSalesAmount and ResellerSalesAmount fields in the Drop Data Field Here

area.
4. Delete the chart title and axis labels. Change the legend's Position property to TopRight.
5. Click the y-axis to set its LabelsFormat property to MMM yy. Click the x-axis and set its La-

belsFormat property to #,0,;(#,0,).
6. Select either of the two series and open its Properties window. Notice that the series Custo-

mAttributes DrawingStyle property is set to Cylinder. You can change the drawing style for
each series to increase its visual impact.

7. Click the InternetSalesAmount series. In the Properties window, change the LegendText prop-
erty to Internet and BorderColor property to Black.

8. Click the ResellerSalesAmount sales series. In the Properties window, change the LegendText
property to Resale and BorderColor property to Black.

Bar charts are effective for comparing data among a relatively small number of groups. If more
than three series are present on the chart, consider using a stacked bar. To convert the bar
chart to a stacked bar, right-click the chart area and choose any of the stacked bar charts, such
as 3-D Stacked Bar or 3-D Stacked Bar 100% if you want to see the series contribution as a
percentage.

Figure 6.11 This bar chart
compares the Internet and
resale sales by month.

CHAPTER 6 232

6.2.5 Shape Charts
A shape chart displays values as percentages of a whole. Categories are represented by indi-
vidual segments of the shape. The size of the segment is determined by its contribution. This
makes a shape chart useful for proportional comparison between category values. Shape charts
have no axes. Share chart variations include pie, doughnut, funnel, and pyramid charts. All
shape charts display each group as a separate slice on the chart. Funnel and pyramid charts
order categories from largest to smallest.

 Understanding the Pie Chart report
The Pie Chart report, shown in Figure 6.12, demonstrates a shape chart that shows the Ad-
venture Works sales by product category. The chart plots data for a single year or multiple
years depending on the selected values in the Year multivalued parameter (not shown in Fig-
ure 6.12). I configured the series labels to show the percentage contribution of each category
to the overall sales.

As it stands, the chart region doesn't natively support a data table that shows the underlying
chart data in a tabular format. However, you can implement a data table by placing a table or a
matrix side-by-side with the chart region. The matrix below the chart region demonstrates this
approach. The pie chart presents the summarized report data. To see more details, the user
can analyze the crosstab report and drill down to products and quarters.

 Implementing a pie chart
Follow these steps to implement the Pie Chart report:

1. Drop a chart region and select the 3-D Pie chart variation in the Shape tab of the Select Chart
Type dialog box. Change the chart name to SalesChart.

2. Add the CalendarYear and Category fields to the Drop Category Fields Here area to define the
category groups. Consequently, the chart will show as many slices as the number of categories
with sales in the selected year(s).

Figure 6.12 This pie chart
shows the Adventure Works
sales by category and year.

DESIGNING FOR DATA VISUALIZATION 233

3. Right-click the CalendarYear group field and choose Category Group Properties. In the Sorting
tab, click the Add button and set up a new sorting option to sort the group by [CalendarYear].
Repeat this step to sort the Category group by [Category].

4. Add the SalesAmount field to the Drop Data Fields Here area to set up the chart series.
5. By default, a pie chart doesn't show data labels. Right-click the chart pie area and click Show

Data Labels.
6. Right-click the data labels and click Series Label Properties. Format the labels as needed.

To create the labels for each slice, you can use an expression that calculates the slice contribu-
tion of each slice as a percentage of all sales. You need to define the expression at the data
point level instead of the series level because the expression requires the data point value.

7. Select the chart area. In the Properties window, enter the following expression in the Label
Label property:
=Sum(Fields!SalesAmount.Value)/Sum(Fields!SalesAmount.Value, "SalesChart")

This expression divides the data point value by the overall sales. The second Sum function
calculates the overall sales value by using the name of the chart as the expression scope.

8. When prompted, confirm to change the Label UseValueAsLabel property to False.

9. Set Label Format to P2 to format the label as a percentage with two decimals. Set the Label
 Color property to White.

10. Preview the report.

 Working with custom pie attributes
A pie chart supports custom attributes that define the chart appearance and behavior. For ex-
ample, if the chart doesn't have 3D effects (in the Chart Area properties, uncheck Enable 3D),
you can set CustomAttributes PieDrawingStyle to SoftEdge or Concave to change the visual
appearance of the chart. While a pie chart is a very effective data visualization tool, it may be-
come crowded as the number of category values increase. Suppose that you want to consoli-
date into a single slice all of the small slices that together contribute to 10% of overall sales.
You can do this by configuring the chart to collect slices:

1. Click the [Sum(SalesAmount)] field in the Drop Data Fields Here area to select the chart se-
ries.

2. Change CustomAttributes CollectedStyle to SingleSlice.
3. Change CustomAttributes CollectedThreshold to 10.

4. Change CustomAttributes CollectedThresholdUsePercent to True.

5. If you want to pull the collected slice slightly away from the chart, set CustomAttributes
CollectedSliceExploded to True.

There are additional properties applicable to the collected slice, such as whether to show it in
the legend, what its legend text will be, and so on. If you prefer to show the data labels outside
the chart, do the following:

6. Set CustomAttributes PieLabelStyle to Outside.

You can also use the CustomAttributes MinimumRelativePieSize series property if you want
to adjust the pie size as a percentage of the chart area size.

CHAPTER 6 234

 Implementing a data table
The matrix below the chart shows the chart data in a tabular format. It lets the user drill down
to the product level on rows and quarters on columns. One interesting implementation detail
is that the pie chart supports a bookmark navigation action that lets the user click a slice and
jump to its details in the crosstab report.

1. Click the … button inside the Action property and set up a bookmark navigation action for
drilling through to a bookmark using the following expression:
=String.Format("{0}{1}", Fields!CalendarYear.Value, Fields!Category.Value)

At run time, this expression returns a combination of the year and the product category asso-
ciated with the clicked slice, such as 2004Accessories.

2. In the tablix region, click the Category cell and note that its Bookmark property uses the same
expression to define the bookmark target.

3. Preview the report and select years 2003 and 2004 in the Year parameter.
4. Expand year 2003 in the matrix report. Expand the Accessories and Bikes categories to see

data broken down by product.
5. In the pie chart, click the 2004 Accessories slice.

The report jumps to the 2004 Accessories row in the matrix region. The navigation action lets
the user quickly navigate to the details of the selected slice.

6.2.6 Area Charts
Similar to a line chart, an area chart displays a series as a set of points connected by a line with
the exception that all of the area below the line is filled in. The line chart and area chart are
the only chart types that display data contiguously. Consequently, the area chart is commonly
used to represent data that occurs over a continuous period of time.

The area chart has three variations. The smooth area chart type connects the data points
by a smooth line which makes it more suitable to identify trends instead of actual values. The
stacked area chart type displays multiple areas stacked vertically. This could be useful when
you need to analyze more than two series and you want to prevent overlapping series that ob-
scure data values. The percent stacked area chart type shows the multiple series stacked verti-
cally that taken together fit the entire chart area.

 Understanding the Area Chart report
The Area Chart report (see Figure 6.13) shows the Adventure Works reseller sales for a given
year. The user can select which sales territories to see on the report. Each territory is plotted as
a separate chart series. In Figure 6.13, the chart has two series because I selected the North
America and Pacific values of the Territory parameter (not shown in the screenshot).

This report also demonstrates handling missing data. The chart supports a set of proper-
ties that control the appearance of empty points. For example, the Pacific region has missing
data for the first four months of 2003. There is a value for May 2003, followed by missing data
for June 2003. I configured the chart to show a red cross when data is missing. Besides show-
ing the empty points as zero, the chart lets you average them across the data points that con-
tain non-zero values.

DESIGNING FOR DATA VISUALIZATION 235

 Implementing the Area Chart report
Implementing the area chart report is straightforward.

1. Choose the Area chart type when configuring a new chart region.
2. In the Chart Properties dialog box (General page), choose the Semi Transparent color palette

to let the overlapping series show through.
3. Drag the ResellerSalesAmount to the Drop Data Fields Here area, Date to the Drop the Catego-

ry Fields Here area, and TerritoryGroup to the Drop Series Fields Here area.
4. Click any of the series in the chart area. In the Property window, set the Interval to 1 to show

major tick marks and labels for every month.

 Handling missing data
Empty data points are points that have NULL values or don't have values at all. For example,
the Pacific territory has no data recorded prior to May 2003 and NULL for June 2003.The
chart lets you control how missing data will be presented to the end user.

1. Select any of the series in the chart area. In the Properties window, expand the CustomAttri-
butes category.

Note that CustomAttributes EmptyPointValue is set by default to Average. Consequently,
the chart will average empty points across the data points that do contain data.

2. Assuming you want to show empty points as zeros, change CustomAttributes EmptyPoint-
Value to Zero.

You can customize the empty point appearance to inform the user that there is missing data.

3. In the Properties window, set EmptyPoint BorderColor to Gray to show a line for the miss-
ing points.

4. Set EmptyPoint Marker Color to Red, EmptyPoint Marker MarkerType to Cross,
and EmptyPoint Marker Size to 15pt.

5. Preview the report and check Select All in the Territory multivalued parameter.

Note that as the number of series increase, the chart becomes difficult to read because series
overlap each other.

Figure 6.13 This area
chart shows sales by region
over time and displays
markers for missing values.

CHAPTER 6 236

6. In design mode, right-click the chart and change its type to Stacked Area.
7. Preview the report for all territories and notice that the chart is more readable because the

three areas are stacked on top of each other.

The band of each series shows the proportional contribution of the series. The area height
shows the cumulative value for all regions.

6.2.7 Range Charts
Some measures, such as weather temperatures, stock data, currency rates, and error margins,
are best analyzed within a range of values. A weather forecast predicts minimum and maxi-
mum values for the next day. A stock has open, close, low and high values. A currency rate
has start and end values for a given day. An error may have a deviation. You can use a range
chart to display data points by plotting several Y values (a range) for each data point.

The plain range chart lets you define a range consisting of two values. A stock chart is de-
signed for financial or scientific data that uses up to four values per data point, such as high,
low, open and close values. The candlestick chart is similar to a stock chart but displays boxes
to show the range between the open and close values. Error bar charts are used to display sta-
tistical information about the data, using three Y values for each data point (center or average
point value, lower error value, and upper error value). Finally, the boxplot chart type shows a
box symbol that summarizes the distribution of the data within one or more datasets.

 Understanding the Range Chart report
The Range Chart report (see Figure 6.14) illustrates an example of a range chart. The chart
shows the currency rate for a given currency over a user-specified time period. The currency
rates are retrieved from the CurrencyRate table in the AdventureWorksDW2008 database. In
the example, the chart shows the rate history of the Argentine Peso (ARS) currency for the pe-
riod from 7/2/2003 to 7/9/2003. Each data point has a start and end rate values that were rec-
orded for that day.

Although the range chart can handle multiple categories, the report is designed to show a
single currency. This is because the currency rates vary greatly between different currencies. If
multiple currencies are selected, their plotted ranges would be very narrow. This defeats the
purpose of having a range chart as the resulting graph would look more like a line chart. If

Figure 6.14 This range chart
shows the fluctuations of a cur-
rency rate over a given period
where each data point has a start-
ing and closing daily rate.

DESIGNING FOR DATA VISUALIZATION 237

your real-life data points are within comparable ranges, consider plotting multiple categories
on the same chart.

 Implementing a range chart
Start implementing a range chart by preparing a dataset that includes a range of values of each
data point. Recall that we need at least two values for each data point.

The report dataset, shown in Figure 6.15, returns the historical currency rate for each day in
the selected period. Each row has a start and end rate.

1. Add a chart to the report. In the Select Chart Type dialog box, select the first chart variation in
the Range section.

2. Drag the CurrencyRateDate field to the Drop the Category Fields Here area. Drag the ToCur-
rencyCode field to the Drop Series Fields Here area.

3. Drag the EndRate to the Drop Data Fields Here area to define the series high values.

Note that an additional Low field is displayed next to the EndRate field to remind you that
you need to supply another field for the low range value.

4. Drag the StartRate to the Low field inside the Drop Data Fields Here area.

5. Select the chart series. In the Properties window, expand the DataPoint Values property
group.

Observe that the DataPoint Values High property is set to =Sum(Fields!EndRate.Value)
and the DataPoint Values Low property is set to =Sum(Fields!StartRate.Value). This is all
you need to configure a plain range chart. Other variations of the range chart may require con-
figuring additional range properties. For example, if you work with a stock chart, you may
need to also configure DataPoint Values Start and DataPoint Values End proper-
ties.

6.2.8 Scatter Charts
Scatter charts reveal relationships or associations between two variables. For example, you
may find a correlation between reseller size and sales. You can use a scatter chart to show the
reseller sales along the y-axis and the reseller size, such as the number of employees, along the
x-axis. The resulting chart can help you understand if the two variables are related and, if so,
how (for example, whether they have a linear relationship). Scatter charts are commonly used
for displaying and comparing numeric values, including scientific, statistical, and engineering
data.

The scatter chart type has the following variations. The bubble chart replaces data points
with bubbles of different size. The second Y value is used to control the size of the bubble.
Although the chart is called "bubble" it also can display different shapes, such as square, di-
amond, or triangle. The 3-D bubble chart variation displays the chart in 3D.

Figure 6.15 The dataset in-
cludes start and end rate values
for each currency per day.

CHAPTER 6 238

 Understanding the Bubble Chart report
The Bubble Chart report, shown in Figure 6.16, demonstrates the bubble chart variation of
the scattered chart type. It helps you analyze the correlation between reseller size and sales.
The chart shows a subset of the Adventure Works resellers with their names plotted on the x-
axis and sales on the y-axis. The size of the bubble represents the reseller size in number of
employees. The label above the bubble shows the number of employees for that reseller.

The report supports Country and Top Count parameters (not shown in Figure 6.16). The
Country parameter, whose default value is United Kingdom, lets you filter resellers by territo-
ry. Use the Top Count parameter to specify how many resellers you want to see on the report.
The default value of the Top Count parameter is 10. Subsequently, the report shows the top
10 resellers with the most sales.

Glancing at the chart, we can deduce that in the case of the Adventure Works data, there
isn't a strong correlation between reseller size and sales. For example, the second UK reseller
with the most sales has only 17 employees. When you hover on top of a bubble, a tooltip
pops up that shows the reseller sales amount.

 Implementing the Bubble Chart report
A bubble chart requires two numeric values for each data point. As with a linear chart, the
first numeric value defines the y-axis position of the bubble. The second numeric value con-
trols the size of the bubble.

1. In the Select Chart Type dialog box, select the Bubble variation of the Scatter chart type.
2. Drag the Reseller Name field to the Drag Category Fields Here area.
3. Drag the Sales field to the Drop Data Fields Here area.

Note that the chart shows an empty Size field next to the Sales field in the Drop Data Fields
Here area.

4. Drag the NumberEmployees field to the Size field in the Drop Data Fields Here area.

5. Click the chart series. In the Properties window, expand the DataPoint Values property.

Note that the DataPoint Values Size property, which controls the bubble size, is set to
=Sum(Fields!NumberEmployees.Value). The DataPoint Values Y property, which con-
trols the y-axis position of the bubble, is bound to Sum(Fields!Sales.Value).

Figure 6.16 This bubble chart
shows a correlation between the
reseller's sales and size.

DESIGNING FOR DATA VISUALIZATION 239

6. You can change the plotted shape as needed. Set the Marker MarkerType property to Cir-
cle.

7. To show the number of employees, set the Label Label property to the following expres-
sion:
=Sum(Fields!NumberEmployees.Value)

8. When prompted, confirm to set the Label UseValueAsLabel to False. Set Label Visible to
True.

9. Set the Tooltip property to =Sum(Fields!Sales.Value) to show the reseller sales as a tooltip.

6.2.9 Polar Charts
Polar charts are most commonly used to graph polar data, where each data point is deter-
mined by an angle and a distance. A polar chart plots the data points by category on a 360-
degree circle by default and can be changed by setting the X-axis Maximum property to a dif-
ferent degree, such as 180. Its chart area is a circular graph on which data points are plotted at
a distance from the center point. The farther the point is from the center, the greater its value.

The radar chart is a variation of the polar chart type. Unlike a polar chart, a radar chart
doesn't display data in terms of polar coordinates. It is similar to a pie chart, except that the
category values are at an equal angle and extend from the center of the circle. Consider a polar
chart when you need to compare multiple data series and you need clear and concise presen-
tations of data. The polar chart type also supports a 3D Radar variation.

 Understanding the Radar Chart report
The Radar Chart report, shown in Figure 6.17, illustrates the radar chart variation of the polar
chart type. It shows the Adventure Works reseller sales for a given year by reseller type. The y-
axis shows the sales amount in thousands. Polar charts don’t plot data points on the x-axis.
However, the x-axis still exists to shows the category values (months in this case).

Figure 6.17 This radar chart
shows how the warehouse,
value-added, and specialty
reseller sales compare.

CHAPTER 6 240

Analyzing the chart, we can determine that in April, warehouse resellers have generated about
$1,250,000, while value-added resellers have sold about $800,000. Reseller sales are lowest in
January and highest in May and June. The sales of specialty bike shops, which are plotted in
red, are much lower than the other two reseller types. This report also demonstrates working
with custom color palettes and ordering series.

 Implementing the Radar Chart report
To implement a radar chart, start with the datasets and basic chart configuration steps you
know so well, and then add the following steps:

1. In the Select Chart Type dialog box, choose the Radar variation of the Polar chart type.
2. Drag the Sales field to the Drop Data Fields Here area, Month field to the Drop Category

Fields Here area, and ResellerType field to the Drop Series Fields Here area.
3. Preview the report and note that the Specialty Bike Shop series is not visible because it is ob-

scured by the other two series.

There are several ways to work around this issue. To start with, instead of plotting data points
as areas, you can plot them as lines or markers. The radar chart supports customization via a
set of attributes which you can find under the series CustomAttributes property group. For
example, change CustomAttributes RadarDrawingStyle from Area to Marker if you want to
see the data series plotted as markers. You can also configure the chart to use a custom color
palette if you need more control over the series colors.

4. Select the chart. In the Properties window, click the … button inside the CustomPaletteColors
and notice that I have defined a custom palette of three colors (LightGrey, MistyRose, and Le-
monChiffon).

5. With the chart selected, expand its Palette property and change it to Custom.

Previewing the report should now show each area colored in one of the custom colors.

NOTE When you define a custom color palette, make sure to add as many colors as the maximum number of series you
expect. If you have fewer colors than series, the chart will start reusing the same colors.

If changing the chart plot style and using custom colors doesn't help, consider re-ordering the
chart series. In our case, we need to plot the specialty sales on top of the other two series. To
do so, we need to sort the chart series in descending order on sales.

6. Right-click the ResellerType field in the Drop Series Fields Here area and click Series Group
Properties.

7. In the Series Group Properties dialog box, select the Sorting tab and add a new sort expression
that sorts the series on the Sales field in descending order.

Preview the report and note that the specialty sales appear behind the other two chart series.

6.3 Designing Gauge Reports
The gauge is a one-dimensional data region that displays a single value from a report dataset.
Gauges are commonly used because they are very easy to read. They put data into the context
by visually defining what the good, medium, and bad values represent. For example, you can
use the gauge region to implement a dashboard page that shows the company performance as
a set of Key Performance Indicators (KPIs). Another popular use for the gauge region is to

DESIGNING FOR DATA VISUALIZATION 241

place it inside a containing region, such as table or matrix, to visualize the tablix cells as re-
peating gauges.

6.3.1 Understanding the Gauge Region
The gauge region debuts in this release of Reporting Services and is based on the Dundas data
visualization technology. Reporting Services supports radial (circular) and linear gauges. Simi-
lar to the chart region, each gauge type comes with several variations for different styles.

 Understanding gauge types
Radial and linear gauges are very similar and contain the same elements, including back
frames, pointers, scales, and ranges. At the same time, there are some differences. Radial gaug-
es have a pivot point around which the pointer(s) rotate. The pivot point is set by default to a
coordinate of (50, 50) which corresponds to the center of the gauge. Radial gauges support
marker, bar, and needle pointers. Circular scales have a start angle, a sweep angle, and radius.

Linear gauges display the value as a portion of the scale. They can have a horizontal or
vertical orientation. A linear gauge can have bar or marker pointers. The needle pointer is not
available with linear gauges. Linear scales have a start margin and an end margin.

 Upgrading from Dundas gauge
Similar to upgrading from Dundas Chart, Reporting Services supports a partial upgrade path
from the Dundas Gauge for Reporting Services. As it stands, Reporting Services doesn't sup-
port numeric and state indicators, nor does it support Dundas custom code.

At design time, you can upgrade to the native gauge region by opening the report defini-
tion in Report Designer. This is a one-way conversion process and you cannot downgrade
back to the Dundas gauge control. Unsupported features are removed on upgrade. For exam-
ple, if the Dundas gauge has a child numeric gauge, the numeric gauge will be removed from
the upgraded report.

If you already have and prefer the Dundas Gauge control, you can continue using BIDS
2005 to edit your reports. You can deploy legacy report definitions to a report server running
Reporting Services 2008. When you upgrade a report server, the upgrade process will detect
whether deployed reports with Dundas gauges can be upgraded with no loss in functionality.
If this is the case, it will upgrade them in place. Report definitions that use unsupported Dun-
das features will not get upgraded, but users can continue running these reports unaffected.

 Understanding the gauge anatomy
The gauge region contains several elements, which are shown in Figure 6.18. The gauge scale
displays a range of possible values, such as from -30% to +30%. A scale has a minimum value
and a maximum value. It can also have major and minor tick marks. Similar to charts, the
scale is divided into intervals which can be auto-generated or set by the report author.

A gauge can have one or more pointers that indicate values on the scale. The gauge region
supports needle (radial gauges only), marker, bar, and thermometer (linear gauges only) poin-
ter styles. Ranges can be used to highlight a range of values. The sample gauge shown in Fig-
ure 6.18 uses a green range to highlight business over-performance. A range has a start value
and start width, as well as an end value and an end width.

CHAPTER 6 242

Figure 6.18 This diagram illustrates
the elements of the gauge region.

A gauge can include nested child gauges (sub-gauges). For example, the main gauge can show
a Profit Margin KPI while a child gauge can display the Revenue KPI. You position the child
gauge by specifying its coordinates within the window of the parent gauge. Besides scale la-
bels, you can add custom labels to display textual information anywhere on the gauge. If the
Microsoft-provided visual styles are not enough, custom images can be used. For example,
you can use a custom image for the pointer shape.

6.3.2 Implementing a Radial Gauge
Next, I will walk you through the process of implementing the radial gauge shown in Figure
6.18. The Radial Gauge report represents the finished solution. It retrieves the properties of
the Product Gross Profit Margin and Revenue KPIs that are defined in the Adventure Works
Analysis Services cube and displays them in a radial gauge. The report demonstrates the fol-
lowing features:
 Querying Analysis Services KPIs
 Configuring marker and needle pointers
 Implementing ranges and custom labels
 Working with child gauges

Use the Radial Gauge Start report as a starting point for this practice.

 Retrieving the report data
As noted, gauges are typically used to display KPIs. As a multi-dimensional database, Analysis
Services is well suited for defining and calculating KPIs. In fact, an Analysis Services KPI is
nothing more than an MDX calculated member with additional properties, such as Value,
Goal, Status, and Trend. You use MDX expressions to define how these properties are calcu-
lated at run time. As with other measures, Analysis Services automatically computes the KPI
properties as the user slices the data.

To facilitate querying the KPI objects, Analysis Services provides four MDX functions:
KPIValue, KPIGoal, KPIStatus, and KPITrend, which you can use in the report query to re-
trieve the KPI properties and display them on the report. The abbreviated MDX query of the
Radial Gauge report is as follows:

DESIGNING FOR DATA VISUALIZATION 243

SELECT NON EMPTY { KPIStatus("Revenue"), KPIValue("Revenue"), KPITrend("Revenue"), KPIGoal("Revenue"), KPIGoal("Product
Gross Profit Margin"), KPIValue("Product Gross Profit Margin"), KPITrend("Product Gross Profit Margin"), KPIStatus("Product
Gross Profit Margin")}
ON COLUMNS
FROM (SELECT (STRTOSET(@SalesTerritorySalesTerritoryCountry, CONSTRAINED)) ON COLUMNS
FROM [Adventure Works])

This query slices the results by country, which the user can then pass as a report parameter.
The query returns a single row that includes the status, value, goal, and trend properties of the
Revenue and Product Gross Profit Margin KPIs.

 Getting started with the gauge region
Once the dataset is in place, you are ready to configure the gauge region:

1. Drop the gauge region on the report. In the Select Gauge Type dialog box that follows, leave
the default Radial gauge type selected, and click OK.

2. Resize the gauge to a width of 4.2 inches and a height of 3.6 inches.

The gauge region supports various frame styles and properties that control the visual appear-
ance of the gauge.

3. Double-click the gauge to put it in edit mode and click its frame. The Property window
should have RadialGauge1 item selected.

Figure 6.19 The gauge re-
gion supports various frame
styles and properties to
change the visual appearance
of the gauge.

4. In the Properties window, expand the BackFrame FrameShape property and select the
CustomCircular3 frame shape, as shown in Figure 6.19.

 Configuring the pointer
Recall that the gauge region is a one-dimensional data region and can display a single value. In
our case, the gauge pointer will point to the value of the Product Gross Profit Margin KPI.

1. Drag the Product_Gross_Profit_Margin_Value field from the Report Data window and drop it
on the RadialPointer1 placeholder in the Bind Gauge Values to Data Fields Here area.

This binds the pointer to the aggregated KPI value. By default, the gauge uses the Sum aggre-
gated function. You can change the aggregated function in the pointer properties, which you
can access by right-clicking the Product_Gross_Profit_Margin_Value field and clicking Pointer

CHAPTER 6 244

properties. Alternatively, you can select the pointer and change the properties in the Proper-
ties window. The Value property group gives you access to the pointer data properties.

2. Click the [Sum(Product_Gross_Profit_Margin_Value)] field in the Bind Gauge Values to Data
Fields Here area.

Note that selecting the field selects the gauge pointer. You can also click the pointer directly in
the gauge frame to access the pointer properties.

3. Change the pointer visual appearance by setting the properties shown in Table 6.4.

Table 6.4 Pointer properties for the radial gauge

Property Setting Property Setting Property Setting

BorderStyle Solid FillGradientType LeftRight NeedleStyle Triangular

FillGradientEndColor Red Name ProfitMargin

 Configuring the scale
If you preview the report at this point, you'll find that the pointer points to zero. This is be-
cause by default the gauge scale ranges from 0 to 100. To get the pointer to "move", you need
to calibrate the scale:

1. Click the gauge scale to select it. The Properties window should show Gauge Scale as the
name of the selected item. Change the Name property to ProfitMarginScale.

2. Configure the scale properties, as shown in Table 6.5.

Table 6.5 Scale properties for the radial gauge

Property Setting Property Setting Property Setting

(MaximumValue) 0.3 MajorTickMarksFillColor WhiteSmoke MinorTickMarksLength 8

(MinimumValue) -0.3 MajorTickMarksEnableGradient True MinorTickMarksWidth 4

Interval 0.1 MajorTickMarksLength 15 MinorTickMarksEnableGradient True

LabelStyleFormatString 0% MajorTickMarksShape Trapezoid MinorTickMarksFillColor WhiteSmoke

MajorTickMarksBorderStyle Solid MajorTickMarksWidth 7 Width 4

Besides changing the scale visual appearance, these settings configure the scale range from -
30% (MinimumValue) and 30% (MaximumValue). The scale interval is set to 10%.

 Configuring the range
Let's implement a range to indicate when the Profit_Margin KPI exceeds expectations. For
demonstration purposes, the lower value of the range will be defined as 80% of the KPI goal
value, while the upper value will be set to the maximum scale value of 30%. The default radial
gauge variation already includes a range which we will reuse. However, the process of calibrat-
ing the scale caused the range to "disappear". Follow these steps to configure the range:

1. Click the scale to select it. Click the ellipsis (…) button in the Ranges property. In the Radial-
Range Collection Editor, notice that there is a default range.

2. Configure the range properties, as shown in Table 6.5.

DESIGNING FOR DATA VISUALIZATION 245

Table 6.6 Range properties for the radial gauge

Property Setting Property Setting

BorderColor Gray StartValue =.8 * Fields!Product_Gross_Profit_Margin_Goal.Value

FillGradientEndColor ForestGreen EndValue 0.3

 Name ProfitMarginRange

The gauge can have multiple ranges if needed. If you want to add more ranges to your gauge,
such as to indicate under-performance, right-click the gauge and click Add Range.

 Implementing a marker pointer
Besides needle-style pointers, the radial gauge supports marker and bar pointers. You can use
such pointers to indicate significant values on the scale. Next, you will implement a marker
pointer to indicate the lower boundary of under-performance. For demonstration purposes,
the lower boundary will be calculated as 150% less the profit margin goal value.

1. Right-click the gauge or its scale and click Add Pointer. The gauge region adds a new needle-
style pointer.

2. Select the new pointer by clicking it and configure it as follows:

Table 6.7 Properties for the maker pointer

Property Setting Property Setting

(Type) Marker Name ProfitMarginMarker

FillGradientType VerticalCenter Placement Cross

MarkerStyle Diamond Value =-1.5 * Sum(Fields!Product_Gross_Profit_Margin_Goal.Value)

MarkerLength 10

 Implementing a child gauge
You can implement a combination gauge by nesting gauges inside each other. Follow these
steps to add a child gauge to show the value of the Revenue KPI:

1. Right-click the radial gauge and click Add Gauge Child.
2. In the Select Gauge Type dialog, leave the default radial gauge variation selected and click OK.

You can position the child gauge anywhere within the frame of the main parent gauge by set-
ting its Top and Left properties.

3. Select the child gauge and set its Top property to 20, Left property to 40, and Width property
to 20.

Because the gauge's AspectRatio is set to 1, you don't need to set its Height property as the
gauge frame will be automatically resized to a circle.

4. Drag the Revenue_Value field from the Report Data window and drop it on the new field
placeholder in the Bind Gauge Values to Data Fields Here area.

5. Follow similar steps as the ones you did when configuring the parent gauge to set up the
range, scale, and pointer properties of the child gauge.

CHAPTER 6 246

 Implementing a custom label
You can add custom labels to display text inside the range. Similar to textbox report items,
custom labels can show static text or can be expression-based.

1. Right-click the gauge and click Add Label. Change the Name property to ProfitMarginLabel.
2. Click the new label to select and configure it, as shown in Table 6.8.

Table 6.8 Properties for the Profit Margin custom label

Property Setting Property Setting Property Setting

Height 6 Text Profit Margin Width 25

Left 38.5 Top 85

Follow similar steps to implement a custom label with static text "Revenue" below the child
gauge.

6.3.3 Implementing a Linear Gauge
Besides radial gauges, Reporting Services supports linear gauges, such as gauges that simulate
equipment monitors and thermometers. The Linear Gauge report, shown in Figure 6.20, de-
monstrates the following features:
 Implementing a thermometer-style linear gauge
 Working with data groups

Figure 6.20 The Linear Gauge re-
port demonstrates implementing li-
near gauges with data groups.

 Understanding data groups
As noted, the gauge region is a one-dimensional control that can display a single value. This is
okay when the dataset returns a single row. But what if you need the pointer value to be calcu-
lated over a dataset? For example, you may need to calculate the average temperature over a
dataset that contains the temperature measurements per hour. This is where data groups come
in.

The gauge region supports statistical formulas that are available only if they are applied to
multiple values. In the absence of data groups, the gauge uses only the first value from a mul-
ti-row dataset. For example, if you bind the gauge pointer to the temperature column of the

DESIGNING FOR DATA VISUALIZATION 247

dataset shown on the left, it will point to 35 because this is the temperature value stored in the
first row.

However, if you group the dataset, then you can use aggregate formulas to derive the val-
ue. You can group the dataset using any of the Reporting Services aggregate functions, such as
First, Last, Min, Max, Sum, Avg, and expressions. Examining the dataset on the left, you can
see that some hours, such as the hours 7 and 10, have multiple temperatures recorded. Let's
say you want use only the last temperature value if multiple measurements exist. In this case,
you can group on Time and use the Last aggregate function to pre-aggregate data before it's
made available to the gauge. Consequently, the input dataset will look like the one on the
right.

Once the input values are correct, you can use one of the supported aggregate functions to
derive the pointer value. For example, you can use the Average function if you want the poin-
ter to point to the average temperature calculated over the entire input dataset. In Figure 6.20,
the gauge points to 34 because this is the average temperature calculated over the dataset on
the right.

 Implementing the linear gauge report
Follow these steps to implement the Linear Gauge report:

1. In the Select Gauge Type dialog box, select Thermometer variation of the Linear gauge type.
2. Right-click the gauge and click Add Data Group.
3. In the Gauge Panel Group Properties dialog box that follows, add a new group expression that

groups on the Time field.
4. Drag the Temperature field from the Report Data window and drop it on the Bind Gauge Val-

ues to Data Fields Here area to bind this field to the pointer.

By default, the gauge aggregates the data values using the Sum aggregate function.
5. Right-click the [Sum(Temperature)] field and click Pointer Properties. Alternatively, you can

select the pointer and work directly with the properties of the Value property group in the
Properties window.

6. In the Linear Pointer Properties dialog box, change the Value expression (Pointer Options tab)
to the following expression and click OK:
=Last(Fields!Temperature.Value)

7. With the pointer selected, expand the Value Formula property group in the Properties
window and select the Average formula.

8. Click the gauge scale to select it.

9. In the Properties window, change the (MaximumValue) Formula property to Max.
10. In the Properties window, change the (MinimumValue) Formula property to Min.
11. Preview the report.

The scale minimum value should be set to 30, which is the minimum value in the input data-
set, and the maximum value should be set to 42, which is the maximum value in the input
dataset. The gauge pointer should point to 34, which is the average value calculated over all
values of the input dataset.

CHAPTER 6 248

6.3.4 Combining Charts and Gauges
Recall from the previous chapter that you can nest data regions. Placing a chart or a gauge in-
side another region, such as a list, allows you to pass the grouping context to their values.
Consequently, you can implement reports that repeat graphs for all group instances of the
outer region.

 Understanding nested charts and gauges
The Nested Regions report, shown in Figure 6.21, demonstrates how nested regions can be
used to repeat charts and gauges. The report pages on territory group. For each territory, the
matrix, chart, and gauge regions show data for the current territory. The report draws data
from the Adventure Works Analysis Services cube. The pie chart displays the contribution of
each country to the overall gross profit for this territory. The Reseller Sales radial gauges show
the value and goal properties of the Channel Revenue KPI. Similarly, the Internet Sales gauges
display the value and goal properties of the Internet Revenue KPI.

Figure 6.21 This re-
port repeats the chart,
gauges, and matrix for
each territory.

The matrix region shows gross profit broken down by territory on rows, and time on columns.
The user can drill down to see more details, such as from year to quarter to month.

 Implementing nested charts and gauges
Here are some implementation highlights to help you understand how the Nested Regions
report works. The report uses a list region as an outermost container. The Details group of the
list region groups on territory. Consequently, the list will repeat its content for each territory.

DESIGNING FOR DATA VISUALIZATION 249

The chart region groups on country. Because the list passes the current territory group to
the chart, only the countries that are associated with that territory are made available to the
chart. Each of the radial gauges binds its pointer value to the corresponding KPI property.
Again, the report passes current context to the gauges, so they will display the KPIs for the
current territory only. One Analysis Services-specific detail is that the pointer Value property
uses the Aggregate function instead of Sum to retrieve the aggregated values directly from the
cube. The Aggregate function is discussed in more detail in chapter 16.

Finally, the matrix region serves as a data table that provides an additional level of detail.
Because the matrix region is nested inside the list region, it inherits the scope of the list region.
Consequently, its data is constrained by the current territory.

6.3.5 Implementing Sparklines
Edward Tufte, a professor emeritus of statistics, information design, interface design and polit-
ical economy at Yale University, proposed the term sparkline for "small, high resolution
graphics embedded in a context of words, numbers, images". Instead of full-blown charts and
gauges that are designed to visualize more information, sparklines are intended to be concise
and easy to understand graphs that appear inline with other data presentation controls, such
as textboxes and images.

 Understanding the Sparklines report
You can nest the chart and gauge data regions inside other regions to implement sparklines in
reports to help end users visualize report data, as the Sparklines report (see Figure 6.22) de-
monstrates.

Figure 6.22 This report includes
sparklines that help the user vi-
sualize contextual information.

This report shows the sales performance of the Adventure Works employees in a graphical
format. The YTD Trend column uses a line chart that plots the employee's sales history. The
Performance Ratio column leverages a linear gauge. The gauge deserves more attention be-
cause it illustrates several aspects of the employee's performance. Figure 6.23 shows the ele-
ments of the Performance Ratio gauge.

CHAPTER 6 250

Figure 6.23 The Performance
Ratio uses a linear gauge to track
the employee performance.

The gauge includes three ranges to show underperformance (red), acceptable performance
(yellow), and good performance (green). The bar pointer tracks the performance ratio calcu-
lated as the employee's actual sales divided by the employee's sales quota. (Actual Sales/Sales
Quota). The FillColor property of the bar pointer uses an expression that changes the pointer
color to red (underperformance), yellow (acceptable performance), and green (good perfor-
mance) based on the value of the PerformanceRatio field. The second marker pointer marks a
threshold of 85% to emphasize exceptional performance.

 Setting up the report data
The Sparklines report draws data from the Adventure Works cube. Follow these steps to set
up the report dataset:

1. In the MDX Query Designer connected to the Adventure Works cube, expand the Date di-
mension and the Calendar display folder. Drag the Calendar Quarter of Year attribute to the
Query Results pane.

2. Drag the Employees hierarchy of the Employee dimension to the Query Results pane.
3. Expand the Measure folder and the Sales Targets display folder. Drag the Sales Amount Quota

measure to the Query Results pane.
4. Drag the Reseller Sales Amount measure located in the Reseller Sales display folder to the

Query Results pane.
5. To parameterize the report year, drag the Calendar Year attribute of the Date dimension to

Filter pane and set it to default to 2003.
6. Finally, add a calculated field to the dataset based on the following expression:

=Fields!Reseller_Sales_Amount.Value/Fields!Sales_Amount_Quota.Value * 100

 Setting up the chart sparkline
Next, use a table region for the report body and configure the details group to group on each
employee. The easiest way to configure a chart sparkline is to configure the chart as a stand-
alone region outside the table region. Once ready, you can easily move the chart inside the
table cell.

1. Select a line chart with a Smooth Line variation.
2. Delete all chart elements except the chart series, including the chart legend, axis title, and

axes.
3. Drag the Calendar_Quarter_of_Year data set field to the Drop Category Fields Here area to

group the chart data by quarter.
4. Drag the Reseller_Sales_Amount dataset field to the Drop Data Fields Here area to set up the

chart series.
5. Click the chart series to select it and set its BorderWidth to 1.5pt to make the line thicker.

DESIGNING FOR DATA VISUALIZATION 251

6. Cut the chart and paste it inside the Trend detail cell.

 Setting up the gauge sparkline
Next, set up the Performance Ratio sparkline. As with the chart sparkline, it's more convenient
to configure the gauge outside the table.

1. Use a linear gauge with a Bullet Graph variation, which is preconfigured with two linear poin-
ters and three ranges.

2. Double-click the gauge to put it in edit mode and bind the first linear pointer to the Perfor-
manceRatio field by dragging the PerformanceRatio field and dropping it onto the LinearPoin-
ter1 area. Table 6.9 lists the property changes of the gauge control.

Table 6.9 Configuration settings of the Performance Ratio gauge

Property Setting Property Setting

AspectRatio Auto BackFrame (FrameStyle) Edged

BackFrame (FrameShape) AutoShape BackFrame (GradientType) None

3. Click the linear scale to select and change its settings, as shown in Table 6.10.

Table 6.10 Configuration settings of the linear scale

Property Setting Property Setting

(MaximumValue) 100 MajorTickMark Hidden True

(MinimumValue) 0 MinorTickMark Hidden True

LabelStyle Hidden True

4. Configure the gauge ranges. Table 6.11 lists the settings you need to make to the first range
(underperformance).

Table 6.11 Configuration settings of the first range

Property Setting Property Setting

BorderColor Silver FillColor Salmon

EndValue 60 StartValue 0

EndWidth 70 StartWidth 70

5. Click the bar pointer and configure it as a progress indicator (see Table 6.12).

Table 6.12 Configuration settings of the bar pointer

Property Setting Property Setting

FillColor =Switch(Fields!PerformanceRatio.Value<80,"Red",
Fields!PerformanceRatio.Value<=90 ,"Gold",
Fields!PerformanceRatio.Value>90,"Green")

Value =Fields!PerformanceRatio.Value

FillGradientType None Width 40

CHAPTER 6 252

6. Click the second marker pointer and configure it as a fixed marker (see Table 6.13).

Table 6.13 Configuration settings of the marker pointer

Property Setting Property Setting

FillColor DimGray Value 85

FillGradientType None Width 10

MarkerLength 70

7. Cut (Ctrl+X) and paste (Ctrl+V) the gauge inside the Performance Ratio detail cell.

6.4 Summary
In this chapter, you learned how to add data visualization features to your reports. Charts are
a powerful way to present aggregated values. Reporting Services supports several chart types
for different types of data and presentation formats. Column, line, bar, area, range, and scatter
chart types are best suited for analyzing linear data, such as sales over time. Consider shape,
scatter, and polar charts to plot ratio data, such as a pie chart that displays the contributions of
individual regions relative to the entire country. Range charts let you display multivalued data,
such as currency rates, temperatures, and stock data.

The gauge is a one-dimensional data region that displays a single value from a report data-
set. Radial gauges have a pivot point, around which the pointer(s) rotate. Linear gauges dis-
play the value as a portion of the scale. The gauges support aggregate and statistical functions
that can calculate the pointer value over a dataset.

Charts and gauges can be nested inside table, matrix, and list regions. This lets you im-
plement reports with repeating charts and gauges that inherit the current context of the con-
taining region. You can also configure chart and gauges as basic controls and nest them inside
other data regions to implement sparklines.

6.5 Resources
Dundas Chart for Reporting Services

(http://tinyurl.com/2am5yf)—The Dundas chart on which the Reporting Services
2008 chart is built on.

Get More Out of SQL Server Reporting Services Charts article by Robert Bruckner
(http://tinyurl.com/2hjndd)—A great resource for understanding how the chart re-
gion works.

253

CChhaapptteerr 77

Advanced Report Design

7.1 Designing For Rich Formatting 253
7.2 Designing For Report Output 257
7.3 Extending Reports with Custom Code 265

7.4 Report Design Challenges and Solutions 282
7.5 Summary 294
7.6 Resources 295

As you would probably agree, Reporting Services certainly makes it easy to design versatile
reports, ranging from simple tabular reports to multi-section reports with interactive features.
However, every tool has its design limitations and Report Designer is no exception. Complex
business needs may surpass Report Designer capabilities and present unique challenges that
require more advanced design skills.

This chapter consolidates advanced techniques and guidelines for report authoring that
can help you tackle the last mile of report design. It starts by showing you how the enhanced
textbox report item can help you display rich formatting and author mail merge reports. You
will also learn how to configure and customize the report renderers for exporting reports.
Next, it teaches you how to supercharge report capabilities with custom code. Finally, the
chapter presents common report challenges and solutions, some of which have been harvested
from my real-life work with the product and interaction with the technical community.

By now you should be familiar with Report Designer so I'm not going to do much hand-
holding in this chapter. Instead, I'll provide enough information to explain the solution but I
won't provide step-by-step instructions about how to implement the entire report.

7.1 Designing For Rich Formatting
In chapter 3, you witnessed some of the new enhancements to the textbox report item. Recall
that the Reporting Services textbox is a composite control that can contain multiple bands of
text. Each band forms a paragraph and each paragraph consist of contiguous string fragments
(textruns) that can be formatted independently. You can inject dynamic text in the textbox
content by defining expression-based placeholders. Let's now bring the textbox to next level
and expand more on its formatting capabilities.

7.1.1 Understanding Rich Formatting
When you use Report Designer to format textboxes, paragraphs, and textruns, Report Design-
er uses native format elements that conform to the RDL schema. For example, if you change
the font style of the word Hello to bold, Report Designer emits the following RDL fragment:
<TextRun><Value>Hello</Value><Style><FontWeight>Bold</FontWeight></Style></TextRun>

CHAPTER 7 254

The same thing happens when you copy text from Microsoft Word and paste it inside the
textbox. Report Designer automatically translates the Word format styles to native format
styles. Besides native formatting, the textbox item is capable of supporting rich formatting.

 Understanding the supported grammar
The term rich formatting here means that the textbox supports a subset of HTML markup tags
and a few Cascading Style Sheet (CSS) attributes that lets you display text formatted this way.
It shouldn't be confused with Rich Text Format (RTF), which is a free document file format
developed by Microsoft. As it stands, the textbox report item doesn't support RTF.

TIP If you need to display RTF on your reports, consider a third-party .NET component that translates RTF to HTML or
create your own module that replaces RTF format settings with HTML markup tags. This works because your reports can
call external code that accepts the RTF text and returns the converted HTML text.

Table 7.1 shows a complete list of the formatting codes supported by the textbox report item.

Table 7.1 The textbox item supports the following rich formatting grammar

HTML Tag Description CSS Attribute Description

<A HREF> Hyperlink text-align, text-indent Paragraph formatting

 Font font-family, font-size, font-weight Font formatting

<H{n}>, <DIV>, ,<P>,
,
<DIV>, , <HN>, <BLOCKQUOTE>

Header and block elements padding, padding-bottom, padding-top,
padding-right, padding-left

Text padding

, <I>, <U>, <S>, ,
, <STRIKE>

Text format color Text color

, , , <DD>, <DT> Lists

The textbox item ignores attributes it doesn't understand. When configuring HTML format-
ting, make sure that the text is well-formed. A well-formed HTML conforms to XML con-
straints, such as each element bust have a closing element. The Hello HTML fragment
is well-formed because the element has a closing element. Visual Studio produces
well-formed HTML when you design HTML and ASP pages.

Figure 7.1 This report
demonstrates the textbox
rich formatting capabilities
to display HTML.

ADVANCED REPORT DESIGN 255

 Working with rich formatting
The Rich Formatting report, shown in Figure 7.1, demonstrates the rich formatting capabili-
ties of the textbox report item. This report uses two textboxes to display text formatted with
HTML markup. The textbox on the left shows static HTML, which I copied and pasted from
an existing HTML page. The second textbox is bound to a dataset field that contains the same
HTML text. Follow these steps to implement the report:

1. Add two textboxes to the report.
2. Copy the content of the HTML.html page (included in the chapter source code) from the

<h3> element to the element.
3. Double-click the left textbox to put it in edit mode and paste the HTML content inside the

textbox.

When working with HTML-formatted text, you need to tell Reporting Services that the text-
box text contains HTML markup. Otherwise, Reporting Services will display the HTML tags
literally.

4. With the textbox in edit mode, press Ctrl+A to select the entire content.
5. Right-click the selection and click Text Properties.
6. In the Text Properties dialog box that follows (General tab), select the HTML – Interpret

HTML Tags as Styles option.

As it stands, the Adventure Works sample databases don't include HTML-formatted content
that I could use for the data-driven example. Consequently, I had to change the query to re-
turn literal markup code. Follow these steps to implement the data-driven textbox:

7. Drag the AMRS field from the Report Data window and drop it on the textbox.
8. Double-click the textbox to enter edit mode and press Ctrl+A to select the expression place-

holder.
9. Enable HTML formatting in the Text Properties dialog.

If only a fragment of the content is formatted in HTML, you can select it and enable HTML
formatting for this fragment only. That's because similar to native formatting styles, HTML
formatting can be applied at textbox, paragraph, and textruns levels.

7.1.2 Implementing Mail Merge Reports
The rich format advancements in this release of Reporting Services enable report solutions that
were difficult or impossible to implement before. One of these scenarios is mail merge. In the
context of reporting, mail merge produces multiple report sections from a single template by
merging static and dynamic data that comes from a data source. Mail merge is typically used
to personalize the report content. For example, a company may want to send letters to its cus-
tomers. The letter format and content is the same. However, to reuse the same template,
placeholders can be defined to specify the recipient's name, address, and so on. These place-
holders can be placed anywhere in the report layout.

 About the Mail Merge report
The Mail Merge report (see Figure 7.2) demonstrates how the textbox report item can help
you implement mail merge reports. This report produces business letters to Adventure Works

CHAPTER 7 256

customers to inform them about the status of their orders. The letter content is the same—
what changes are the recipient and order details. The fields that change are implemented as
data-driven placeholders (highlighted in the screenshot).

Figure 7.2 This report merges stat-
ic layout and content with dynamic
text coming from the data source.

At run time, the report retrieves the customer dataset. For each customer, it produces a sepa-
rate letter and merges the static content with the dataset fields. One thing to notice is that the
order number comes from the database formatted with HTML tags, such as SO56918.
When laying out the report, I configured its placeholder to support HTML format styles.

 Implementing the report
Follow these high-level steps to design the Mail Merge report:

1. Use a table region for the report body. Configure the table region with two detail rows and
two columns.

2. Merge the cells in the second detail row.

3. Use the first cell of the first detail row to show the customer's address and today's date. Im-
plement the customer address section by dragging the corresponding fields from the Report
Data window and dropping them side by side or in new paragraphs.

4. Configure the TodayDate placeholder to use the expression =Today() and format it as a short
date. Use the Placeholder Properties dialog box to define a TodayDate custom label.

5. Use the second cell of the first detail row to display the Adventure Works logo.

Figure 7.3 The tablix
region repeats the report
content for each customer.

ADVANCED REPORT DESIGN 257

6. The second row displays the letter content. Add placeholders that display the original order
date, ship date, and order number dataset fields.

7. Since the OrderNumber dataset field contains HTML formatting, configure the [OrderNumb-
er] to support HTML format styles. To do so, double-click the [OrderNumber] placeholder to
open the Placeholder Properties dialog box. In the General tab, change the markup type op-
tion to HTML-Interpret HTML Tags as Styles.

If the OrderNumber field didn’t contain HTML markup tags but you want it to stand out, you
could simply select the [OrderNumber] placeholder and use the Report Designer format capa-
bilities to change its format styles.

7.2 Designing For Report Output
As you know by now, an out-of-the-box Reporting Services installation lets you export reports
in several export formats, including HTML, Excel, comma-separated values (CSV), XML, Im-
age, PDF, and Word. Each export format is handled by a special rendering extension, also
called a renderer. Let's learn more about the Microsoft-provided renderers and understand
how they affect report pagination and design.

7.2.1 Understanding Report Renderers
In terms of pagination, the renderers can be classified as hard page-break, soft page-break, and
pure data renderers. Table 7.2 highlights the pagination differences among the standard ren-
derers.

Table 7.2 Reporting Services supports data, soft page-break, and hard page-break renderers

Renderer Page Breaks Pagination

CSV N/A (data only) N/A

Excel Logical page breaks N/A

GDI (Windows Forms ReportViewer) Soft InteractiveSize

HTML (Web Server ReportViewer) Soft InteractiveSize

Image Hard Page size

PDF Hard Page size

Print (EMF) Hard Page size

Word Logical page breaks Page size

XML N/A (data only) N/A

 Hard page-breaks renderers
Hard page-break renderers (Image, Acrobat (PDF), and Print) are optimized for print output
where pages have the same size. Their pagination story is simple because they respect the page

CHAPTER 7 258

size precisely during repagination and generate physical page breaks horizontally and vertically
based on the page size set at design time.

You can preview the report in print layout mode to see how a hart page-break renderer
will paginate the report. In Report Designer, to do this click the Preview tab to preview the
report and click the Print Layout toolbar button.

 Soft page-breaks renderers
Soft page-break renderers, such as HTML and GDI (used by the Windows Forms ReportView-
er control), are optimized for a screen-based experience where pages can have variable length.
When the report is exported with one of these renderers, the report server doesn’t paginate the
entire report at once. Instead, it returns the first page to the user as soon it is rendered. Page
navigation and repagination, such as when the report is printed or previewed in Print Layout
mode, are executed as background tasks.

The soft page renderers use the report’s InteractiveSize property (click the report design
area and locate the InteractiveSize property in the Properties window) to determine the page
size of the rendered report. By default, InteractiveSize matches the page size. However, you
can set the report interactive size independently of the page size. This could be useful, for ex-
ample, if you prefer to show more data on the screen than on the printed page. In this case,
you can set the report interactive size to be larger than the page size.

For on-screen report viewing, page breaks that are based on InteractiveSize are called soft
page breaks. Soft page breaks are on by default to prevent large reports from rendering as one
very long HTML page. By using soft page breaks, you avoid performance problems that result
from trying to load a very large report in the browser window. If you don’t need them, you
can disable soft page breaks by setting the InteractiveSize Height property to zero.

You can use Report Preview (Preview tab) to see how a soft page-break renderer will pagi-
nate the report. The previewed report will be paginated based on the report InteractiveSize
Height property, which could be different than the page size. The InteractiveSize Width is
ignored as soft-page break based renderers don’t perform horizontal pagination.

 Data renderers
XML and CSV renderers are pure data renderers because they export only the report data and
not the layout. These renderers don’t paginate the exported report. Therefore, the page size
and InteractiveSize properties have no effect on the XML and CSV renderers. In this release,
the CSV renderer has been significantly changed and it's now a “pure” data renderer, while in
previous releases it produced a mix between data and some layout rendering.

 Using logical page breaks to improve performance
Recall from chapter 3 that you can define logical page breaks at the beginning or end of data
regions and rectangle items. Logical page breaks are honored by all renderers except the data
renderers. You can also define a logical page break before the first instance of a group, be-
tween the group instances, and after the last group instance.

In general, logical page breaks improve rendering performance because end users can
view the first page while the rest of the report is being rendered as a background task. To en-
hance report performance, the report server automatically generates a soft page break after the
first page when paginating reports exported to HTML. As a result, the first page of a report
loads fast even with large reports.

If a report has a page header/footer and references the current page number and the total
page count, the entire report will be paginated first to obtain the total page count. However,

ADVANCED REPORT DESIGN 259

still the report server will render only the first page when the report is exported with a soft-
page renderer.

 Configuring renderers
The renderers are registered in the Report Designer configuration file (rsreportdesigner.config)
and report server configuration file (rsreportserver.config) so that they are available at design
time and run time. Suppose you want to prevent end users from exporting to a given format.
To hide a renderer from end users, set its Visible property to False, such as:
<Extension Name="CSV" Type="Microsoft.ReportingServices.Rendering.DataRenderer.CsvReport,
 Microsoft.ReportingServices.DataRendering" Visible="False">

If you make this change to rsreportdesigner.config, the CSV renderer will not show in the Re-
port Designer toolbar but it will show in Report Manager. Making this change to rsreportserv-
er.config excludes the renderer from Report Manager and when the report is requested by
URL. Hiding a renderer doesn't disable it. For example, you can still use a hidden renderer
with URL access or in subscriptions. If you want to disable the renderer completely, comment
or remove the entire Extension element.

To change the displayed name of the renderer, use the OverrideNames element. The fol-
lowing configuration overwrites the display name of the CSV renderer from CSV (comma de-
limited) to Comma-separated Value:
<Extension Name="CSV" Type="Microsoft.ReportingServices.Rendering.DataRenderer.CsvReport,
 Microsoft.ReportingServices.DataRendering">
 <OverrideNames>
 <Name Language="en-US">Comma-separated Value</Name>
 </OverrideNames>
</Extension>

Because display names are localized, you need to specify a separate Name element for each
language identifier. You can also have different configuration settings for the same renderer.
Suppose you want to have two CSV configurations side-by-side that specify a comma delimi-
ter and a tab delimiter:
<Extension Name="CSV Comma" Type="Microsoft.ReportingServices.Rendering.DataRenderer.CsvReport,
 Microsoft.ReportingServices.DataRendering">
 <OverrideNames>
 <Name Language="en-US">CSV (comma delimiter)</Name>
 </OverrideNames>
</Extension>

<Extension Name="CSV Tab" Type="Microsoft.ReportingServices.Rendering.DataRenderer.CsvReport,
 Microsoft.ReportingServices.DataRendering">
 <OverrideNames>
 <Name Language="en-US">CSV (tab delimiter)</Name>
 </OverrideNames>
 <Configuration>
 <DeviceInfo>
 <FieldDelimiter xml:space="preserve"> </FieldDelimiter>
 <UseFormattedValues>False</UseFormattedValues>
 <NoHeader>True</NoHeader>
 </DeviceInfo>
 </Configuration>
</Extension>

This requires two configuration sections. Notice that the Name attribute for each configuration
must be different. Figure 7.4 shows how these two configurations appear in the HTML View-
er.

CHAPTER 7 260

Figure 7.4 You can have
multiple configurations for
the same renderer.

Each renderer supports various device information settings that can be used to customize the
exported report. For example, in the CSV (tab delimiter) configuration above, I used FieldDe-
limiter, UseFormattedValues and NoHeader device information settings that are specific to the
CSV renderer. For a full list of the supported device information settings, see the Reporting
Services Device Information Settings topic in the SQL Server Books Online (see Resources).

Specifying device configuration settings in rsreportserver.config affects all exported re-
ports. Alternatively, you can apply device information settings per report by appending them
to the report URL link, as I'll demonstrate in chapter 14.

7.2.2 Working with Report Renderers
Now that you know about the different types of report renderers and how to configure them,
let's review some important renderer-specific considerations that will help you understand
how the choice of a renderer affects the report output.

 Exporting to CSV
The Comma-Separated Values (CSV) renderer is a pure data renderer that exports only the
report data. Note that only textbox report items export their content to CSV. You cannot ex-
port the content of chart and gauge regions to CSV. Exporting to CSV can be useful when you
need to feed report data into another application.

In this release, the CSV renderer supports two output formats: Excel mode and Compliant
mode. Excel mode is the default mode, and it is optimized for loading the exported file in Mi-
crosoft Excel. This is especially useful when you export large reports to Excel but you need
only the report data. In this case, you may get better performance by exporting the report first
to CSV and opening the CSV file in Excel. The compliant mode is optimized for third-party
applications that require strict adherence to the CSV specification in RFC 4180.

The CSV renderer supports device information settings that control the output, including the
field delimiter, field qualifier, record delimiter, and header rows. The default field delimiter is
a comma (,) but you can override it by using the FieldDelimiter device setting, as the CSV (tab
delimiter) configuration demonstrated. In this example, I had to use the xml:space="preserve"

NOTE Opening CSV exported files in Excel was problematic with previous releases of Reporting Services. This was
because the CSV renderer would default to Unicode encoding which Excel didn't handle very well. Consequently, Excel
showed the entire report in a single column. To address this issue, Reporting Services 2008 introduces an Excel mode
(ExcelMode device setting) that defaults to UTF-8 encoding. However, it appears that Excel still has some issues un-
derstanding delimited files with formatted values. Instead of opening the file directly in Excel, I recommend that you use
Excel's Text Import Wizard to bring the file into Excel.

ADVANCED REPORT DESIGN 261

attribute (new to Reporting Services 2008) to denote the actual tab space that follows. I
pressed the Tab key to create the whitespace for the tab character.

Besides using the ExcelMode setting, another workaround for opening CSV files in Excel
is to configure the CSV renderer to export to ASCII instead of Unicode, as follows:
<Extension Name="CSV" Type="Microsoft.ReportingServices.Rendering.CsvRenderer.CsvReport,
 Microsoft.ReportingServices.CsvRendering">
 <Configuration>
 <DeviceInfo>
 <Encoding>ASCII</Encoding>
 </DeviceInfo>
 </Configuration>
</Extension>

When the report is exported as ASCII, Excel will load the exported report in separate columns
instead of placing the entire contents of the report in a single column.

 Exporting to Excel
Reporting Services supports rendering reports for Microsoft Excel 2000 and later. The Excel
renderer doesn't support page size. When exporting to Excel, define logical page breaks to
break the report into multiple worksheets. Each page in the report caused by a logical page
break becomes an Excel worksheet. As it stands, Reporting Services does not support specify-
ing worksheet names and there is no workaround.

Charts are rendered as pictures, not as Excel charts. Subreports are rendered as rectangles
in the current report on the same worksheet as the parent report. The Excel renderer is de-
signed to preserve the report layout as much as possible. Spaces between items result in nar-
row "filler" columns in Excel. To avoid these columns, change the report definition so that
stacked report items are aligned on both sides. For example, align the report title with a tablix
column to avoid a filler column between these items.

In Reporting Services 2008, the Excel renderer was enhanced to support nested regions
and nested subreports. In this release, the Excel renderer exports only values and not formu-
las. In previous releases, certain formulas were exported, such as formulas that used the Re-
portItems collection.

One interesting Excel-specific device information setting is SimplePageHeaders. When
SimplePageHeaders is False (default setting), the page headers are rendered in the first row in
the Excel worksheet. If you set SimplePageHeaders to True, the report server generates the
page headers and footers as Excel headers and footers. Since the Excel headers and footers are
very basic, this may result in some fidelity loss, such not honoring the textbox padding set-
tings.

 Exporting to HTML
The HTML renderer, which Report Manager uses by default when you view a report, generates
HTML 4.0 that is compatible with Microsoft Internet Explorer 5.5 and later, Mozilla Firefox
1.5 and later, and Safari with some restrictions documented in Books Online. Although most
report features are supported on these browsers, you should test your reports on targeted
browsers to ensure it renders appropriately. When displayed on the client, an HTML report
uses browser-specific settings, such as font substitutions. If you want to precisely control the
layout of the report on all clients used to view the report, consider using the image renderer.

The HTML renderer generates HTML tables to preserve report layout. It doesn't support
overlapping items. This can result in layout changes as the report is displayed. To keep items
together on a page, consider enclosing them with a rectangle.

CHAPTER 7 262

One interesting option supported by the HTML renderer is auto-refreshing reports. For
example, you can author a company stock performance report that automatically refreshes
itself on a set schedule to get the latest stock value. You can set up the report to automatically
refresh itself at a certain interval by using the AutoRefresh report-level property. Behind the
scenes, this property emits a meta browser tag, such as <META HTTP-EQUIV="Refresh"
CONTENT="5">, if you set the AutoRefresh to 5 seconds.

 Exporting to MHTML
The MHTML (MIME Encapsulation of Aggregate HTML Documents) format encapsulates the
report and its images in a single file. This eliminates a round-trip to the report server to fetch
the report images when you export reports to HTML.

Since MHTML is based on MIME, rendering reports in MHTML format is generally the
best export option when you need to push the report to users via e-mail subscriptions, as I'll
discuss in chapter 12. MHTML is especially suited for e-mail delivery because it is more com-
pact compared to PDF and TIFF.

 Exporting to Image
The Image renderer exports reports as image files. It can generate files in any format sup-
ported by GDI+, including BMP, EMF, GIF, JPEG, and PNG. You can use the OutputFormat
device information setting to specify the image format. If OutputFormat is omitted, TIFF is
assumed. The following example configures the image renderer to export reports as BMP im-
ages.
<Extension Name="IMAGE" Type="Microsoft.ReportingServices.Rendering.ImageRenderer.ImageRenderer,
Microsoft.ReportingServices.ImageRendering">
 <OverrideNames>
 <Name Language="en-US">BMP File</Name>
 </OverrideNames>
 <Configuration>
 <DeviceInfo>
 <OutputFormat>BMP</OutputFormat>
 </DeviceInfo>
 </Configuration>
</Extension>

Consider the image renderer when you want the exported report to look the same on every
client. The image renderer supports page height, page width, and margins.

 Exporting to PDF
The portable document format (PDF) renderer creates reports that can be viewed with Adobe
Acrobat readers. Similar to the image renderer, you might consider the PDF renderer when
you need to produce a client-independent report layout. The renderer creates PDF 1.3, which
is compatible with Adobe Reader 4.0 and later. The PDF renderer doesn't embed fonts. There-
fore, be sure to install the fonts used in the report on the client computer.

For example, if you use the MingLiu font to display Chinese characters, you will find that
exporting the report to Excel or Image will show the text correctly but exporting to PDF will
not show the Chinese characters if the user doesn't have the MingLiu font installed. This is
because when the report is displayed, Adobe Reader will substitute MingLiu with another font
that may not support Chinese characters.

 Exporting to Word
The Word renderer has been added to Reporting Services to support exporting reports as Mi-
crosoft Word binary documents that are supported by Microsoft Word 2000 and above. Simi-

ADVANCED REPORT DESIGN 263

lar to the Excel renderer, it generates tables to enclose sets of items and exports charts as pic-
tures. The Word renderer doesn't support interactive features. As such, the device information
settings for Microsoft Word are used to control how interactive features are converted when
the report is exported to Word.

One such setting is ExpandToggles, which controls the toggled state of the drilldown sec-
tions. When ExpandToggles is False (default setting), a report with drilldown features will be
exported with all sections collapsed and you won't be able to expand the sections in Microsoft
Word. However, setting ExpandToggles to True will expand the drilldown sections.

By default, URL navigation links are included in an export to Word. If you want URLs in a
report to appear in a Word document, change the OmitHyperlinks setting to False. To do the
same for drillthrough links, set OmitDrillthroughs to False.

 Exporting to XML
Extensible Markup Language (XML) facilitates data exchange between heterogeneous plat-
forms, particularly via the Internet. The XML renderer lets you export report data as an XML
document. This can be useful if you need to integrate Reporting Services with other applica-
tions or external partners. For example, a vendor could request an inventory report in XML to
determine the current inventory levels. The report could be processed later by a BizTalk
workflow that extracts the product information and sends it to manufacturing.

You can also pair the XML renderer with a custom Extensible Stylesheet Language Trans-
formations (XSLT) file to produce a human-readable layout not already supported by the Mi-
crosoft-provided renderers. For example, you may need complete control over the HTML
representation of the report. One option is to write a custom rendering extension, but this en-
tails significant implementation effort. The other option is to design an XSL transformation
that transforms report data into the desired HTML format.

The XML renderer can export the contents of textboxes, rectangles, and data regions, in-
cluding charts and gauges. XML elements and attributes are rendered in the order in which
they appear in the report definition. The XML renderer provides limited customization over
the XML output via the DataElementName, DataElementOutput (applicable for CSV rendering
as well), and DataElementStyle properties. Use the DataElementName property if you want to
overwrite the name of an XML element. The DataElementOutput property lets you configure
whether an element and its child elements should be exported. The DataElementStyle proper-
ty controls whether an item is exported as an XML node or an attribute. By default, textboxes
are exported as attributes.

Designing for XML Output
The Product Sales by Category report demonstrates exporting to XML. The exported report is
saved in the ProductSales.xml file. I followed these steps to prepare the Product Sales by Cate-
gory for export to XML:

1. Open the Product Sales by Category report in Report Designer and select the report by click-
ing the design area outside the report body.

2. Change the DataElementName property to ProductSales to define the name of the root node, as
shown in Figure 7.5.

3. Enter http://www.prologika.com in the DataSchema property. This defines the XML document
namespace. If the DataSchema property is not specified, the XML renderer will auto-generate
the namespace based on the report name, but this makes it difficult to reference XML elements
in an XSL transformation. To avoid this, define a namespace explicitly.

CHAPTER 7 264

Figure 7.5 You can fine-tune the XML output
by setting the DataElementName, DataEle-
mentStyle, and DataElementOutput properties.

4. Enter ProductSales.xsl in the DataTransform property to specify the XSLT file that will be used
to transform the XML output to HTML.

5. Rename all significant textboxes inside the tablix region, such as renaming Textbox14 to txtRe-
sellerSales. Assigning meaningful names to report items makes it easier to reference them when
navigating the XML document.

6. Select the header row and change the DataElementOutput property to NoOutput. Conse-
quently, the header textboxes won't be exported to XML.

As a result of these changes, the XML renderer produces the following raw XML if the Data-
Transform report-level property is empty. For the sake of brevity, only the first product node
is shown.
<?xml version="1.0" encoding="utf-8"?>
<ProductSales xsi:schemaLocation="http://www.prologika.com
http://reportserver/?%2fProduct+Sales+by+Category&rs%3aFormat=XML&rc%3aSchema=True" Name="Product
Sales by Category" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.prologika.com">
<Tablix1>
 <ProductCategory_Collection>
 <ProductCategory txtProductCategory="Accessories">
 <ProductSubcategory_Collection>
 <ProductSubcategory txtProductSubcategory="Bike Racks">
 <ProductName_Collection>
 <ProductName txtProductName="Hitch Rack - 4-Bike">
 <DetailsGroup_Collection>
 <DetailsGroup txtResellerSales="8352.0000"
 txtInternetSales="2880.0000"
 txtSalesSummary="11232.0000" />
 </DetailsGroup_Collection>
 </ProductName>
 </ProductName_Collection>
 </ProductSubcategory>

From here, this document can be handed out to any XML-capable application, such as Biz-
Talk, to automate processes or facilitate application integration scenarios.

Figure 7.6 You can use an XSL trans-
formation to convert the raw XML output
to a human-readable format.

ADVANCED REPORT DESIGN 265

Applying XSL Transformation
Suppose that you want the XML renderer to produce a human-readable report by transform-
ing the raw XML output to the HTML format shown in Figure 7.6. The ProductSales.xsl XSLT
file demonstrates how this could be done.
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-prefixes="xmlns msxsl n1"
 xmlns:n1="http://www.prologika.com">
 <xsl:output method="html" indent="yes" omit-xml-declaration="yes"/>
 <xsl:template match="/">
 <html>
 <body>
 <h2>Product Sales</h2>
 <table border="1">
 <tr bgcolor="#9acd32">
 <th>Product</th><th>Reseller Sales</th><th>Internet Sales</th><th>Sales Summary</th>
 </tr>
 <xsl:for-each select="//ProductName">
 <tr>
 <td><xsl:value-of select="./@txtProductName"/></td>
 <td><xsl:value-of select="DetailsGroup_Collection/DetailsGroup/@txtResellerSales"/></td>
 <td><xsl:value-of select="DetailsGroup_Collection/DetailsGroup/@txtInternetSales"/></td>
 <td><xsl:value-of select="DetailsGroup_Collection/DetailsGroup/@txtSalesSummary"/></td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Similar to an ASP.NET page, this transformation includes HTML intermixed with code that
outputs the report data at run time. The for-each select command selects all ProductName
elements. The XSLT processor loops through each element and uses the xsl:value-of select
command to output the values of the txtProductName, txtResellerSales, txtInternetSales, and
txtSalesSummary XML attributes.

TIP You can use the Visual Studio XML support to test the XSLT file. Open the ProductSales.xsl in Visual Studio
2008 and click XML Show XSLT Output or click XML Debug XSLT if you want to step through it. You can use
ProductSales.xml, which was produced by exporting the Product Sales by Category report to XML without XSLT, as an
input XML file.

Once you set the DataTransform report property to ProductSales.xsl and deploy the report,
end users will get the HTML report when they export Product Sales by Category to XML. To
let the XML renderer know that the report content is HTML, append the MIMEType and File-
Extension device information settings to the report URL, as follows:
http://<servername>/reportserver?/AMRS/Product Sales by Category&rs:Command=Render
&rs:Format=XML&rc:MIMEType=text/html&rc:FileExtension=htm

If you want all reports to share the same XML export settings, configure the appropriate device
settings for the XML renderer in rsreportserver.config.

7.3 Extending Reports with Custom Code
Recall that most of the report item properties can be expression-based. You can enhance your
report with inline expressions, such as to hide a tablix column conditionally. Sometimes, ex-
pressions and built-in functions may not be enough to satisfy more demanding requirements.
For example, Reporting Services doesn't provide a native function to calculate the median val-

CHAPTER 7 266

ue over a dataset. However, you can extend your reports with custom code that goes beyond
what inline expressions and built-in functions have to offer.

7.3.1 Understanding Custom Code
Reporting Services is designed as a flexible and extensible platform. Report expressions can
call custom code that you or someone else wrote. This gives you a tremendous power over
report data and appearance. As a seasoned report designer, you must learn how to work with
custom code so that you can build your reports exactly as you envision them to be. In doing
so, you might just find yourself having fewer occasions to say "Reporting Services can't do
this."

 Comparing Custom Code Options
You can extend reports with custom code in two ways: by embedding code within a report or
by invoking methods located in an external .NET assembly. Table 7.3 shows how these two
options compare.

Table 7.3 Comparing embedded and external code options

Criteria Embedded Code External Code

Code location Inside report definition In an external assembly

Programming language Visual Basic.NET only Any .NET language

Scope Report Can be shared by multiple reports

Developer tools None Visual Studio, third-party

Deployment effort Deployed with report Additional deployment steps required

Typical usage Simple functions More complex programming logic

Let's look at both options in more detail.

 Understanding embedded code
As its name suggests, embedded code becomes part of the report definition. Specifically, when
you add embedded code to the report, Report Designer inserts a Code element inside the re-
port definition. Embedded code lets you implement report-specific functions that are available
only to the containing report. Embedded code can be useful when you need to simplify report
deployment by distributing the code together with the report.

On the flip side, embedded code is limited to using only Visual Basic.NET as a program-
ming language. The Report Properties dialog box includes a Code tab that lets you enter the
custom code, but it doesn't provide syntax checking, IntelliSense, or debugging features. Con-
sequently, syntax errors cannot be discovered at design time and may take a few trial-and-
error cycles to fix. As a workaround, consider testing the code outside Report Designer, such
as by creating a Visual Studio console application. When the code is tested, copy and paste it
inside the Code tab. Consider embedded code when you need to implement simple report-
specific functions that you can distribute together with the report.

ADVANCED REPORT DESIGN 267

 Understanding external code
External code is located in one or more external assemblies. A report can directly call only
.NET managed code. If you need to call native code, create a .NET "wrapper" assembly that
the report can call. External code is more flexible for several reasons. To start with, external
code can be referenced by multiple reports. This lets you implement a library of common
functions that can be reused across reports. You are not limited to Visual Basic as a program-
ming language. Instead, you can use your favorite .NET language to write external code.

Since Business Intelligence Development Studio doesn’t support code projects, you must
use another development tool to write and test your code. For example, you can use the po-
werful Visual Studio IDE to implement and debug an external C# assembly. Once the assem-
bly is ready, you can reference it in the report. External code requires additional steps to
deploy and secure the external assemblies.

7.3.2 Working with Embedded Code
The book source code includes two sample reports that demonstrate working with embedded
code. The Calculate Median report utilizes an embedded function to calculate a median value
over a dataset. The Pie Chart with Custom Color report shows how to assign custom colors to
a chart series.

Figure 7.7 This report uses em-
bedded code to calculate the me-
dian order quantity over a set of
ten product subcategories.

 Calculating a median value
As it stands, Reporting Services doesn't provide a function that calculates a median value from
a set of values. However, embedded code lets us overcome this limitation. Consider the fol-
lowing set of values:
10, 2, 15, 5, 7, 3, 17

REAL LIFE I don't recall a project that didn't require some custom code to extend reports. I almost never use em-
bedded code because it cannot be easily tested and cannot be shared across reports. Instead, I add a Class Library
project to the Visual Studio solution as one of the first steps after creating a Report Server project. I use external code
to implement a library of common functions that I can reuse in multiple reports in the same Report Server project.

CHAPTER 7 268

To find the median value, we first need to sort the set:
2, 3, 5, 7, 10, 15, 17

The number in the middle (7) is the median value of this set. The Calculate Median report
(see Figure 7.7) includes embedded code that calculates the median order quantity over ten
product subcategories. The user can exclude the NULL values from the calculation by setting
the ExcludeNull parameter to True.

Here is how this report works:

1. Open the Calculate Median report in Report Designer and select Report Report Properties
menu.

2. Click the Code tab and notice that it contains embedded code, as shown in Figure 7.8.

Figure 7.8 Use the
Code tab of the Report
Properties dialog box to
write embedded code.

3. Close the Report Properties dialog. Right-click the Order Qty detail cell and click Expression.
Notice that the Value of the Order Qty detail cell uses this expression (see Figure 7.9):
=Code.AddValue(Fields!OrderQty.Value, Parameters!ExcludeNull.Value)

Figure 7.9 The Order Qty detail cell
calls AddValue to load an array of val-
ues, while the footer cell calls GetMe-
dian to obtain the median value.

The footer cell that displays the median value uses the following expression:
=Code.GetMedian()

At run time, when Reporting Services processes the tablix region, it calls the AddValue em-
bedded function as many times as the number of the tablix detail rows. Each function call

ADVANCED REPORT DESIGN 269

adds the order quantity value of the current row to a static (Shared in Visual Basic) Hashtable
object. The end result is that by the time the tablix details are processed, the hash table will
contain all order quantity values. The AddValue function returns the same value that is passed
to it so the detail cell can display it.

Moving to Reporting Services 2008, you need to use static variables to maintain state be-
tween page requests. If you use an instance variable, you'll find that the report works fine if it
has only one page. However, as a result of the new on-demand report processing model, in-
stance variables do not live across multiple requests, such as when the user requests the first
page, and then navigates to the next page. Consequently, if your table spans multiple pages,
the instance variable will not hold all values.

Working with static variables presents a challenge though because they are shared among
concurrent users for the lifetime of the report execution. This is why I use a unique key, com-
posed from the user login and the count of items in the hash table, when adding values to the
Hashtable object. With the exception of the Globals and User collections, which can be ac-
cessed using a special Report keyword (Report.User!UserID), custom code cannot access the
rest of the Reporting Services global collections directly. To make the rest of the collections
available to custom code, you need to pass them as arguments to the methods.

The footer cell calls the GetMedian function to display the median value. GetMedian loads
an array with all values that belong to the same user, sorts the array, and returns the middle
value.

NOTE In Reporting Services 2008, expressions in textboxes are no longer calculated in a predefined order. The Cal-
culate Median report works because it retrieves the calculated value in the table footer. However, it won't work if you
attempt to display the median value in the table header because most rendering extensions will ask for the value of the
table header cells first before going further down in the page. One workaround, which is demonstrated by the Calculate
Median Value with Variable report, is to define a group variable at the innermost grouping level (Details group in this
case). Report variables are discussed in section 7.4.1.

 Implementing a pie chart with custom colors
By default, the chart region automatically selects colors from the specified palette. If specific
colors are desired, you can configure the chart to use a custom palette, which I demonstrated
in chapter 6. Suppose you need more control over the color selection. For instance, you may
want to plot the series data in red, if they exceed a given value. Embedded code lets you im-
plement this requirement.

Figure 7.10 This report uses
embedded code to select
specific custom colors for the
chart series.

CHAPTER 7 270

The Pie Chart with Custom Colors report (Figure 7.10) builds upon the Pie Chart report from
chapter 6. The difference is that the chart calls a GetColor embedded function that returns a
custom color for each chart series. The original implementation for using custom chart colors
was presented in the article "Get More out of SQL Server Reporting Services Charts" by Robert
Bruckner (listed in chapter 6 Resources section).
Private colorPalette As String()
Private count As Integer = 0
Private mapping As New System.Collections.Hashtable()

Public Function GetColor(ByVal groupingValue As String, ByVal seriesValue as Double) As String
 If mapping.ContainsKey(groupingValue) Then
 Return mapping(groupingValue)
 End If

 Dim c As String = colorPalette(count Mod colorPalette.Length)
 count = count + 1
 mapping.Add(groupingValue, c)
 If seriesValue < 200000 Then
 return "Red"
 Else
 Return c
 End if
End Function
Protected Overrides Sub OnInit()
 colorPalette = new String() {"MistyRose", "LightGreen", "LemonChiffon", "LightSteelBlue",
 "LightCoral", "LimeGreen", "Gold", "DodgerBlue"}
End Sub

Custom code can override a special OnInit method to perform initialization tasks. The report
overrides the OnInit method to initialize the colorPalette string as an array with custom colors.

TIP The OnInit method can access the Globals and User collections to obtain the user identity (User!UserID) and load
user-specific custom colors for each report user. To use the Globals and User collections, you need to prefix them with
the Reports object reference, such as Reports.User!UserID. The rest of the global collections (Parameters, ReportItems,
Fields, etc.) are not available to custom code.

The chart series Color property uses the following expression:
=Code.GetColor(String.Format("{0}~{1}", Fields!CalendarYear.Value, Fields!Category.Value),
Sum(Fields!SalesAmount.Value))

The chart plots a series for each year and product category. This expression constructs a series
group identifier by concatenating the Year and Category values. It passes the identifier and the
series value as arguments to the GetColor function. GetColor maintains a hashtable collection
for all chart series. If the series group color has already been added to the collection, GetColor
returns the color. Otherwise, GetColor assigns the next color to the series group and adds it to
the collection.

The net result is that colors are assigned consecutively in the order that the chart series are
plotted on the chart and appear in the legend. For example, since the 2004-Accessories series
is the first series plotted on the chart, it will be assigned the first color (MistyRose). Bikes will
be plotted in LightGreen, and so on. As you can see, this function lets you vary the color of
each series. If the collection has fewer colors than series, GetValue starts reusing colors.

GetColor demonstrates evaluating business rules to control the series color. If the series
value is less than 200,000, GetColor overwrites the custom color and returns "Red". Conse-
quently, the corresponding pie will be plotted in red.

ADVANCED REPORT DESIGN 271

7.3.3 Working with External Code
The second option for extending reports with custom code is to integrate them with external
.NET assemblies. This lets you use any .NET programming language and write code a whole
lot easier by leveraging the powerful Visual Studio IDE instead of the Code tab.

To demonstrate working with external code, I'll borrow a real-life scenario. In one of my
projects, we had to implement custom formatting to get the right look for a report-enabled
desktop application. For this particular report, the report dataset could return columns with
mixed data types. For example, the dataset rows might contain currency and percentage val-
ues in the same column.

A special column in the dataset was used to indicate the data type of each field. At run
time, the application would pass the user culture (obtained from the user's regional settings)
as a report parameter. Custom code in an external assembly would evaluate the user culture
and the field type and return the field format string that was correct for that culture.

Figure 7.11 This report integrates
with external code to return custom
format strings.

The Custom Formatting report demonstrates this approach. As Figure 7.11 shows, the last
three columns in the tablix report contain heterogeneous data types. Yet, the report formats
the report data correctly based on the field type.

 Understanding the Custom Formatting report
In the real-life project, we used a SQL Server CLR stored procedure to prepare the report data-
set. For the sake of simplicity, I embedded a static rowset in the report, as shown in Figure
7.12.

Figure 7.12 The FormatInfo
column in the dataset indi-
cates the field data type for all
columns that have custom
format strings.

The FormatInfo column contains an XML fragment that indicates the data type for all columns
that require custom format strings. An example of a sample formatInfo fragment follows:

CHAPTER 7 272

<formatInfo>
 <Col_1>1</Col_1> <!—-Number-->
 <Col_2>2</Col_2> <!--Currency-->
 <Col_3>3</Col_3> <!--Percentage-->
 <Col_4>4</Col_4> <!--Date-->
</formatInfo>

The data type is indicated as an integer value which corresponds to an enumeration defined in
the custom code. Thus, 1 indicates that the field in Col_1 column should be formatted as a
general number, 2 indicates that the Col_2 field should be formatted as currency, and so on.
As noted, in the real project, the custom application passes the serialized user culture to the
Settings report parameter. For the sake of simplicity, I set up a default value for the Settings
parameter that contains my regional setting culture. I used the following code to serialize the
culture:
CultureInfo ci = System.Threading.Thread.CurrentThread.CurrentUICulture;
string cis = Shared.Util.StringFromObject(ci);

The StringFromObject helper method (not shown), which is included in the Util class, seria-
lizes the CultureInfo class using the .NET binary formatter and encodes the result as a base64
string.

 Referencing external code
Similar to working with code projects, you need to set up a reference to the external assembly
before you can call it.

1. Open the Custom Formatting report in Report Designer.
2. In the Report Properties dialog box, click the References tab, as shown in Figure 7.13.

The Add button brings up the familiar Add Reference dialog box that lets you set up a refer-
ence to a private or shared assembly. A shared assembly can be referenced by multiple appli-
cations but it has to be deployed to the .NET Global Assembly Cache (GAC). Private
assemblies need to be deployed to the Report Designer folder for design-time testing and the
report server bin folder when the report is deployed to the report server. In my case, I refe-
renced the Prologika.Reporting.Extensibility assembly as a private assembly from the \Program
Files\Microsoft Visual Studio 9.0\Common7\IDE\PrivateAssemblies folder.

Figure 7.13 Before using
external code, you must create
an assembly reference.

ADVANCED REPORT DESIGN 273

If you'll be calling only static (or Shared as it’s known in Visual Basic documentation) methods
in the external assembly, setting up an assembly reference is all that's needed. That's because
static methods don't require an object instance and can be invoked by using the fully qualified
class name using this syntax:
<Namespace>.<ClassName>.<Method> (argument1, argument2, …, argumentN)

For example, you can call the GetCustomFormat static method as follows:
=Prologika.Reporting.Extensibility.Util.GetCustomFormat
(Parameters!Settings.Value, Fields!FormatInfo.Value, "Col_2", False)

Static methods are useful for implementing helpful routines by passing all required data as
arguments to the method. They are also more efficient because no overhead is required to
construct and maintain an object instance.

By contrast, instance methods require an object instance and are object-specific. This involves
setting up an instance name in the References tab. For example, suppose that you want to call
an instance method called Foo in the Util class.

3. Click the Add button in the Add or Remote Classes section.
4. In the Class Name column, enter Prologika.Reporting.Extensibility.Util, which is the fully quali-

fied class name.
5. In the Instance Name column, enter an instance name that will be used to call the instance

methods, such as m_Util.

Once this is done, you are ready to call the Foo method in report expressions. When doing so,
you need to use the Code keyword followed by the instance name and method name:
Code.m_Util.Foo(argument1, argument2, …, argumentN)

When calling instance methods, you need to set up as many instance names as the number of
the classes in the external assembly you need to access. Again, in our case, I don't need to set
up an instance name because I call static methods only.

 Implementing custom formatting
Once you have set up a reference to the external assembly, you are ready to call its methods.
The detail cells in the tablix region use an expression to derive the format string. For example,
the Format property of the Col_1 detail cell uses the following expression:
=Prologika.Reporting.Extensibility.Util.GetCustomFormat
(Parameters!Settings.Value, Fields!FormatInfo.Value, "Col_2", False)

This expression calls the GetCustomFormat static method in the Util class. It passes the user
culture (Parameters!Settings.Value), the formatInfo fragment, the field name, and a Boolean
value that indicates whether the format string should include a currency symbol.
public static string GetCustomFormat (string paramSettings, string formatInfo,
 string columnID, bool currencySymbol) {
 string setting = GetSetting(formatInfo, columnID);
 if (String.IsNullOrEmpty(setting)) return null;
 FormatTypeEnum settingType = (FormatTypeEnum)Enum.Parse(typeof(FormatTypeEnum), setting);

WARNING Static variables are not private to a report user so sensitive user-specific data should not be kept in a
static variable. In addition, static class variables are subject to multithreading concurrency issues. To avoid these
issues, design your static methods as stateless methods that accept all required data as input arguments. As noted
in section 7.3.2, however, one scenario that requires static variables in this release is maintaining state between
page requests.

CHAPTER 7 274

 switch (settingType) {
 case FormatTypeEnum.None : return null;
 case FormatTypeEnum.Number : return GetNumberFormat(paramSettings);
 case FormatTypeEnum.Currency : return GetCurrencyFormat(paramSettings, currencySymbol);
 case FormatTypeEnum.Percentage : return GetPercentFormat(paramSettings);
 case FormatTypeEnum.Date : return GetDateFormat(paramSettings);
 }
 return null;
}
public static string GetNumberFormat(string settings) {
 string format = null;
 string cultureInfo = GetSetting(settings, SETTING_CULTURE_INFO);
 if (cultureInfo == null) return null;
 CultureInfo ci = DeserializeCulture (cultureInfo);
 string pf = GetGenericNumberFormatString(ci, true);
 string nf = GetGenericNumberFormatString(ci, false);
 format = pf + ";" + nf;
 string decimalPlacesExpanded = GetDecimalPlaces(ci, FormatTypeEnum.Number);
 format = format.Replace("n", "#" + ci.NumberFormat.NumberGroupSeparator + "##0" + decimalPlacesExpanded);
 return format;
}

To determine if there is a format string associated with the column, GetCustomFormat calls
the GetSetting helper method (not shown) and passes the formatInfo fragment and the col-
umn identifier. GetSetting loads the formatInfo XML fragment in an XmlDocument object and
returns the value for the specified node.

If formatInfo includes the field, GetCustomFormat casts the field type to the FormatType-
Enum enumeration. Then, GetCustomFormat calls the associated helper method to derive the
format string based on the field type, such as GetNumberFormat for numbers, GetCurrency-
Format for currencies, and so on. Let's take a closer look at one of these helper methods: Get-
NumberFormat.

GetNumberFormat calls the GetSetting helper method to obtain the user culture, which is
passed to the Settings report parameter. It calls the DeserializeCulture helper method to dese-
rialize the CultureInfo object from the base64-encode string. Next, it calls GetGenericNum-
berFormatString to derive the format strings for positive and negative numbers based on the
user's culture.

For example, if the user regional settings indicate a thousand separator and parentheses
for negative numbers, the format string would be #,##0;(#,##0). GetNumberFormat invokes
the GetDecimalPlaces helper method to obtain the decimal portion of the format string. Final-
ly, GetNumberFormat constructs the complete format string. For example, if the users' re-
gional settings indicate two decimal places, the format string would be #,##0.00;(#,##0.00).

 Deploying external assemblies
External assemblies must be deployed to Report Designer and report server so they are access-
ible at both design time and run time.

1. Copy the Prologika.Reporting.Extensibility.dll and Prologika.Reporting.Extensibility.pdb bina-
ries to the Report Designer folder whose default location is \Program Files\Microsoft Visual
Studio 9.0\Common7\IDE\PrivateAssemblies.

2. Copy the Prologika.Reporting.Extensibility.dll and Prologika.Reporting.Extensibility.pdb bina-
ries to the report server binary folder whose default location is \Program Files\Microsoft SQL
Server\MSRS10.MSSQLSERVER\Reporting Services\ReportServer\bin.

To facilitate design-time deployment, I've defined a post-build event for the Report-
ing.Extensibility project which automatically copies the binaries to Report Designer and report
server after a successful build. To see this event, right-click the Reporting.Extensibility project

ADVANCED REPORT DESIGN 275

in Solution Explorer and click Properties. In the Project Properties dialog box, click the Build
Events tab. Notice that the Post-build Event Command Line field includes the following
commands:
copy $(TargetName).* "$(DevEnvDir)PrivateAssemblies\"
copy $(TargetName).* "C:\Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting
Services\ReportServer\bin\"

Be careful when using a post-build event to deploy to the report server because each build will
effectively restart the report server. The report server monitors its folders for file change notifi-
cations and restarts itself under certain conditions, such as after detecting changes to its
web.config file or binary folder. To avoid unnecessary restarts, manually deploy external code
to the report server.

7.3.4 Securing Custom Code
As long as custom code performs simple tasks, such as arithmetic and string operations, you
don't need to worry about securing it. However, chances are that your custom code may need
elevated privileges to access protected resources, such opening files and connecting to data-
bases. This requires that you understand and adjust the .NET Code Access Security policies to
give your custom code rights to execute successfully.

 Understanding code access security
Reporting Services leverages the Code Access Security (CAS) infrastructure baked into the
.NET Framework to sandbox custom code execution and to prevent malicious code from per-
forming unauthorized actions. Discussing CAS in detail is outside the scope of this book. The
first two links in the Resources section should help you acquire the necessary background
knowledge in case you want to learn more about CAS after reading this section.

In a nutshell, when the .NET Framework common language runtime (CLR) loads an as-
sembly, it obtains an evidence for the assembly so it can identify which code group the assembly
belongs to. Evidence is known information about the assembly, such as the assembly location,
publisher, strong name, and so on.

Code groups associate a piece of evidence with a named permission set to define a CAS
security policy. The .NET Framework includes several pre-defined code groups, such as My
Computer which includes all code originating on the local computer. Administrators can use
the .NET Framework Configuration tool to create custom code groups and permission sets.
For example, assuming that the Prologika.Reporting.Extensibility assembly requires permis-
sions to open connections to a SQL Server database, you can set up a custom permission set
that grants it a SqlClient permission. Then, you can define a custom code group for Prologi-
ka.Reporting.Extensibility located in the report server bin folder (evidence) and associate the
code group with the custom permission set.

To simplify management, .NET applications can use configuration files that specify CAS
security policies. For example, Reporting Services and SharePoint use configuration files to
control what CAS permissions are assigned to custom code.

CHAPTER 7 276

 How Reporting Services use code access security
Reporting Services evaluates CAS both at design time and run time. Report Designer Reporting
Services uses security configuration files that define default CAS policies. Table 7.4 lists these
files, their default location and purpose.

Table 7.4 Reporting Services supports several security configuration files

Component Security File Default Path Purpose

Report Server rssrvpolicy.config \Program Files\Microsoft SQL Serv-
er\MSRS10.MSSQLSERVER\Reporting
Services\ReportServer

The report server CAS configuration file. Affects
run-time custom code execution.

Report Manager rsmgrpolicy.config \Program Files\Microsoft SQL Serv-
er\MSRS10.MSSQLSERVER\Reporting
Services\ReportManager

The Report Manager CAS configuration file.
Affects custom code that extends Report Man-
ager, such as UI for custom delivery extensions.

Report Designer rspreviewpolicy.config \Program Files\Microsoft Visual Studio
9.0\Common7\IDE\PrivateAssemblies

The Report Designer CAS configuration file.
Affects custom code at design time.

Follow these steps to understand how Reporting Services CAS security works and determine
the default CAS permissions Report Designer grants to custom code (the report server defines
the same permissions in rssrvpolicy.config):

1. Open the Report Designer configuration file (RSReportDesigner.config) which is located by
default in \Program Files\Microsoft Visual Studio 9.0\Common7\IDE\PrivateAssemblies.

2. Locate the policyLevel element.
<Add Key="PolicyLevel" Value="rspreviewpolicy.config" />

The securityPolicy element points to the rspreviewpolicy.config that defines the CAS policies.
3. Open the rspreviewpolicy.config in your favorite text editor.
4. Locate the Report_Expressions_Default_Permissions code group.

<CodeGroup
 class="UnionCodeGroup" version="1" PermissionSetName="Execution"
 Name="Report_Expressions_Default_Permissions"

Description="This code group grants default permissions for code in report expressions and Code element. ">
 <IMembershipCondition class="StrongNameMembershipCondition" version="1" PublicKeyBlob="…" />
</CodeGroup>

As you can see, the Reporting Services default security policy grants Execution permissions to
custom expression and embedded code. The Execution permission allows code to access only
the CPU. Similarly, the next CodeGroup element below the Report_Expressions_Default_-
Permissions element grants external custom code that originates on the local computer (My-
Computer zone) Execution permissions as well.

5. Preview the Custom Formatting report in Report Designer.

Although the report appears to execute successfully, the custom formatting code doesn’t work
because the report content is not formatted. What's going on? If you examine the Visual Stu-
dio Output window, you will see that the Format expressions have generated the following
exception:
[rsRuntimeErrorInExpression] The Format expression for the textbox ‘<textbox>’ contains an error: Request for the
permission of type 'System.Security.Permissions.SecurityPermission, mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089' failed.

ADVANCED REPORT DESIGN 277

NOTE If a textbox calls custom code and the code fails, the textbox will display #Error. Expressions in other textbox
properties don't provide visual indicators that the custom code has generated an exception. If you suspect that custom
code doesn't work as expected, inspect the Output window for error messages or debug the external code.

Unfortunately, the error messages in the Output window don't tell you exactly what caused
the external code to fail. However, if you debug the code using the techniques I'll present in
section 7.3.5, you'll discover that the code fails when it tries to deserialize the user culture in
the StringToObject method.
BinaryFormatter formatter = new BinaryFormatter();
thisDeserializedObject = formatter.Deserialize(ms); ' SecurityPermission exception here!!!

Why does the Deserialize method fail? Given the error text and what I said about the default
Reporting Services security policies, you can conclude that the external code doesn’t have the
required permissions to call this method. Let's find what permissions the Deserialize method
requires to execute successfully.

6. Place the cursor on Deserialize and press F1 to open the Visual Studio Help.
7. In the help topic for Deserialize, scroll all the way down to the Permissions section.

Note that the method requires SecurityPermission, which is not included in the Execution
permission set. There are two approaches to grant the code the required rights. The first ap-
proach is easy but less secure because it grants the custom assembly full rights. The second
approach grants the assembly the minimum rights to execute successfully but requires addi-
tional steps to configure the security policies.

 Elevating custom code rights the easy way
The easy way to elevate the custom code permissions is to configure the assembly as fully
trusted by following these steps:

1. Make a backup of the rspreviewpolicy.config and rssrvpolicy.config files.
2. Open the rspreviewpolicy.config file and add a new CodeGroup that grants the assembly

FullTrust permissions.
<CodeGroup class="UnionCodeGroup" version="1" Name="SecurityExtensionCodeGroup"
 Description="Code group for the RsViewer library" PermissionSetName="FullTrust">
 <IMembershipCondition class="UrlMembershipCondition" version="1"
 Url="C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\PrivateAssemblies\Prologika.
 Reporting.Extensibility.dll" />
</CodeGroup>

The Url element specifies the full path to the assembly. When deploying the assembly to the
report server, you need a similar CodeGroup element to the rssrvpolicy.config file.
<CodeGroup class="UnionCodeGroup" version="1" Name="SecurityExtensionCodeGroup"
 Description="Code group for the RsViewer library" PermissionSetName="FullTrust">
 <IMembershipCondition class="UrlMembershipCondition" version="1" Url="C:\Program Files\Microsoft SQL
Server\MSRS10.MSSQLSERVER\Reporting Services\ReportServer\bin\Prologika.Reporting.Extensibility.dll" />
</CodeGroup>

Notice that the CodeGroup element in rssrvpolicy.config references the assembly in the report
server binary folder. For your convenience, I included my configuration files in the Config
folder in the book source code. Do not replace your files with mine! Use the files for reference
only.

Suppose that you have granted the assembly FullTrust rights. What will happen if mali-
cious code executes the assembly? It can get access to all authorized resources that the assem-
bly can access. To avoid this, when evaluating the CAS security policy, CLR walks up the call

CHAPTER 7 278

stack to check if all direct and indirect callers have rights to perform a privileged operation in
the custom code. If the callers don't have the required rights, CAS will fail the attempted ac-
tion even if the custom assembly is authorized to execute.

In our case, report expressions call the custom code. At run time, the report server com-
piles all report expression in a special expression host assembly and assigns this assembly to
the Report_Expressions_Default_Permissions code group. You can elevate the CAS rights of
this code group to FullTrust but this presents a security risk because all expressions in all re-
ports will be fully trusted. Instead, you can tell CRL to stop the stack walk by asserting the
required permission in the external assembly.
private static CultureInfo DeserializeCulture(string culture) {
 try {
 SecurityPermission sp = new SecurityPermission(PermissionState.Unrestricted);
 sp.Assert(); // stop the stack walk
 }
 catch (System.Exception ex) { throw ex; }
 CultureInfo ci = (CultureInfo)StringToObject(culture); // call privileged operation
 return ci;
}

The report should now work both in Report Designer and Report Manager. If the assembly is
opening a connection to SQL Server, you must assert SqlClientPermission.
System.Data.SqlClient.SqlClientPermission sp = new SqlClientPermission
(System.Security.Permissions.PermissionState.Unrestricted);
sp.Assert();

If the assembly is reading from a file, you must assert FileIOPermission.
FileIOPermission sp = new FileIOPermission(FileIOPermissionAccess.Read, "C:\TestFile");
sp.Assert();

If the assembly is calling a Web service, you must assert WebPermission and Environment-
Permission rights, as I'll demonstrate in section 7.4.1. If the custom code is performing other
operations, check the .NET documentation to determine what permissions you need to assert.

 Elevating custom code rights the recommended way
The recommended way to configure CAS security is to grant the assembly the minimum rights
to execute successfully. This requires creating a new permission set. The easiest way to create a
permission set is to use the Microsoft .NET Framework 2.0 Configuration tool.

1. In the Windows Control Panel, double-click Administrative Tools.
2. In the Administrative Tools window, double-click Microsoft .NET Framework 2.0 Configura-

tion.
3. In the left pane of the .NET Configuration 2.0 window, expand Runtime Security Policy.
4. Under Runtime Security Policy, expand Machine. Right-click the Permission Sets node under

Machine and click New.
5. In the Create Permission Set dialog box, enter PrologikaPermissionSet in the Name field and

click Next.

Recall that the Prologika.Reporting.Extensibility assembly requires the SecurityPermission
rights to run.

ADVANCED REPORT DESIGN 279

6. Click the Security permission (see Figure 7.14) and click the Add button.
7. In the Permission Settings dialog box, check Enable Assembly Execution and Assert Any Per-

mission That Has Been Granted checkboxes and click OK.
8. If your code needs additional permissions, repeat the last two steps to add the permissions.

Click Finish when you are done.

Next, you'll create a custom CodeGroup that references the PrologikaPermissionSet.
9. In the .NET Configuration 2.0 window, expand Code Groups under Machine.

10. Under Code Groups, right-click All_Code, and then click New.
11. On the Create Code Group page, enter PrologikaCodeGroup in the Name field, and then click

Next.
12. Expand the Choose the Condition Type For This Code Group drop-down list and select URL.
13. In the URL field, enter the full path to your assembly, such as C:\Program Files\Microsoft Vis-

ual Studio 9.0\Common7\IDE\PrivateAssemblies\Prologika.Reporting.Extensibility.dll if you
are deploying the assembly to Report Designer, and click Next.

14. Expand the Use Existing Permission Set drop-down list and select PrologikaPermissionSet and
click Next and then Finish.

The Microsoft .NET Framework 2.0 Configuration tool writes the changes to the .NET ma-
chine-wide security.config file.

15. In your favorite text editor, open security.config from the
C:\Windows\Microsoft.NET\Framework\v2.0.50727\CONFIG folder.

16. Copy the PrologikaPermissionSet element.
<PermissionSet class="NamedPermissionSet" version="1" Name="PrologikaPermissionSet">
 <IPermission class="SecurityPermission" version="1" Flags="Assertion, Execution"/>
</PermissionSet>

17. Open rspreviewpolicy.config and paste the PrologikaPermissionSet element in the Named-
PermissionSets element after the last PermissionSet element.

Figure 7.14 Use the .NET
Framework 2.0 Configuration
tool to create custom permis-
sions sets and code groups.

CHAPTER 7 280

18. In security.config, copy the PrologikaCodeGroup element.
19. Paste the PrologikaCodeGroup element after the last CodeGroup element in rspreviewpoli-

cy.config.
20. Repeat the last three steps to make the same changes to rssrvpolicy.config in order to confi-

gure the custom code to execute when deployed to the report server. Update the assembly
URL in the PrologikaCodeGroup element to
C:\Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Services\Report
Server\bin\Prologika.Reporting.Extensibility.dll.

21. Remove the PrologikaPermissionSet and PrologikaCodeGroup elements from security.config.

 Troubleshooting code access security
I know from personal experience that troubleshooting CAS issues is not easy. This is especially
true with chained calls, such as when your custom assembly calls other assemblies. If giving
your custom code FullTrust permissions doesn't help, try debugging your code to find where
it fails. Once you identify the exact line, determine what security permission it requires by
examining the error message.

However, when your code calls other Microsoft or third-party assemblies and CAS fails in
these assemblies, debugging the code may not be an option. To the best of my knowledge,
there is no tool that can help you troubleshoot CAS issues in this scenario. When nothing else
helps, consider elevating the permissions of the report expressions to FullTrust.
<CodeGroup
 class="UnionCodeGroup" version="1" PermissionSetName="FullTrust"
 Name="Report_Expressions_Default_Permissions"

Description="This code group grants default permissions for code in report
expressions and Code element. ">

 <IMembershipCondition class="StrongNameMembershipCondition" version="1" PublicKeyBlob="…" />
</CodeGroup>

Without underestimating the importance of securing custom code, I personally believe that
report authors need not become CAS experts just to get a piece of code working. I hope a fu-
ture release of Reporting Services simplifies custom code security. One way this could work is
to follow the approach used by SQL Server and Analysis Services to secure .NET code by as-
signing the assembly one of three permission sets: Safe (only internal computation and local
data access are allowed), External Access (can access external system resources such as files,
networks, environmental variables, and the registry), and Unrestricted (all bets are off). If you
agree, log this wish on connect.microsoft.com.

7.3.5 Debugging Custom Code
Apart from testing the code in a separate code project, such as a console or Windows Forms
application, there aren't any options for debugging embedded code. In section 7.1.5, we ex-
plore the techniques that you can use to test your code before adding it to a report. Once the
code is tested, copy and paste the code into the Code tab of the Report Properties dialog box.
Before doing so, make sure that the embedded code uses fully qualified object names, such as
System.Collections.ArrayList, because embedded code cannot import namespaces.

 Using report preview
There are several options to debug external code. The easiest option is to use stand-alone pre-
view (F5), as follows:

ADVANCED REPORT DESIGN 281

1. Add Reporting.Extensibility and the Reports project to the same Visual Studio solution.
2. Build and then deploy the custom code assembly that you want to test to C:\Program

Files\Microsoft Visual Studio 9.0\Common7\IDE\PrivateAssemblies. Consider setting up a
post-build event to automate deployment.

3. In Solution Explorer, right-click the Reports project and click Set as Startup Project.
4. In Solution Explorer, right-click the Reports project and click Properties.
5. In the Reports Property Pages dialog box, expand the StartItem drop-down list and select the

report that uses the external code (Custom Formatting.rdl in our case). Click OK.
6. Put breakpoints in the custom code as needed and press F5.

Visual Studio will open the report in a special viewer called Report Host (RSReportHost.exe).
When you preview the report, Visual Studio will load and execute the custom code and your
breakpoints will be hit.

TIP What happens when you press F5 depends on the Configuration Manager settings. If the Build and Deploy op-
tions are checked, Visual Studio will build and deploy all reports in the project. As this may take considerable time, con-
sider turning off these options to start your debugging session faster.

 Start Report Designer as an external program
The problem with stand-alone preview is that the moment the report calls the assembly, the
Visual Studio IDE loads and locks the assembly. Consequently, you won't be able to redeploy
an updated version of the assembly unless you restart the Visual Studio IDE. As you can im-
age, this could be irritating during early stages of development. In addition, if your code
project is in the Visual Studio 2005 format, you won't be able to add both projects to the same
solution because they have incompatible project formats. Therefore, I recommend that you
debug custom code by starting Report Designer as external program.

1. Open your code project in Visual Studio. If the Report Server project is part of the same solu-
tion, right-click the project node and click Remove to remove it from the solution.

2. In the Project Properties dialog box of the code project, select the Debug tab.
3. In the Start Action section, select Start External Program and enter C:\Program Files\Microsoft

Visual Studio 9.0\Common7\IDE\devenv.exe.
4. In the Command Line Arguments field, enter the full path to the report project enclosed in

quotes, such as "C:\Users\teo\Books\RS2008\Code\ch07\Reports\Reports.rptproj".
5. Put breakpoints in the custom code as needed and press F5.

This will open another instance of the Visual Studio IDE with your Report Server project.
When you preview a report that uses custom code, your breakpoints should be hit. When you
stop the debugging session, the second Visual Studio instance will be terminated as well, so
you can make changes and rebuild the custom code if needed.

 Attaching to the report server process
To debug custom code at run time under the report server, attach to the Reporting Services
service, as follows:

1. Deploy the latest custom code and reports to the report server.
2. Open the code project in Visual Studio.

3. Click the Debug Attach to Process menu.

CHAPTER 7 282

4. In the Attach to Process dialog box, check the Show Processes From All Users and Show
Processes In All Sessions checkboxes.

5. In the Available Processes grid, select ReportingServicesService.exe and click the Attach but-
ton.

6. Open Report Manager and run the report or request the report by URL.

Once the report invokes the custom code, breakpoints will be hit and you will be able to step
through the code. Once you are done debugging, click Debug Detach All to detach the de-
bug session from the report server.

TIP To facilitate troubleshooting custom code execution at run time without debugging it, consider implementing tracing,
such as invoking System.Diagnostics.Trace.WriteLine to output exception details. This approach will let you attach a trace
listener, such as the SysInternals DebugView tool, and watch the trace output real time.

7.4 Report Design Challenges and Solutions
As I've worked with Reporting Services, I've discovered interesting approaches for solving var-
ious design challenges. I'd like to wrap up the report authoring part of this book by presenting
solutions and tips I've accumulated through my real life projects and interaction with the
technical community. I hope that by the end of this section, you will have at least one "a-ha"
moment that leads you to say one less time "Reporting Services can't do that".

7.4.1 Working with Variables
As chapter 1 explained, the Reporting Services 2008 processing engine was redesigned to per-
form on-demand report processing with better scalability. As a result, textbox values are calcu-
lated on-demand every time the containing page is rendered. On-demand report processing
may have important ramifications on data latency and performance.

The dataset-bound textboxes are not affected much by the new processing model. This is
because the underlying data is cached for the duration of the execution session. Consequently,
values of dataset-bound textboxes won't change between page refreshes, such as when the us-
er pages to another page and then back again to the same page.

But what about textboxes that call custom code? As it turns out, the new processing en-
gine will execute the custom code each time the page is rendered. This may or may not be
what you want. If you need up-to-date information, the new behavior will be welcome. How-
ever, there will be cases when you need the custom code to execute only once (for example,
when custom code takes a very long time to execute and you want to cache the result, or
when you don't want the report results to change when the user scrolls to the next page). How
do you solve these requirements? Enter variables–a new feature in Reporting Services 2008.

 Understanding variables
Variables provide a mechanism for guaranteeing one-time evaluation semantics for an expres-
sion. Think of Reporting Services variables as a read-only variable in .NET programming lan-
guages. A variable is a named reference to data stored in memory. Reporting Services variables
are not typed and can store any of the object types supported by RDL, such as string, int, float,
double, or byte array.

ADVANCED REPORT DESIGN 283

The DeferVariableEvaluation report-level property controls when variables will be eva-
luated. When set to False (default value), variables will be evaluated at the beginning of report
processing. By setting it to True, you are telling the report server that the variables are not re-
quired to be pre-evaluated and should be evaluated on-demand based on usage. In this case,
Reporting Services does not guarantee a particular point in time when a variable value will be
evaluated. It just guarantees that it will be evaluated before its first usage in the report and
once it is evaluated, it won’t be re-evaluated.

As it stands, the report server doesn't take full advantage of deferred evaluation. One sce-
nario that may give you deferred evaluation is when a report contains multiple data regions,
but you only view the first page. In this case, data regions with group variables that are not on
the first page might not get immediately evaluated. Another deferred evaluation scenario is
when a report contains multiple subreports. Report variables on the subreports may not be
evaluated if you don’t view the page with the contents of the subreport.

Just like code variables, Reporting Services variables have a scope. Specifically, variables
can be scoped at a report or a group level. A report variable is evaluated once for the lifetime
of the report and it's available for any expression in the report. A group variable is evaluated
each time the group value changes. You can define a group variable on a parent group and
refer to its value from a nested child group. You can access the variable value by using the Va-
riables collection.

Variables are subject to certain limitations. Once initialized by Reporting Services, a varia-
ble is read-only and cannot be used to cache results from other expressions, such as to main-
tain state. You cannot use a variable inside an aggregate function or a calculated dataset field.
For example, the following expression results in an error because it includes a variable in the
Sum aggregated function:
=Sum(Fields!SalesAmount.Value * Variables!Rate.Value)

If the field is additive, you can rewrite the expression as follows:
=Sum(Fields!SalesAmount.Value) * Variables!Rate.Value

 About the Daily Sales in USD report
So far, we've been blissfully unaware that Adventure Works sales are captured in local curren-
cies. Suppose that you need to produce a report that converts the local currency values to
United States dollars. Let's assume that Adventure Works has already built a Web service that
returns the currency conversion rate for a given date and currency. The report needs to call
the Web service to obtain the currency rate in order to calculate sales in USD.

Figure 7.15 This report uses a
report variable to cache the cur-
rency conversion rate.

CHAPTER 7 284

 The book source code includes two reports, Daily Sales in USD Slow and Daily Sales in
USD Fast, which demonstrate this scenario. The user can select a date by setting the Order
Date field. The Currency parameter is configured as a cascading parameter that shows only the
currencies used on that date.

The Daily Sales in USD Slow report doesn't use variables and executes much slower be-
cause it calls the Web service for each expression that needs the currency rate. By contrast, the
Daily Sales in USD Fast report (see Figure 7.15) calls the Web service once to obtain the cur-
rency rate and caches that rate in a report variable. Instead of calling the Web service, the re-
port expressions use the cached rate. This improves the report performance significantly.

 Implementing the Web service
I implemented a simple Web service to return the currency conversion rate. To avoid depen-
dency on IIS, the AdventureWorksServices Web service project uses the ASP.NET develop-
ment server. The Web service is implemented in the Services.asmx file.
[WebMethod]
public decimal GetRate(DateTime date, string currency) {
 decimal rate = 0;
 string sql = "SELECT [AverageRate] FROM [Sales].[CurrencyRate] WHERE CurrencyRateDate = @Date
 AND ToCurrencyCode = @Currency";
 using (SqlConnection conn = new SqlConnection(connectString)) {
 SqlCommand cmd = new SqlCommand(sql, conn);
 cmd.Parameters.Add("@Date", SqlDbType.DateTime);
 cmd.Parameters.Add("@Currency", SqlDbType.NChar, 3);
 cmd.Parameters["@Date"].Value = date;
 cmd.Parameters["@Currency"].Value = currency;
 conn.Open();
 rate = (Decimal)cmd.ExecuteScalar();
 }
 return rate;
}

The GetRate web method accepts the date and currency code as input arguments. It establish-
es a connection to the AdventureWorks2008 database and queries the CurrencyRate table to
return the currency conversion rate.

 Implementing the custom code
I extended the Reporting.Extensibility assembly with a GetRate method that wraps the call to
the Web service.
public static decimal GetRate(DateTime date, string currency) {
 decimal rate = 0;
 Trace.WriteLine("GetRate called...");
 PermissionSet ps = new PermissionSet(PermissionState.None);
 Regex urlRegEx = new Regex(@"http://localhost:1966/.*");
 WebPermission wp = new WebPermission(NetworkAccess.Connect, urlRegEx);
 ps.AddPermission(wp);
 EnvironmentPermission ep = new EnvironmentPermission(PermissionState.Unrestricted);
 ps.AddPermission(ep);
 ps.Assert();

 AW.Service proxy = new Service();
 proxy.Credentials = System.Net.CredentialCache.DefaultCredentials;
 rate = proxy.GetRate(date, currency);
 System.Threading.Thread.Sleep(500);
 return rate;
}

As you know by now, you must obey the CAS security rules when custom code calls a pro-
tected resource. Invoking a web method requires WebPermission and EnvironmentPermission
rights. GetRate starts by constructing a PermissionSet object that includes these two permis-

ADVANCED REPORT DESIGN 285

sions. The WebPermission uses a regular expression to grant rights to all URLs that include
localhost:1966 (the ASP.NET development server is configured to listen on port 1966). Once
the permission set is constructed, GetRate asserts it to stop the stack walk.

Then, GetRate invokes the Web service. I introduced an artificial delay of 500 millise-
conds to simulate a long running custom method. This will help you understand performance
benefits of using a report variable. You can use the SysInternals DebugView tool to watch the
trace output from the GetRate method. Before testing the code changes, make sure to deploy
and secure the Reporting.Extensibility assembly as discussed in section 7.3.4.

 The Daily Sales in USD Slow report
The Daily Sales in USD Slow doesn't use variables. Instead, the To USD column uses the fol-
lowing expression to calculate the USD sales.
=Fields!Sales.Value/Prologika.Reporting.Extensibility.Services.GetRate
(Parameters!OrderDate.Value, Parameters!Currency.Value)

Similar expressions are used to calculate the report totals and show the rate in the report title.
At run time, the Daily Sales in USD Slow report makes a total of 42 calls to the Web service.
On my laptop, the report takes some 20 seconds to execute. Notice that when you page, the
report makes more calls to GetRate because each page is rendered on demand. Another indi-
cation of the on-demand processing mechanism is the Date field in the page footer. If you na-
vigate to the second report page and go back to the first page, the Date field changes. This is
because it uses the Now() function to display the current date and this expression is executed
each time the page is rendered.

 The Daily Sales in USD Fast report
Follow these steps to implement a report variable for caching the currency conversion rate.

1. In the Report Properties dialog box, select the Variables tab.
2. Click the Add button to create a new variable. Name the variable Rate and use the following

expression for the value:
=Prologika.Reporting.Extensibility.Services.GetRate (Parameters!OrderDate.Value, Parameters!Currency.Value)

3. Change all rate-dependent expressions to use the Rate variable instead of calling custom code.

For example, change the expression of the detail cell of the To USD column as follows:
=Fields!Sales.Value/Variables!Rate.Value

4. Preview the report.

The report makes a single call to the GetRate method and it takes only a few seconds to ex-
ecute! Paging through the report is very fast and it doesn't result in additional method invoca-
tions. That's because the report expressions reuse the currency rate cached in the Rate report
variable.

7.4.2 Working with External Images
Recall that the image report item can render images that are embedded in the report, stored in
the database, or located outside Reporting Services. So far, the report samples have used the
first two image types. Next, I'll discuss two reports that demonstrate how to integrate your
reports with external images. The first report displays images by URL, while the second gets
the binary image from a Web service.

CHAPTER 7 286

 Requesting images via URL
The External Images via URL report, shown in Figure 7.16, displays a list of Adventure Works
customers and their addresses. It shows an image map for each customer by requesting the
map via URL. To the best of my knowledge, only the Google Static Maps service supports ren-
dering maps as static images. I used the Google Static Map Wizard (see Resources) to generate
the map URL. For example, this is what the map URL for Jon Yang looks like:
http://maps.google.com/staticmap?center=47.579322,-122.383278
&markers=47.579322,-122.383278,red&zoom=13&size=300x200&key=MAPS_API_KEY

Figure 7.16 This
report shows external
images by URL.

Once you have the image URL, configuring the report to display the image is straightforward:
1. Add an image report item to the list region.
2. Set its MIMEType property to image/gif because Google Static Maps returns the image in GIF

format.
3. Set the image Source property to External.
4. Set the image Value property to the image URL. In my case, I set the Value property to

=Fields!MapURL.Value because the MapURL dataset field provides the image URL.

If the external images are located on a separate server and the service is not configured for
anonymous access, the image request will fail. As I discussed in chapter 2, you must configure
the Reporting Services unattended execution account to impersonate the call by specifying the
Windows credentials of an account that has read access to the external image files. You can
configure the image Action property to make the image clickable and let the user navigate to
another URL resource or report.

NOTE You must get a MAPS API key and replace the MAPS_API_KEY token in the map URL to render the maps
successfully. You can obtain a free API key from the Static Map Wizard page.

ADVANCED REPORT DESIGN 287

5. Click the ellipsis (…) button inside the image Action property.
6. In the Image Properties dialog, select the Action tab and click the Go to URL option.
7. Enter the following expression in the Select URL field:

="http://localhost:1966/AdventureWorksServices/images/" & Fields!CustomerID.Value & ".gif"

This expression constructs an URL address to the image located in the images folder of the
AdventureWorksServices ASP.NET project. As a result, when the user clicks the image, the
image will be displayed in a separate browser instance.

 Requesting images via Web service
Sometimes, the external images may not be directly accessible by URL. For example, once I
had to design a report that would show scanned images of customer checks. To obtain the
images, the report had to integrate with a Web service that would take a customer identifier
and return the image in a binary format. The External Images via Web Service report demon-
strates how this could be implemented. It builds upon the External Images via URL report but
obtains the external image via custom code that calls a Web service. The GetMap web method
in the AdventureWorksServices project fulfills the role of the Web service.
[WebMethod]
public byte[] GetMap(int customerID) {
 string imagePath = "";
 imagePath = String.Format(@"{0}\{1}.gif", Server.MapPath("images"), customerID);

 if (File.Exists(imagePath))
 return FileAsBytes(imagePath);
 else
 return new byte[] { };
}

For the sake of simplicity, GetMap loads the map image from the file system and returns it as a
byte array. I also added a wrapper GetMap method in the Services class in the Report-
ing.Extensibility project.
[PermissionSet(SecurityAction.Assert, Unrestricted = true)]
public static byte[] GetMap(int customerID) {
 AW.Service proxy = new Service();
 proxy.Credentials = System.Net.CredentialCache.DefaultCredentials;
 return proxy.GetMap(customerID);
}

Recall that calling Web services requires elevated CAS permissions. The GetMap helper me-
thod demonstrates a declarative way for asserting permissions by decorating the method with
a PermissionSet attribute instead of doing so programmatically. In this case the PermissionSet
attribute doesn't enumerate the required permissions (WebPermission and EnvironmentPer-
mission). Instead, it instructs CLR to assert all permissions granted to this assembly. Since the
custom assembly is granted FullTrust, the net result is that CLR will fully trust the method
callers. Of course, this is less secure than asserting only the permissions you need, so use this
approach with caution. Once the custom code is in place, follow these steps to configure the
image report item to call it:

1. Set the image Source property to Database.
2. Set the image Value property to an expression that calls the custom code:

=Prologika.Reporting.Extensibility.Services.GetMap(Fields!ContactID.Value)

This expression calls the GetMap helper method in the Prologika.Reporting.Extensibility as-
sembly, which in turns calls the GetMap web method.

CHAPTER 7 288

7.4.3 Passing Multivalued Parameters to Stored Procedures
Recall from chapter 4 that Reporting Services supports multivalued parameters to let the end
user select multiple parameter values. When designing the report query, you must append an
IN operator to the query WHERE clause of the SELECT statement to filter on multiple values.
This works fine with freeform SQL statements. But what if you need to pass multiple values to
a stored procedure? Prior to SQL Server 2008, you had to resort to parsing the comma-
delimited string inside the stored procedure to extract the parameter values. Needless to say,
this approach is difficult to implement and debug.

Table-valued parameters, a new feature in SQL Server 2008, changes all that. They pro-
vide a built-in mechanism to send multiple rows of data as a single parameter to a stored pro-
cedure. The Area Chart with Table Type report demonstrates how you can leverage table-
valued parameters to send a multivalued parameter to a stored procedure. This report builds
upon the Area Chart report you implemented in chapter 6 except that it uses a stored proce-
dure instead of a freeform SQL statement for data retrieval.

 Working with table-valued parameters
The Area Chart with Table Type has CalendarYear and Territory parameters. The Territory
parameter is configured as a multivalued parameter. As a prerequisite for passing its values to
a table-valued parameter of a stored procedure, you need to define a user-defined table type in
the AdventureWorksDW2008 database. Execute the TVP.sql script included in the Queries
folder of the source code of this chapter to create the user-defined table type and the stored
procedure.
CREATE TYPE [dbo].[TerritoryType] AS TABLE (
 [TerritoryKey] [int] NOT NULL,
 [TerritoryName] [nvarchar](50) NOT NULL
)
CREATE PROCEDURE [dbo].[uspGetSalesByTerritory] (
 @CalendarYear int,
 @Territory TerritoryType READONLY
)
AS
BEGIN
 SET NOCOUNT ON;
 SELECT ST.SalesTerritoryGroup AS TerritoryGroup, D.FullDateAlternateKey AS [Date],
 SUM(FRS.SalesAmount) AS ResellerSalesAmount
 FROM DimDate AS D INNER JOIN
 FactResellerSales AS FRS ON D.DateKey = FRS.OrderDateKey INNER JOIN
 DimSalesTerritory AS ST ON FRS.SalesTerritoryKey = ST.SalesTerritoryKey INNER JOIN
 @Territory AS T ON ST.SalesTerritoryKey = T.TerritoryKey
 WHERE (D.CalendarYear = @CalendarYear)
 GROUP BY ST.SalesTerritoryGroup, D.FullDateAlternateKey
END

Let's take a moment to explain the script. The CREATE TYPE statement creates the user-
defined table type. The TerritoryType table defines two columns. The TerritoryKey column
will store the territory identifier. The TerritoryName column is for the territory name. Strictly
speaking, the TerritoryName column is not needed but included for reference only.

The CREATE PROCEDURE statement creates the uspGetSalesByTerritory stored proce-
dure, which takes @CalendarYear and @TerritoryType as arguments. I copied the SELECT
statement from the original Area Chart report. The only change I've made is to join the DimSa-
lesTerritory table to the @TerritoryType to filter on territory.

ADVANCED REPORT DESIGN 289

 Designing the report query
Once the stored procedure is in place, you can design a report query to use it. As it stands,
Reporting Services doesn't support table-valued parameters natively. However, you can use an
expression-based query which generates statements to load the stored procedure parameters
and execute the stored procedure. Here is what the statements look like if the user selects year
2004 for the year and North America and Pacific for the territories:
DECLARE @CalendarYear int = 2004
DECLARE @Territory TerritoryType
insert into @Territory values (1, 'North America')
insert into @Territory values (9, 'Pacific')
EXECUTE [dbo].[uspGetSalesByTerritory] @CalendarYear,@Territory

Given this syntax, I added the following GetQuery method to the Util class in the Report-
ing.Extensibility project:
public static string GetQuery(int calendarYear, object[] values, string[] labels) {
 StringBuilder sb = new StringBuilder();
 sb.AppendLine(String.Format("DECLARE @CalendarYear int = {0}", calendarYear));
 sb.AppendLine("DECLARE @Territory TerritoryType");

 for (int i = 0; i<values.Length; i++)
 {
 sb.AppendLine(String.Format("insert into @Territory values ({0}, '{1}')", values[i], labels[i]));
 }
 sb.AppendLine("EXECUTE [dbo].[uspGetSalesByTerritory] @CalendarYear,@Territory");
 return sb.ToString();
}

Next, I changed the report dataset to use the following expression-based query:
=Prologika.Reporting.Extensibility.Util.GetQuery
(Parameters!CalendarYear.Value, Parameters!Territory.Value, Parameters!Territory.Label)

At run time, this expression calls the GetQuery method and passes the parameter values. The
selected values of the Territory parameter will be passed as an object array while the labels will
be passed as a string array. GetQuery uses a StringBuilder object to construct the required
Transact-SQL statements. First, it declares the CalendarYear parameter. Next, it loops through
the values of the Territory parameter and generates Ttansact-SQL code to insert the selected
territories into the TerritoryType TVP. Finally, it appends a statement to execute the stored
procedure and pass the parameters. Since the GetQuery method performs string manipulation
only, the default CAS Execution permission is sufficient for the GetQuery method to execute
successfully.

7.4.4 Localizing Reports
If you’ve ever had to design applications for international users, you know that localizing the
user interface is not easy. Not only do you need to translate data and captions (labels, buttons,
entity names, etc.), but you must also handle currency conversion, text orientation, extra
space requirements for the translated captions, and so on. The bad news is that you face the
same challenges when localizing your reports. The good news is that Reporting Services pro-
vides some features to help you in this endeavor. To use these features effectively, you must
understand how Reporting Services localizes resources.

CHAPTER 7 290

 Understanding report localization
Reporting Services evaluates the report server language, browser language, and the report lan-
guage to determine how to localize the report content and tools, such as the Report Manager
and HTML Viewer. Table 7.5 shows which resources are affected by each language.

Table 7.5 How Reporting Services chooses a language resource

Language Localized resources

Report Server language Report formatting when culture-neutral format settings are used.
Report server messages (errors, warnings, and informational messages).
Other static resources, such as role names, folder names for My Reports and Users folders.

Browser language Report Manager
HTML Viewer

Report language Overwrites the report server language when culture-neutral format settings are used.

The SQL Server setup program sets the default report server language when it creates the re-
port server database by evaluating the operating system language and SQL Server language. If
they match exactly, the setup program uses this language. If there is a close match, for exam-
ple when the OS language is English (UK) but the SQL Server language is English (US), the
OS language will be used. In cases where there isn't a close match, the report server language
will be set to English (US).

The report server language is used to format report content that uses culture-neutral for-
mat strings, such as "C2" for formatting numbers as currencies with two decimal places. How-
ever, you can overwrite the report server language per report and even per textbox by setting
the Language property. The order of precedence is Report Server Language Report Lan-
guage Textbox Language. For example, if the report server language is English (US), and
you set the report Language property to English (UK), all report content that uses culture-
neutral format strings will be formatted using the English (UK) resources locale.

If you set the Language property of a textbox to German (Germany), the textbox content
will be formatted using the German (DE) locale. In addition to the Language property, the
textbox report items also support NumeralLanguage and NumeralVariant to support culture-
specific numerals, such as formatting numbers in Arabic and Indian locales.

Finally, the browser language (if the report is displayed in the browser) is used to localize
the Report Manager user interface and the captions of the HTML Viewer toolbar. By default,
the browser language matches the OS language. However, you can specify another language
by using the browser settings.

NOTE If you are upgrading from Reporting Services 2000, you should know that there is a behavior change in Re-
porting Services 2005 and later. If you do not set the report language, the report server language determines the
formats that are used. In Reporting Services 2000 however, if you do not set a language, the browser language will be
used by default.

 Using culture-neutral format settings
In a multilingual environment, the report server, browser, and report language settings may
combine in such a way that multiple languages are displayed to a user within the same report.
The Localized Demo report, shown in Figure 7.17, is meant to help you understand how these
settings affect report presentation.

ADVANCED REPORT DESIGN 291

Figure 7.17 The Localized Demo report demonstrates how the report server language, browser language, and
report language affect the report localization.

The Report Manager screenshot on the left shows the Localized Report requested when the
browser language is set to English (US). The report content in the Default Language section
uses culture-neutral format settings for the textbox Format properties, such as "d" for a short
date, "C2" for currencies with two decimal places, and "N2" for numbers with two decimal
places. The English (UK) section displays the same numbers but the Language property of
each textbox is set to English (UK). This demonstrates that setting the textbox Language prop-
erty overwrites the report server language. Now, let's change the browser language to German
to simulate a German user.

1. In Internet Explorer, click Tools Internet Options and click the Languages button.
2. In the Language Preference dialog box, click the Add button and add the German (Germany)

[de-DE] language.
3. Press F5 to refresh the report.

As the screenshot on the right in Figure 7.17 shows, the Report Manager and HTML Viewer
captions are now localized in German. That's because these tools use the browser language to
select a resource locale. However, the content Language section is still formatted in English
(US) because the report server language is used to format report content. What if you want the
browser language to take precedence over the report server language? You can do so by using
an expression-based report (or textbox) Language property.

4. Open the Localize Demo report in Report Designer and set the report Language property to
the following expression:
= User!Language

The User!Language returns the current thread language. When the report is requested by URL,
User!Language returns the browser language. The net result of the above expression is that the
report language will be set to German.

5. Deploy the report to Report Manager and refresh it in the browser.

Notice that the Default Language section is now formatted in German locale.

CHAPTER 7 292

 Localizing report data
As you've seen, Reporting Services simplifies how you format dates and numbers, but this is
only a small part of the effort required to localize reports. Translating report data and handling
currency conversion is by far more difficult. This is where you are on your own. Reporting
Services doesn't support translation capabilities in any way.

NOTE If you target an Analysis Services cube as a data source, you should take advantage of the UDM Translations
feature that facilitates translating the cube metadata (cube and dimension captions) and data (dimension member
names). You can integrate Reporting Services with Analysis Services to bring the translated captions into the report.
I demonstrate this approach in chapter 16. Analysis Services also can handle currency conversion.

One approach to localize the report content is to store the translated data in the data source.
This is the approach that the Product Catalog Localized report (see Figure 7.18) demonstrates.
This report builds upon the Product Catalog report that ships with the AdventureWorks sam-
ple reports.

Figure 7.18 The
Product Catalog Loca-
lized report shows the
translated product de-
scriptions based on the
browser language.

The AdventureWorks2008 database includes Production.ProductModelProductDescription-
Culture and Culture tables to demonstrate localizing the product descriptions in several lan-
guages. To retrieve the translated product description, I changed the report query to pass the
user language to the @Language query parameter. The Culture table uses two-letter culture
identifiers, such as "en" for English and "fr" for French. However, User!Language returns the
full language code, such as "fr-FR". The Language query parameter uses the following expres-
sion to get the two-letter identifier:
=Code.GetTwoLetterISOLanguageName(User!Language)

The GetTwoLetterISOLanguageName function embedded in the report.
Function GetTwoLetterISOLanguageName (LocaleID as String) as String
 Dim ci As New System.Globalization.CultureInfo(LocaleID, False)
 return ci.TwoLetterISOLanguageName
End Function

I've also made the following localization-related changes to the report.
1. Set the report Language property to =User!Language to overwrite the report server language.
2. Changed the Language property of the List Price textbox to en-US to show the amount format-

ted as United States Dollars. If I had not done so, the List Price field would have been format-
ted based on the browser language.

I also provided another simple function inside the report embedded code, GetLanguage-
NativeName, to display the language name on the first page of the report. To test the report:

ADVANCED REPORT DESIGN 293

3. Deploy the report to Report Manager.
4. Set the browser language to Thai (Thailand) and request the Product Catalog Localized report.

Notice that the product description appears in Thai.

7.4.5 Generating RDL Programmatically
As useful as the Microsoft-provided report designers are, they may not be able to meet all re-
port authoring requirements. Advanced report authoring needs may force you to take the road
less travelled and generate the report definitions programmatically. For example, you may
need to gather some input from the user and generate the report definition in accordance with
user preferences.

NOTE In one of my projects, we had to integrate a Windows Forms financial application with Reporting Services 2005.
To facilitate the process of authoring reports, we had to provide a report wizard to walk the user through the steps of
creating a report. Unfortunately, all Microsoft-provided report designers are implemented as monolithic stand-alone ap-
plications and are not embeddable. Consequently, we had to implement a custom wizard. We created a report object
model to facilitate working with RDL. A sample that demonstrates this approach is provided on my website (see Re-
sources). Implementing a custom RDL object model took significant development effort. Moving to Reporting Services
2008, consider the Microsoft-provided RDLOM if you need to generate RDL programmatically.

 Understanding the RDL Object Model
In general, there are two approaches for generating reports programmatically:
 XML APIs—You can use your favorite XML APIs (such as XmlDocument) and change RDL

directly. However, this approach requires navigating RDL elements by using XPATH ex-
pressions and can quickly lead to code that is difficult to debug and maintain.

 RDL Object Model—Alternatively, you can work with an object model that abstracts RDL.
This lets you interact with RDL in an object-oriented way.

In Reporting Services 2008, Microsoft provides an unsupported RDL object model (RDLOM).
This model is implemented in the Microsoft.ReportingServices.RdlObjectModel.dll assembly,
which is located in the report server bin folder (C:\Program Files\Microsoft SQL Server\
MSRS10.MSSQLSERVER\Reporting Services\ReportServer\bin\). RDLOM is used internally by
Reporting Services and it is not officially supported in this release. Therefore, use RDLOM at
your own risk.

Keep the following considerations in mind about RDLOM. RDLOM only checks for syn-
tactic correctness to ensure that the report definition conforms to the RDL specification. It
doesn't validate whether the report definition is semantically correct. It doesn’t execute the
validation rules Report Designer performs when you build a report.

There isn't a way to customize the process of serializing or deserializing the report defini-
tion. However, most report elements support custom properties (CustomProperties property),
which you can use to save custom settings. You need to write helper methods if you want to
extend the object model, such as to add a new constructor to the Field object which takes the
field name and data field.
Field (string name, string dataField) {
 this.Name = name;
 this.DataField = dataField;
}

CHAPTER 7 294

Since the RDLOM source code is not provided, your only option is to create a wrapper class
with the methods you need, such as Util.CreateField(string, string) as a shortcut to construct a
field. RDLOM supports RDL 2008 only. It includes methods to upgrade RDL 2000 and 2005
formats. Specifically, it includes the Microsoft.ReportingServices.ReportProcessing.RDL-
Upgrader.UpgradeToCurrent method that you can use to upgrade RDL 2000 or 2005 to RDL
2008.

 Generating a report definition
The RDLOM console application included in the source code for this chapter (Ch07 Visual
Studio Solution) demonstrates using RDLOM to generate a simple tablix report programmati-
cally. The bulk of the code is located in the GenerateTablixReport method, whose partial code
is provided below.
static void GenerateTablixReport() {
 RdlSerializer serializer = new RdlSerializer();
 TablixMember member;
 TablixColumn column;
 TablixRow row;
 Field f;

 Report report = new Report();
 // Report-level properties
 report.Language = "en-US";
 report.Width = new ReportSize(6.5);
 report.Author = "Teo Lachev";
 report.Page.LeftMargin = report.Page.TopMargin = report.Page.RightMargin =
 report.Page.BottomMargin = new ReportSize(.5);
 // Data source
 DataSource dataSource = new DataSource();
 dataSource.Name = "AdventureWorks2008";
 dataSource.ConnectionProperties = new ConnectionProperties();
 dataSource.ConnectionProperties.ConnectString = "data source=localhost; initial catalog=AdventureWorks2008;";
 dataSource.ConnectionProperties.DataProvider = "SQL";
 dataSource.ConnectionProperties.IntegratedSecurity = true;
 report.DataSources.Add(dataSource);
 // Generate the report body
 . . .
 // serialize to disk
 using (FileStream os = new FileStream(ReportPath, FileMode.Create))
 {
 serializer.Serialize(os, report);
 }

Use the RDLOM RdlSerializer object to serialize or deserialize a report definition to and from a
stream. The code instantiates the Report object. It sets the report-level properties, creates a
report-specific data source to the AdventureWorks2008 database, constructs a report dataset,
and generates a table report. Finally, GenerateTablixReport writes the report (TablixDemo.rdl)
to the application startup folder. To test the report, open and preview it in Report Designer.
As you can see, RDLOM makes RDL programming much easier because you work with objects
and not XML APIs.

7.5 Summary
In this chapter, you've learned how to use the textbox built-in formatting capabilities to dis-
play rich text and implement mail merge reports. You've also learned how to configure the
Microsoft-provided rendering extensions and export reports to XML. Custom code and some
out-of-the-box thinking lets you extend your reports in versatile ways. Use embedded code to

ADVANCED REPORT DESIGN 295

implement simple utility functions that you can write in Visual Basic and distribute with the
report. Consider external code to encapsulate more complex programming logic. Reporting
Services leverages the .NET Code Access Security infrastructure to prevent malicious code
from performing unauthorized actions. As a best practice, grant custom code the minimum
CAS permissions to execute successfully.

The second part of this chapter demonstrated how you can use custom code to solve in-
teresting challenges. Use variables to cache the results of executing custom methods and im-
prove report performance. I also showed you how you can leverage custom code to work with
external images and pass multivalued parameters to stored procedures. Finally, I presented
approaches for localizing reports and generating report definitions programmatically.

Report Designer is a great tool for authoring standard reports but it may require more in-
depth design knowledge for working with data and RDL. Let's see how Report Builder can
help a business user author reports outside the Visual Studio IDE.

7.6 Resources
The Security Infrastructure of the CLR Provides Evidence, Policy, Permissions, and
Enforcement Services

(http://tinyurl.com/6s8nla)—Introduces you to code access security.
Security in .NET: Enforce Code Access Rights with the Common Language Runtime

(http://tinyurl.com/6co92b)—Keith Brown discusses the CAS internals.
Reporting Services Device Information Settings

(http://tinyurl.com/23xery)—Explains the device information settings supported by
the Reporting Services renderers.

Google Static Map Wizard
(http://tinyurl.com/24ftct)—Lets you generate a map URL to embed a map as an
image in your reports.

Prologika Report Object Model
(http://tinyurl.com/24ftct)—A partially-implemented RDL 2005 object model that
demonstrates how you can develop your own object models to abstract RDL.

297

 The Report Builder
Report Builder empowers business users to design their own reports. Reporting Services 2008
includes two flavors of the Report Builder technology. Report Builder 1.0, which remains un-
changed from the previous release, allows less technically-savvy users author simple ad hoc
reports from pre-defined models. Report Builder 2.0 is a standalone report designer tool that
supports full-featured reports but requires more advanced technical skills.

As a prerequisite for building a Report Builder 1.0-based solution, you need to implement
a report model and deploy the model to the server. The report model shields end users from
the technicalities of the underlying relational and dimensional data sources by presenting the
data source schema in the form of entities, attributes, and roles. The report model is capable of
auto-generating the native queries when the user runs the report.

Once the report model is in place, end users can author reports from it with the Report
Builder 1.0 client. The purpose of the Report Builder 1.0 client is to support end users who
want to create simple ad hoc reports, but without the learning curve that comes with adopting
new business tools. To reduce the learning curve, the Report Builder 1.0 client uses more
built-in features such as templates and gives up some of the more powerful features that you
find in the BIDS Report Designer and Report Builder 2.0.

To let end users access all report authoring features, Microsoft will introduce a stand-alone
report designer called Report Builder 2.0. To help you evaluate Report Builder 2.0 for ad hoc
reporting, the book includes several practices that introduce you to the pre-release version of
this technology and walk you through the steps of authoring reports from relational and mul-
tidimensional data sources.

PP AA RR TT

299

CChhaapptteerr 88

Building Report Models

8.1 Understanding Report Builder 1.0 299
8.2 Implementing Report Models 305
8.3 Refining Report Models 318

8.4 Working with Analysis Services Models 335
8.5 Summary 338
8.6 Resources 338

It often seems that as soon the developer is done with a report, the business user wants to
change it. For this reason, ad hoc reporting (which is all about empowering business users to
author their own reports) is the Holy Grail of many reporting solutions. In Reporting Services,
ad hoc reporting is supported through Report Builder.

Recall from chapter 1 that Reporting Services 2008 includes two flavors of the Report
Builder technology. Report Builder 1.0, which remains unchanged from the previous release,
lets less technically-savvy users author simple ad hoc reports from pre-defined models. Report
Builder 2.0 is a standalone report designer tool that supports full-featured reports but requires
more advanced technical skills, such as knowing how to create database queries and work
with report regions. We will preview Report Builder 2.0 in chapter 10.

Report Builder 1.0 is the subject of this chapter and chapter 9. In this chapter, I will lay
out the ground work required to implement a Report Builder 1.0 solution. The main focus
will be the Report Model component of the Report Builder 1.0. As an exercise, you will im-
plement two report models on top of the Adventure Works relational database and cube. In
the next chapter, you will use these models to author several ad hoc reports.

8.1 Understanding Report Builder 1.0
Report Builder 1.0 was first introduced in the 2005 release of Reporting Services after Micro-
soft acquired ActiveViews, a privately held company based in Provo, Utah. Report Builder 1.0
is included in the Enterprise, Developer, Evaluation, Standard, and Workgroup editions of
SQL Server and is free of charge to SQL Server licensed users. In this section, we’ll take a close
look at the Report Builder 1.0 architecture and understand its components.

DEFINITION Report Builder 1.0 is a report authoring and processing tool for end-user reporting. It uses report models
for data sources and lets you save reports directly to a report server or as report definition (.rdl) files on your computer.
Report Builder 1.0 is a unifying name of the Reporting Services ad hoc reporting feature set that includes Model De-
signer, report model, Report Builder 1.0 client, and the semantic query engine.

8.1.1 The Report Builder Architecture
To support ad hoc reporting, Reporting Services architecture includes several components
shown in bold type in Figure 8.1. Recall that at the heart of the Reporting Services architecture

CHAPTER 8 300

is the report server, a Web-based middle-tier layer that receives incoming report requests, ge-
nerates, renders, and delivers reports. Here's a brief description of the ad hoc reporting com-
ponents.

 Report models
As I mentioned earlier, the Report Builder 1.0 target audience is non-technical business users
who need not be familiar with the technical aspects of the database schema to generate ad hoc
reports. The report model provides a metadata layer that enriches the data source schema and
exposes it to the end user as related entities, attributes, and roles. The term metadata here
means that the report model doesn't store any data; it simply describes data. Sometimes, you
may hear business users refer to the report model or its equivalents as a data dictionary. The
Report Builder 1.0 client uses the model as input during the report authoring phase.

Figure 8.1 This high-level diagram shows how the
Report Builder 1.0 components fit into the overall Re-
porting Services architecture. The Report Builder 1.0
components are the Model Designer, Report Builder
client, Report Model, and Semantic Query Engine.

Working with a report model eliminates the need to join tables because the table relationships
are defined in the model. For example, if a user wants to create a report that shows sales by
territory and product, he or she can simply drag the territory attribute onto the report canvas.
If there is a role (relationship) defined in the model between the Territory and Product enti-
ties, the Report Builder 1.0 client will discover this relationship and let the user select
attributes from the Product entity. We will discuss the report model internals in section 8.1.2.

 The Model Designer
You use the Model Designer, included in the Business Intelligence Development Studio
(BIDS), to create the report models. Creating report models involves defining report model
items, such as entities, attributes, and roles. As you can imagine, creating a report model from
scratch can be tedious. Fortunately, Microsoft has provided a handy Report Model Wizard
that can automatically generate the raw model with a few simple clicks.

However, the wizard doesn't produce an optimized model that is ready for production.
For example, the Report Model Wizard applies system-generated names to report elements,
and it doesn't detect inheritance relationships. As a modeler, you will probably need to take
one or more passes through the model to refine the names and relationships. Once the model
is ready, you can publish it to the report server to make it available for ad hoc reporting.

BUILDING REPORT MODELS 301

 Report Builder 1.0 Client
The Report Builder 1.0 client is the design tool that the end users will interact with to author
ad hoc reports. It is implemented as a Windows Forms application that users download and
install from a report server and run on their local computer. End users will undoubtedly find
the Report Builder 1.0 client interface intuitive because it has a look and feel similar to Micro-
soft Office products. Authoring a simple ad hoc report in the Report Builder 1.0 client is a
matter of dragging and dropping fields to the WYSIWYG (What You See Is What You Get)
report canvas.

Once the report is ready, the user can upload it to the report server to share it with other
users. From there, the Report Builder 1.0 report can be managed, secured, and delivered just
like a report produced in Report Designer. This is because the reports you create in both Re-
port Designer and Report Builder 1.0 are described in the same report definition language
(RDL). We will discuss the Report Builder 1.0 client in more details in chapter 9.

 Semantic Query engine
In contrast with reports that you create in Report Designer, the reports that you create in the
Report Builder 1.0 client do not store the actual query that will be sent to the data source. In-
stead, the report definition includes a semantic query that describes the model items and filters
used on the report. When the report server starts processing the report, it extracts the report
query. If the query is a semantic query, the report server forwards it to the Semantic Query
Engine. The Semantic Query Engine translates the semantic query to a native query, using the
syntax of the underlying data source. As it stands, Report Builder 1.0 includes query transla-
tors for four data sources—SQL Server 2000 or later, SQL Server Analysis Services 2005 or
later, and Oracle 9.2.0.3 or later. No extensibility mechanism is currently provided for plug-
ging in third-party or custom query translators.

A unique Report Builder 1.0 feature is infinite drillthrough, also known as clickthrough,
that lets the end user click an item on the report to see the details behind it. For example, if
the user requests a report that shows sales by employee, the user can click on a sales number
to see the individual orders that contribute to that number. The Semantic Query Engine han-
dles drillthrough report requests and generates drillthrough reports on the fly.

8.1.2 Understanding Report Models
The main characteristic of the report model is that it is designed with the user (not system) in
mind. As Figure 8.2 shows, you can visualize the report model as three layers—data source,
data source view, and semantic model—stacked on top of each other. Interestingly, you will
find similar models in Analysis Services and Integration Services. The difference is in the top
layer. In Analysis Services 2005, the top layer is the dimensional model, while in the Integra-
tion Services it is the control flow. Although the models share similarities, they are not inter-
changeable. You cannot publish an Analysis Services model to a report server and expect to
build ad hoc reports with it.

What you can share across the various models are data sources and data source views.
This is because both data sources and data source views have the same construction across the
three project types in BIDS. The data source provides connection information for accessing the
underlying data source. A data source view (DSV) is a metadata layer that describes the data-
base schema.

CHAPTER 8 302

A DSV lets you change and extend the database schema without affecting the underlying data
source. For example, suppose that you need to build a report model on top of a vendor’s da-
tabase. Furthermore, suppose that security or licensing restrictions prevent you from making
changes to the database schema. With a DSV, this predicament simply disappears. You can
add any required tables to the DSV designer to get the additional data structures you need, but
without modifying the schema of the vendor database. For example, you can define table rela-
tions and primary keys, or create virtual tables (similar to SQL views) in the form of named
queries. You can also define calculated columns in the form of named calculations.

NOTE Although DSV supports multiple data sources, a DSV inside a Report Model project can only use a single data
source. Trying to define an entity from a secondary data source results in a build error: "The Table property of the Entity
"EntityName" refers to the Table "TableName", which is not in the primary data source". You can get around this limita-
tion by configuring the secondary data source as a linked server to your SQL Server instance or by using an OPE-
NROWSET named query.

The semantic model is the layer that the user interacts with. If you are familiar with the Object
Role Modeling (ORM) methodology (see Resources), you will undoubtedly discover many si-
milarities between the two. Similar to the report definition language (RDL) that describes Re-
porting Services reports, the semantic model uses an XML-based grammar called Semantic
Model Definition Language (SMDL).

A semantic model includes the following items:

 Entities
An entity is a named collection of attributes, roles, folders, and filters. In the most common
case, an entity maps to a DSV table or named query. For example, an Employee entity maps to
an Employee table. Sometimes, however, an entity may derive from another entity and inherit
its attributes. Suppose you have SalesPerson and Employee tables. Since a sales person is an
employee, you can configure the SalesPerson entity to derive from the Employee entity. As a
result, the end user doesn't have to navigate from the SalesPerson entity to the Employee enti-
ty to see the employee-related attributes.

Figure 8.2 The report model serves as a
bridge between the end users and the data. It
consists of Data Source, Data Source View,
and Semantic Model layers.

BUILDING REPORT MODELS 303

 Attributes
An attribute typically represents a table column. For example, the Name column in the Em-
ployee table maps to a Name attribute in the Employee entity. However, attributes can also be
expression-based. For example, you can create an attribute that maps to a LineTotal expres-
sion used to calculate the order line total for a given unit price, quantity and discount:
LineTotal = (OrderQuantity * UnitPrice) * (1-UnitPriceDiscount)

 Roles
A role defines an entity relationship. An example of entity relationships are “a customer has
orders” or “an order header has order items”. You can define different role cardinalities be-
tween entities, such as one-to-one or one-to-many. From an end-user perspective, roles define
the navigational paths for entity selection. For example, given a one-to-many relationship be-
tween Customer and Orders, a user can view multiple orders for a single customer. Without
roles, there is no navigation path. For example, suppose that the Customer and Vendor enti-
ties are not related via a role. When the user selects an attribute from the Customer entity, the
Report Builder 1.0 client won't let the user add vendor-specific attributes.

 Folders
Folders are a purely metadata construct that have no counterpart in a database schema. You
use folders to group related fields together to make your model more user-friendly. For exam-
ple, if a Customer entity has many fields, you might group the demographics-related fields
into a Demographics folder, contact-related fields into a Contact folder, and so on.

 Filters
You can set up an entity filter to limit the data that the end user can see on the report. Filters
are typically used for row-level security. For example, suppose that security requirements dic-
tate that a sales person sees only his data. You can set up a filter on the Sales Person entity that
returns a single row from the underlying table whose LoginID column matches the user login
name.

8.1.3 Comparing Report Models and UDM
The Report Builder 1.0 model is not Microsoft’s first attempt at providing a user-oriented
model to facilitate reporting. Analysis Services introduced the Unified Dimensional Model
(UDM) in SQL Server 2005. Readers who are familiar with UDM may wonder how report
models compare with UDM and when to choose one over the other.

After all, there are many similarities between the two model types. Both models are de-
signed to provide an intuitive user experience and interactive reporting. Both eliminate the
need to join entities due to how they store entity relationships. Architecturally, both models
include data source and data source view layers. Finally, both belong to components of SQL
Server that share the same licensing model. At the same time, there are profound differences.

 Understanding model differences
Table 8.1 outlines the differences between Report Model and UDM. Perhaps the most impor-
tant difference is that a report model is biased towards relational data sources that support
well normalized schemas, such as those used in OLTP databases. In contrast, UDM favors di-
mensional modeling where additional work may be needed to organize data in a set of dimen-
sion and fact tables.

CHAPTER 8 304

Table 8.1 Report Model vs. Unified Dimensional Model

Criteria Report Model Unified Dimensional Model

Database schema Relational Dimensional

Data volumes Small to medium Large

Data sources SQL Server, Oracle, Analysis Services All OLE DB and .NET-compliant data sources

Hierarchies Attribute Attribute, user-defined, parent-child

End-user features Perspectives Perspectives, translations, KPIs, Actions

Security Model, attribute, and row-level Dimension, dimension data, and cell security

Query language Semantic Query MDX

Programmability Basic proprietary language and functions MDX

Extensibility No Yes

Reporting tools Report Builder 1.0 Client, Report Designer Report Designer, Report Builder 1.0 Client, Excel, ProClarity, third-party

Now, don't jump to hasty conclusions that report models are easier to build because they
don't require schema changes. The primary goal of dimensional modeling is to optimize the
database schema for reporting purposes. Therefore, irrespective of the model technology, end
users will certainly benefit from simplifying large and complex schemas by denormalizing
them in accordance to dimensional modeling best practices. Simple schemas reduce the
guesswork required to find which table stores the data that is needed for the report. Assuming
that data is already stored in a dimensional database, the effort needed to implement both
models should be about the same.

NOTE To get a better idea of the differences between relational and dimensional modeling, take a look at the Adventu-
reWorks and AdventureWorksDW sample databases. Note that the AdventureWorks database schema is highly norma-
lized and has some 70 tables. In comparison, the AdventureWorksDW schema is denormalized to a much smaller set of
dimension and fact tables and it is more suitable for reporting purposes.

In terms of performance, UDM is generally better. Analysis Services is designed to scale well
with large reporting loads, such as trend reports that aggregate historical data. For example,
UDM can handle queries from pre-aggregated data summaries called aggregations. Besides
better performance, UDM is a more mature and richer model. In contrast, report models do
not provide equivalents of the following UDM features: data hierarchies (parent-child, user-
defined, ragged), KPIs, a flexible and proactive security model, currency conversion, data min-
ing, or data and metadata localization. Finally, there are many reporting tools that can source
data from Analysis Services cubes, while the report models are supported only by the Report
Builder 1.0 client and Report Designer.

 When to choose a report model
Given these observations, I suggest that you consider a Report Builder 1.0 model when the
following conditions are true:
 Relational data source—a semantic model used with the Report Builder 1.0 client is a

good choice when end users are producing ad hoc reports straight from relational sources.
Report Builder 1.0 is deeply rooted in relational reporting and handles well normalized

BUILDING REPORT MODELS 305

database schemas. That said, be careful with highly normalized schemas because they may
be counter-intuitive to end users. The more entities the model has, the more confusing it
will be to navigate through the model.

 Small to medium-size data loads—In general, the more data the report aggregates, the
slower report models and Report Builder 1.0 reports perform. For example, a Sales by
Year trend report that aggregates all sales data would take much longer to execute than a
Sales Order report that shows the details for a single order. When in doubt as to whether
Report Builder 1.0 can handle your data volumes, quickly auto-generate a report model
on top of your database and test a few reports that aggregate data. Increase the query time
at least twice to account for multi-user report loads. If the report performance is not ade-
quate, you don't have much choice as far as Report Builder 1.0 is concerned. It virtually
impossible to optimize the database design given that semantic queries will differ greatly
from one report to another. Moreover, you can’t tune semantic queries because they are
auto-generated.

TIP When facing performance issues with large data volumes, your best bet may be replacing relational reporting and
report models with dimensional reporting and Analysis Services. Unfortunately, this may require replacing the Report
Builder 1.0 client as well because its Analysis Services support is limited. Instead, consider Report Builder 2.0, which
features a drag-and-drop MDX Query Designer.

 Simple ad hoc reporting needs—Don't expect more from Report Builder 1.0 than what an
ad hoc reporting tool can reasonably deliver. More advanced data analytics requirements,
such as interactive reporting, hierarchies, and KPIs, go beyond the Report Builder 1.0 ca-
pabilities. You will need UDM if you have advanced requirements.

In summary, choose the right tool for the job. Consider Report Builder 1.0 for simple ad hoc
reporting from small to medium-size relational databases. Consider UDM when data loads and
report requirements surpass the capabilities of Report Builder 1.0.

Here is a good business scenario for using the Report Builder 1.0, which I "borrowed"
from real life. We have a SQL Server 2000 database with sales data. The database has about
twenty tables with the largest table containing about two hundred thousand records. In this
scenario, our sales people were looking for ways to produce their own reports with minimum
impact on the IT staff. Enter Report Builder 1.0. We auto-generated a semantic model on top
of the sales database. We trained the business users how to maintain the model and produce
reports so they could take ownership over not only the reports, but the model as well. The
end users loved the solution and it took us only a few hours to set it up! Now that you have a
good high-level overview of Report Builder 1.0 and when to use it, it's time to walk through
the implementation steps.

8.2 Implementing Report Models
Recall that as a prerequisite for building ad hoc reports, you need to build a report model that
provides a business-oriented metadata layer on top of the data source. Suppose the Adventure
Works management has decided to empower its sales force with an ad hoc reporting solution.
This solution would allow the sales people to author simple table, matrix, and chart reports
without requiring any technical knowledge of the data source schema or a query language. As
it stands, the AdventureWorks database captures three-years worth of sales data with a few
hundred thousand rows in the largest table.

CHAPTER 8 306

Another project is under way to build an OLAP solution, but it will take a few months to
complete. Meanwhile, you need to implement a more light-weight solution to address the
immediate ad hoc reporting needs of the sales force. While gathering operational require-
ments, you determine that there are seventeen sales people. Each sales person will author and
run no more than fifty reports per day. You conclude that ad hoc reporting straight from the
AdventureWorks database will not impact the performance of the OLTP sales system. You de-
cide to implement an ad hoc solution that leverages Report Builder 1.0.

8.2.1 Working with Data
Recall a report model consists of data source, data source view, and semantic layers. To build
the entire model, implement each layer in this order starting with the data source.

NOTE The report model you will build next uses the SQL Server 2005 AdventureWorks (not AdventureWorks2008)
database. The book front matter (Source Code section) includes instructions for downloading and installing the Ad-
ventureWorks database.

 Creating a Report Model project
As a first step for implementing a report model, create a Report Model project in BIDS. Follow
these steps to create an Adventure Works Report Model project:

1. Start SQL Server Business Intelligence Development Studio from the Microsoft SQL Server
2008 program group. Choose File New Project or press Ctrl+Shft+N.

2. In the New Project dialog box that follows, make sure that the Business Intelligence Projects
node is selected in the Project Types pane. In the Templates pane, select the Report Model
Project template.

3. Enter Adventure Works Report Model as a name of the project and a project location. Click OK
to create the project.

BIDS creates an empty Report Model project. The Solution Explorer window shows three
folders—Data Sources, Data Source Views, and Report Models—that correspond to the ad hoc
model layers presented in Figure 8.2.

 Creating a data source
A data source provides connection information for accessing the database. At design time, Re-
port Builder 1.0 uses the data source to retrieve the database metadata and data statistics.
Once the report model is deployed on a production server, Report Builder 1.0 uses the data
source to send report queries and retrieve data. Follow these steps to define a data source that
points to the AdventureWorks database:

1. In the BIDS Solution Explorer, right-click on the Data Sources folder and choose Add New
Data Source. This starts the Data Source Wizard.

2. In the Select How to Define the Connection step, click New to define a new connection.

In the Connection Manager dialog box that follows (see Figure 8.3), make sure that the
SQLClient Data Provider is pre-selected in the Provider drop-down. Since the report server is
implemented in .NET managed code, the SqlClient provider gives you the best performance
when connecting to SQL Server-based data sources.

BUILDING REPORT MODELS 307

Figure 8.3 Use the Connection
Manager to set up and edit the data
source definition.

3. Expand the Provider drop-down and note that it has only two .NET data providers: SQLClient
Data Provider to connect to SQL Server and OracleClient Data Provider to connect to Oracle.
The Analysis Services data provider is not listed. That's because an Analysis Services based
report model cannot be generated from scratch but must be auto-generated in the Report
Manager (or SharePoint).

4. Enter the name of the SQL Server instance that hosts the AdventureWorks database. To con-
nect to your local server, enter (local). To connect to a SQL Server named instance, use the
ServerName\InstanceName syntax.

5. Leave the Use Windows Authentication option selected if you want the SQL Server to authen-
ticate users with Windows integrated security. Choose the Use SQL Server Authentication op-
tion if you prefer standard authentication and enter the user name and password.

NOTE Windows Integrated security is recommended for several reasons. First, it is more secure since the connection
string doesn't store the password. Second, users maintain their passwords, not you. Finally, Windows Integrated security
lets you define row-level security based on the Windows identity of the interactive user. As a prerequisite for the user to
authenticate successfully to SQL Server with Windows Integrated security, you need to create SQL Server logins for
each user or Windows group(s) the user belong to and grant the logins at least read-only access to the database.

6. Expand the Select or Enter a Database Name drop-down and select the AdventureWorks da-
tabase.

7. Click the Test Connection button to verify that you can connect to the database. If all is well,
click OK to return to the Data Source Wizard.

8. Click Next to advance to the Completing the Wizard step and accept Adventure Works as a
data source name. Click Finish to create the Adventure Works data source. If you need to
change the data source definition later on, in the Solution Explorer, expand the Data Sources

CHAPTER 8 308

folder, double-click on the Adventure Works.ds item to open the Data Source Designer dialog
box, and click Edit to open the Connection Manager dialog box.

9. Click the Save toolbar button to save the project. Remind yourself to do this on a regular ba-
sis, such as after you have made significant changes to the project items.

 Creating a data source view
Once the data source is in place, the next step is to create a data source view. Recall that DSV
abstracts the underlying data source schema.

1. In the Solution Explorer, right-click on the Data Source Views folder and choose Add New
Data Source View to launch the Data Source View Wizard.

2. Click Next to advance to the Select a Data Source step. The Adventure Works data source
should be pre-selected. Note that if you haven't defined a data source yet, you can do so with-
out leaving the wizard by clicking the New Data Source button. This will bring you to the fa-
miliar Data Source Wizard. Click Next to move on to the Select Tables and Views step (see
Figure 8.4).

Figure 8.4 Use the Select Table
and Views step to select the
tables and views that will be in-
cluded in the data source view.

The Data Source View Wizard retrieves a list of the tables and views in the AdventureWorks
database. For the sake of simplicity, our reporting model will be limited to a few tables only.
These tables will let end users browse sales order data by the most significant business pers-
pectives—Sales Person, Sales Territory, Product, Customer, and Store.

3. Double-click the Name column header of the Available Objects grid to sort the schema objects
alphabetically. Select the Employee (HumanResources), Contact (Person), Product (Produc-
tion), ProductSubcategory (Production), Customer (Sales), SalesOrderDetail (Sales), SalesOr-
derHeader (Sales), SalesPerson (Sales), SalesTerritory (Sales), and Store (Sales) tables. You can
hold the Ctrl key for selecting multiple items or the Shift key for extended selection.

4. Click the > button to add these tables to the Included Objects pane. You can double-click the
object name to include the object.

BUILDING REPORT MODELS 309

5. You can use the Add Related Tables button to add all related tables to a selected table in the
Included Objects pane. Select the ProductSubcategory (Production) table and click the Add
Related Tables button. The ProductCategory (Production) table is added to the list. Click
Next.

6. In the Completing the Wizard step, accept the default name for the data source view—
Adventure Works—and click Finish. The Data Source Wizard generates the Adventure Works
data source view and adds its definition to the Data Source Views folder in Solution Explorer.

Let's take a look at the Adventure Works data source view and make some changes to it.

 Understanding the Data Source View Designer
Recall that you can use a data source view to augment the database schema (such as adding
logical relationships, logical primary keys, named calculations, and named queries) without
affecting the underlying data source.

1. Double-click on Adventure Works.dsv in the Solution Explorer to open in the Data Source
View Designer (see Figure 8.5).

2. Expand the Zoom toolbar button and select To Fit to fit the data source view diagram in the
Diagram Pane.

The DSV Designer is divided into three panes to show you different views of the data source
schema.

Figure 8.5 The Adventure Works data source view loaded in the Data Source View Designer.

CHAPTER 8 310

Diagram pane
The Diagram pane shows the data source schema of the selected tables (views) and their rela-
tions. By default, the DSV Designer will analyze the table schema and join the tables based on
the referential integrity relationships defined in the database schema. If you wish, you can use
the NameMatchingCriteria property in the Properties window to change this behavior, such as
joining two tables that have keys with the same name. You can right-click on an object to see a
context menu with relevant commands. For example, if you want to see the table data, right-
click on a table and select Explore Data.

Tables pane
The Tables pane lists the tables and views that are included in the data source view. You can
add additional tables and views from the underlying data source or other data sources defined
in the same project. You can drag an object off this pane and drop it in the diagram pane. Se-
lecting a table in the Tables pane, selects the same table in the Diagram pane and vice versa.

Diagram Organizer pane
A large DSV can be difficult to navigate. The Diagram Organizer pane allows you to define
logical views that comprise different sections of the DSV. When the DSV view is created, there
is only one diagram that contains all the objects added to the view.

Observe that the all tables are related to each other because the Data Source View Wizard has
picked up the existing table relationships in the AdventureWorks database. In real life, the
database schema may not include all relationships. Furthermore, security or other restrictions
may prevent you from making changes to the underlying data source. You can work around
these constraints by creating logical table relationships in the DSV. To create a logical table
relationship, simple drag the foreign key column from one table and drop it onto the primary
key of another table. If you define a relationship incorrectly, click on it and press the Delete
key to remove it. You can double-click a table relationship to verify or change its configura-
tion.

NOTE It is very important to define proper relationships among the DSV tables. Relationships between DSV tables
determine the roles in the report model, and the roles determine possible navigation paths. Remember that the Report
Builder 1.0 client won't let the end user navigate to unrelated tables. To avoid this, create proper logical relationships if
physical relationships are missing in the data source.

 Working with named queries
Sometimes, you may need to use a query to filter a table or combine columns from two or
more tables in the DSV. If you have rights to create objects in the database, I recommend you
define a SQL view for performance and security reasons. However, if security or other limita-
tions prevent you from changing the database schema, you can create a named query—the
DSV equivalent of a SQL View. For example, suppose that you need the employees' manager
name in the Employee table.

1. In the Data Source View Designer, right-click on the Employee table and choose Replace Table
 With New Named Query.

2. In the SQL pane of the Create Named Query dialog (see Figure 8.6), enter the following SE-
LECT statement, which you can find in the Employee.sql file in the source code:
SELECT E.EmployeeID, E.NationalIDNumber, E.ContactID, E.LoginID, E.ManagerID, E.Title, E.BirthDate,
 E.MaritalStatus, E.Gender, E.HireDate, E.SalariedFlag, E.VacationHours, E.SickLeaveHours,
 E.CurrentFlag, E.rowguid, E.ModifiedDate, C.FirstName + ' ' + C.LastName AS ManagerName
FROM HumanResources.Employee AS E LEFT OUTER JOIN Person.Contact AS C ON E.ContactID=C.ContactID

BUILDING REPORT MODELS 311

Figure 8.6 Use a named query
to create a DSV table based on
a SQL SELECT statement.

3. Click the Run button (green triangle icon) to execute and test the statement. Click OK to re-
turn to the DSV Designer.

Note that the Employee table has a different icon that indicates that the Employee item is now
a named query. Right-click on the table and choose Edit Named Query if you want to change
the query later on.

Named queries are also useful when you need to retrieve data from another data source.
As I mentioned in section 8.1.2, Report Builder 1.0 doesn’t natively support multiple data
sources. There are two workarounds and both require SQL Server. From a performance
standpoint, the recommended approach is to configure the other data source as a linked server
to your SQL Server instance. Once you set up the linked server, you can create a view in the
SQL Server database that queries that server. Another option is to implement a named query
that sends an ad hoc distributed query to the other data source. For example, suppose that the
Employee data is kept in a database hosted by an Oracle server. You can use the following
named query to retrieve the employee data:
SELECT * FROM OPENROWSET ('MSDAORA', 'server';'user';'pwd', 'select * from Employee')

I included the SQL Server equivalent of the above statement in the OpenRowset.sql file. Some-
times, the DSV Designer is unable to determine a column that is a good primary key candidate
for a named query. You won't be able to bind an entity to a table if the table doesn't have a
primary key defined. However, you can create a logical primary key on a column that unique-
ly identifies each row. To do so, in the DSV Designer right-click the column and choose Set
Logical Primary Key. Primary keys can be easily identified by their special key icon. You can
have composite primary keys that span more than one column.

CHAPTER 8 312

TIP Report Builder 1.0 doesn't officially support executing stored procedures or user-defined functions in DSV. At the
same time, you may need to base a named query on a stored procedure, such as when you need to apply some rules that
filter the records that are returned. As a workaround, you can invoke a stored procedure using OPENROWSET. For ex-
ample, assuming that you have enabled your SQL Server for ad hoc distributed queries, you can use the following state-
ment to execute the uspGetManagerEmployees stored procedure in the AdventureWorks database for a manager
identifier of 16:
SELECT a.* FROM OPENROWSET('SQLNCLI', 'Trusted_Connection=yes',
'[AdventureWorks].[dbo].uspGetManagerEmployees 16') AS a

 Working with named calculations
You don't have to convert a DSV table to a named query if you only need to add an expres-
sion-based column. Instead, consider creating a named calculation. A named calculation is a
column that is based on an expression. The expression syntax is data source-specific. If you
have experience with SQL Server, think of a named calculation as a computed table column.
However, unlike a computed column, a named calculation is part of DSV, not the relational
table definition. Let’s add a FullName named calculation to the Contact table that returns the
contact full name.

1. Right-click on the Contact table and choose New Named Calculation.
2. In the Create Named Calculation dialog box (see Figure 8.7), enter FullName in the Column

Name field.

Figure 8.7 Create a named cal-
culation to add an expression-
based column to a DSV table.

3. Enter the following expression in the Expression field:
FirstName + ' ' + LastName

4. Click OK to create the FullName named calculation and return to the DSV Designer. A new
named calculation column with a special icon will be added to the Contact table.

5. Right-click on the Contact table and choose Explore Data. Scroll all the way to the right in the
Explore Contact Table grid to see the data in the FullName column.

A named calculation can span tables. Suppose that you need to add the product subcategory
name from the ProductSubcategory table to the Product table. Define a new named calculation
in the Product table that uses the following statement:

BUILDING REPORT MODELS 313

(SELECT Name as Subcategory
FROM Production.ProductSubcategory
WHERE ProductSubcategoryID=Production.Product.ProductSubcategoryID)

 Working with diagrams
Your DSVs may contain many tables. Similar to SQL Server diagrams, you can create DSV dia-
grams to organize tables in logical subject areas. By default, the DSV Designer creates a dia-
gram named <All Tables> that includes all tables in the DSV. Let's create a diagram that shows
only the tables related to the SalesOrderDetail table.

1. Right-click on the <All Tables> item in the Diagram Organizer pane and choose New Diagram.
2. Rename the diagram in-place to Sales Order.
3. Drag the SalesOrderDetail table from the Tables pane to the designer canvas.
4. Right-click on the SalesOrderDetail table on the designer canvas and choose Show Related

Tables. The DSV Designer adds the Sales Order Header and Product tables.

 Dealing with schema changes
Changes made to the underlying data source schema are not automatically reflected in the
DSV. To update the view, you need to refresh it by either clicking on the Refresh toolbar but-
ton or selecting the Refresh command from the Data Source View menu. The refresh process
compares the view schema with the underlying data source schema. If changes are detected,
the view is updated and you are presented with a helpful report of the changes made. You
cannot pick individual objects to refresh. This may look like a limitation, but in the vast ma-
jority of cases you would typically want to get all schema changes at the same time. This way,
you don’t leave the view in an inconsistent state that might break the report model.

TIP When the DSV is first created, the table columns are ordered in the same way as in the underlying data source table.
When you refresh your DSV, new columns that are discovered are added at the end of the table. At this point, the order of
columns may be out of sync with the database. If you want to order DSV columns in a specific way, e.g. sort them alpha-
betically, you can do so in the DSV source file. To do so, in the Solution Explorer window, right-click on DSV and choose
View Code. Then, search for table name and reorder the columns as desired.

Changes to the underlying DSV are not automatically propagated up to the semantic model.
For example, if a column is renamed in the DSV, the name of the corresponding attribute
doesn’t change. Moreover, the attribute binding will not change and you will get an error
when you try to build the model. Similarly, changes made to DSV schema are never propagat-
ed down to the data source. In other words, DSV only reads from and never writes to the data
source. Refreshing a data source view updates only the tables and views included in the DSV.
If you want to add a new object, such as a table or a view, you need to do so manually, as I
will demonstrate in section 8.3.3.

8.2.2 Generating the Raw Model
Having implemented the Adventure Works DSV, we are ready to tackle the last layer of the
Report Builder 1.0 report model—the semantic model. Recall that the semantic model
represents the business-oriented view of the model—that is the layer that the end users will
interact with. To jump-start the model generation, the Reporting Services team has provided
(you guessed it) a handy Report Model Wizard.

CHAPTER 8 314

TIP You can use the Report Manager to auto-generate a default report model without the wizard by clicking the Generate
Model button in the data source properties page. Behind the scenes, the Report Manager invokes the ReportingSer-
vice2005.GenerateModel method. First, this method generates a DSV that includes all tables in the data source. Next,
GenerateModel creates a default model and embeds the DSV in the model. This is exactly what the Report Model Wizard
does except that you get more control over the generation process, such as specifying a subset of rules to be applied.

 Running the Report Model Wizard
Generating the Adventure Works semantic model with the Report Model Wizard takes just a
few clicks.

1. In the Solution Explorer, right-click on the Report Models folder and choose Add New Report
Model to launch the Report Model Wizard.

2. In the Select Data Source View step, Adventure Works.dsv should be pre-selected in the
Available Data Source Views pane. Click Next to advance to the Select Report Model Genera-
tion Rules step (Figure 8.8).

Figure 8.8 The Report Model
Wizard applies various rules that
control the generation of the se-
mantic model.

The Report Model Wizard generates the raw model in two passes and each pass applies gener-
ation rules. In the first pass, the Report Wizard discovers and creates entities and attributes.
Optionally, it can create various expression-based attributes. For example, when you select the
Create Count Aggregates rule, the Report Model Wizard generates count aggregates, such as #
of Orders. Similarly, if you check the Create Numeric Aggregates rule, the wizard creates the
aggregate attribute on numeric fields such as sum, avg, min and max.

The second pass refines the model. For example, during the second pass the Report Model
Wizard might assign appropriate attribute formats, such as currency, dates, and so on. The
generation rules are described in more detail in the Select Report Model Generation Rules top-
ic in SQL Server Books Online (see Resources). I recommend that you keep the default selec-

BUILDING REPORT MODELS 315

tions to save time. You can always delete the changes later on if you decide that you don’t
need them. The Model Language drop-down list lets you choose a default culture for format-
ting date and numbers. You can overwrite it later by changing the DataCulture attribute prop-
erty.

Figure 8.9 The Report Model Wizard
needs the model statistics to default
data cardinality and instance selection
properties.

In the Collect Model Statistics step (Figure 8.9), the Report Model Wizard offers to gather
model statistics by examining the database schema and sampling data. It uses the statistics to
discover data cardinality and uniqueness. For example, model statistics help the wizard detect
one-to-one or one-to-many relationships between entities and to detect a default value for the
attribute instance selection, such as a drop-down or list.

The wizard stores the model statistics in the data source view. Because gathering data sta-
tistics is time-consuming for large databases, consider accepting the default Update Model Sta-
tistics option only when generating a new model. Consider using the Use Current Model
Statistics option only if you later regenerate all or part of the model and the data hasn't
changed significantly in the database.

3. Accept the Update Model Statistics Before Generating option and click Next.
4. In the Completing the Wizard step (see Figure 8.10), accept Adventure Works as the default

name for the model and click Run. Choose descriptive names for your models. This is impor-
tant because the name you provide determines how end users will identify the model in the
Report Builder 1.0 client.

Once the Adventure Works model is generated, the wizard loads it in the Model Designer.
5. Click Finish to close the wizard. If the Adventure Works DSV is open in the DSV Designer,

BIDS prompts you to reload the DSV since the wizard has updated it with the model statistics.

Note that a new file, AdventureWorks.smdl, has been added to the Report Models folder in
the Solution Explorer. If you need to rename the model later on, double-click its name or
right-click and choose Rename.

CHAPTER 8 316

Figure 8.10 The Report Model
Wizard generates the semantic
model in two passes in accordance
with the selected rules.

 Exploring the Adventure Works model
Figure 8.11 shows the raw Adventure Works model that the wizard has created. Looking at
the left pane, you see that the Report Model Wizard has generated an entity for each DVS ta-
ble, such as Contact, Customer, and so on. When you select an entity, the Model Designer
displays its fields in the right pane. Note that the Report Model Wizard has automatically gen-
erated user-friendly names for entities and fields by separating the words in the underlying
column names with a space, such as Sales Order instead of SalesOrder.

You can easily deduce the field type by examining its icon. Text-based attributes are pre-
fixed with a. For example, in the Sales Order Detail entity, Carrier Tracking Number is a text-
based attribute. In comparison, numeric and expression-based attributes are prefixed with #.
For example, the Order Qty field of the Sales Order Detail entity is a numeric attribute. To tell
expressions apart from numeric attributes, examine the Expression property in the Properties
pane. If the Expression property contains a value, the attribute is an expression.

Because the Create Numeric Aggregates rule is selected by default, the wizard has generat-
ed Sum, Avg, Min, and Max aggregate expressions for each numeric attribute. For example,
the wizard has generated a Total Unit Price expression that uses the formula SUM(Unit Price),
as you can see by clicking the ellipsis (…) button in the Expression property. In addition, the
wizard has set the Total Unit Price VariationOf property to point to the Unit Price attribute.
Numeric aggregates are very useful because they tell Report Builder 1.0 how to aggregate data.
For example, if the end user authors a report that includes the Product and Total Unit Price
attributes, Report Builder 1.0 will sum up the Total Unit Price at the product level.

If an attribute has numeric aggregates, you can specify a default numeric aggregate that
Report Builder 1.0 will use to aggregate data when the attribute is requested on the report. By
default, the Report Model Wizard sets the Total numeric aggregate as a default aggregate since

BUILDING REPORT MODELS 317

SUM is the most common aggregate function. For example, if you inspect the DefaultAggrega-
teAttribute property of the Unit Price attribute, you will notice that it is set to Total Unit Price.

Figure 8.11 The Report Model Wizard generates an entity for each DSV table and an attribute for each column.

Similarly, since the Create Date Variations rule was pre-selected, the wizard has generated date
variations for date columns, such as Day, Month, Year, and so on. For example, the Modified
Date attribute includes Modified Day, Modified Month, and so on. Date variations make it eas-
ier to define useful report filters. For example, a filter that specifies Modified Year = 2004 will
return sales orders for year 2004 only. The Create Date Aggregates rule (selected by default)
also generates date aggregates. Examples include First Modified Date with an expression of
Min(Modified Date) and Last Modified Date with an expression of Max(Modified Date). Be-
cause I accepted the default Create Count Aggregates rule, the Report Model Wizard has also
generated expressions that use the Count aggregate function, such as #Contacts in the Contact
entity. Reports can use these expressions to count records (for example, showing the number
of contacts per customer).

By examining the right pane, you can also see the roles defined for the selected entity. For
example, the Sales Order Detail entity has Sales Order and Product roles because the SalesOr-
derDetail table is related to the SalesOrderHeader and Product tables. If the role's icon shows a
single rectangle, the cardinality between the two entities is One. For instance, a sales order

CHAPTER 8 318

detail can be associated with a single product. If the icon shows multiple rectangles, the cardi-
nality is Many, such as a customer who has many orders.

The Report Model Wizard doesn't generate folders and filters. If needed, you can manually
define these fields when you refine the model.

8.3 Refining Report Models
Certainly the Report Model Wizard goes a long way to jump-start the implementation of the
report model. However, its output should be considered an initial draft. Be prepared to make
additional passes through the model to fine-tune it and enhance it with features that the wi-
zard doesn’t support. Let's visit each item in the Adventure Works model and make some ad-
ditional changes.

8.3.1 Working with Entities and Fields
Let’s start by entering a helpful description for the model.

1. In the Entities pane, select the root Model node.
2. In the Properties pane, enter The Adventure Works Report Model in the Description property.

For the sake of brevity, I won't specify descriptions for the rest of the model items although
you should consider doing so with real-life models. Having descriptions is especially useful for
attributes because the Report Builder 1.0 client displays the descriptions as tooltips when the
user points the mouse to the item.

Figure 8.12 Use the AttributeRe-
ference Collection Editor to specify
one or more default attributes.

 Contact entity
In the Adventure Works model, the Contact entity represents a person's contact details, such
as first name, last name, email address, and so on. The Report Builder 1.0 client uses the enti-
ty's DefaultDetailAttributes collection to auto-select which fields show up on the report when
the user drags and drops the entity itself. In addition, Report Builder 1.0 uses this collection
when it auto-generates a drillthrough multi-instance report, such as showing a list of the indi-

BUILDING REPORT MODELS 319

vidual sales order items when the user clicks on an aggregated Line Total number. I suggest
you keep the DefaultDetailAttributes list short by choosing a limited number of useful
attributes that the user may want to see by default.

1. In Model Designer, select the Contact entity and click the … button inside the DefaultDetail-
Attributes property in the Properties pane.

This opens the AttributeReference Collection Editor dialog box, as shown in Figure 8.12. Note
that the wizard has identified Full Name, Password Hash, and Password Salt as default
attributes. You definitely don't want the last two as default attributes so let's replace them with
the Email Address attribute.

2. Select the Password Hash and Password Salt attributes and click the Remove button.
3. Press the Add button to open the Default Detail Attributes dialog, as shown in Figure 8.13.

Figure 8.13 Keep the Default-
DetailAttributes list short to include
just a few useful attributes.

4. Select the Email Address attribute and click OK. Click OK again to return to the Model De-
signer.

Report Builder 1.0 doesn't provide a way to set a default value for an attribute. To workaround
this, consider the filtering options available in the Report Builder 1.0 client (for example, rela-
tive dates). Adding a filtering option might be useful if you want a report parameter to default
to a certain value, such as the last month with data.

Another important entity property is IdentifyingAttributes. When I first encountered the
IdentifyingAttributes property, I thought that the model used this property to select unique
entity instances. For example, readers familiar with Analysis Services know that the Key-
Columns attribute property in UDM tells the server how to determine unique attribute mem-
bers when it builds the attribute hierarchy. This is not the case with Report Builder 1.0 since it
doesn't create any hierarchies or store data. Instead, IdentifyingAttributes is simply a user-
oriented property. The Report Builder 1.0 client uses it to help the end user identify an in-
stance of the entity. For example, if the end user looks up a particular customer by an account
number, you may want to set the IdentifyingAttributes property of the Customer entity to the
Account Number attribute.

CHAPTER 8 320

The Report Model Wizard employs certain heuristic rules to select the identifying
attributes, which might cause it to select a column other than the one used as all or part of the
table primary key. For instance, the presence of the word Name in the column name and near
100% uniqueness of the data in that column is often sufficient to select that column as the
identifying attribute instead of the primary key. The wizard doesn't favor primary keys be-
cause they are usually system-generated and are not meant to be seen by end users. As a
guideline, you should have only one attribute as an identifying attribute. The noticeable ex-
ception is if the entity contains a long list of items, such as cities, where the user might need to
identify a single item by two or more columns, such as City and State.

5. Click the … button inside the IdentifyingAttributes property of the Contact entity. Note that
the wizard has decided to use the Full Name attribute as an identifying attribute. We will ac-
cept the wizard's choice. Click OK.

6. In the Contact entity in the Model Designer, the Password Hash, Password Salt, and Rowguid
attributes are not meaningful to end users. Press and hold the Ctrl key to select all three of
them and press Delete to remove them.

7. The Modified Date attribute may be useful for the modeler (for example, when creating an
expression that returns the recently added customers), but it is not useful for the end user.
Select it and change its Hidden property to True. As a result, the field will be preserved in the
model but won't be visible to users.

8. The Sales Order Headers role represents the relationship between the Contact and Sales-
OrderHeader table in DSV. To make its name more intuitive to end users, select it and change
its Name property to Sales Orders. Note that its cardinality is set correctly to OptionalMany
because a person may have none, one, or many orders.

TIP Use a plural case when naming roles with a Many or OptionalMany cardinality (Sales Orders, Employees). Use a
single case when naming roles with a One or Optional One cardinality (Customer, Product). This naming convention can
help the end user understand whether the report will break down further in the case of the "Many" cardinality or if only a
single value will be returned.

By default, the Report Model Wizard arranges the entity fields in the same order as the under-
lying columns in the DSV table. The Report Builder 1.0 client preserves this order in the
Fields pane. Unfortunately, neither the Model Designer nor the Report Builder 1.0 client sup-
ports an easy way to change the sort order of the metadata items. However, you can rearrange
fields in the Report Model Designer by dragging them to the desired location.

9. To show the Full Name attribute after the Last Name attribute, drag the Full Name attribute
below the Last Name attribute. Alternatively, right-click on the Full Name attribute and
choose Move Up or Move Down context menus. To move several attributes, select them by
holding the Ctrl key and drag them to a new position.

 Customer entity
There are more than 19,000 customers in the Sales.Customer table in the AdventureWorks
database. Generating a report for all customers may take a very long time. You can force the
end user to specify a filter when a field from a large entity is used on the report. To do this,
make the following changes to the Customer entity.

1. Select the Customer entity in the Entities pane and make sure its InstanceSelection property is
set to MandatoryFilter.

BUILDING REPORT MODELS 321

2. You can tell Report Builder 1.0 how to display attribute values when the user sets up a filter
on that attribute. The Customer Type attribute has only a couple of values: S for Store and I
for Individual. Verify that its ValueSelection property is set to Dropdown.

3. Remove the Modified Date attribute from the DefaultDetailAttributes collection.
4. Delete the Rowguid attribute.
5. Set the Hidden property of the Modified Date attribute to True.
6. Rename the Sales Order Headers role to Sales Orders.

 Employee entity
Adventure Works has less than 300 employees and business users would typically select a sin-
gle employee when authoring employee-related reports.

1. In the Entities pane, select the Employee entity and change its InstanceSelection property to
Dropdown. As a result, when the end user filters the Employee entity Report Builder 1.0 will
present a drop-down list from which the user can pick a single employee.

2. Remove all attributes from the IdentifyingAttributes and DefaultDetailAttributes collections of
the Employee entity and add the National ID Number attribute only.

3. Verify that the ValueSelection property of the Gender and Marital Status attributes is set to
Dropdown.

4. Set the Hidden property of the Login ID and Modified Date attributes to True.
5. Delete the Rowguid attribute.

 Product entity
The Product entity has many attributes. Let's organize some of them in logical folders so the
end user can find them easily.

1. In the Entities pane, select the Product entity.
2. Right-click on an empty space in the Attributes pane and chose New Folder. A NewFolder

field is added to the Product entity.
3. Rename the NewFolder folder in-place to Manufacturing.
4. Press and hold the Ctrl key and select the Make Flag, Finished Goods Flag, Safety Stock Level,

Reorder Point, Size, Weight, Days to Manufacture, Size Unit Measure Code, and Weight Unit
Measure Code attributes. Drag the selected attributes and drop them on the Manufacturing
folder.

5. Create a new folder called Dates. Select the Sell Start Date, Sell End Date, and Discontinued
Date attributes and move them to the Dates folder.

6. Delete the Product Model ID and Rowguid attributes. Hide the Modified Date attribute.
7. Make sure that the ValueSelection property of the Color, Product Line, Class, and Style

attributes is set to Dropdown so Report Builder 1.0 client shows drop-downs when filtering
on these attributes.

8. Set the Format property of the Standard Cost and List Price attributes, and their variations,
such as Total Standard Cost, Avg Standard Cost, and so on, to C2 to format them as currency
with two decimal places.

 Product Category and Product Subcategories entities
Make the following changes to Product Category and Product Subcategory entities.

CHAPTER 8 322

1. Make sure that the entity InstanceSelection property is set to Dropdown.
2. Make sure that the ValueSelection property of the Name field is set to Dropdown.
3. Change the DefaultDetailAttributes collection to include the Name attribute only.
4. Delete the Rowguid attribute and hide the ModifiedDate attribute.

 Sales Order Detail entity
The Sales Order Detail entity represents a sales order line item.

1. Rename the Sales Order Detail entity to Sales Order Item and #Sales Order Details attribute to
#Order Items.

2. Rename the Sales Order Detail ID attribute to Line Item and set its Hidden property to False to
make this attribute visible to end users.

3. The IdentifyingAtributes collection of this entity should consist of the order number and line
item number since this combination uniquely identifies a line number. Click the … button
inside the IdentifyingAttributes property. In the AttributeReferenceCollection dialog box, re-
move all fields.

4. Press the Add button to open the Identifying Attributes dialog box.

5. Click on the Sales Order entity and select the Sales Order Number attribute, as shown in Fig-
ure 8.14. Click OK.

6. Add the Line Item attribute from the Sales Order Item entity to the IdentifyingAttributes col-
lection.

7. Configure the DefaultDetailAttributes collection to include the Line Number, Career Tracking
Number, Order Qty, and Line Total fields.

An entity can have default aggregate attributes, which are useful for drillthrough reports.
When a user clicks a drillthrough report, the resulting report contains all of the default detail

Figure 8.14 The Sales Order Item
IdentifyingAttributes collection in-
cludes the Sales Order Number
attribute from the Sales Order entity.

BUILDING REPORT MODELS 323

attributes for the entity and the default aggregate attributes for all the entities that have a
many-to-one relationship to the entity. For example, if the user clicks on a sales order number
to see a single-instance drillthrough report, the report will show all non-hidden fields of the
Sales Order entity, plus the default aggregate attributes of the Sales Order Item entity. This is
because Sales Order has a one-to-many relationship with Sales Order Item.

8. Suppose that the user would like to see the total sales amount and order quantity on a drill-
through report. Click the … button inside the DefaultAggregateAttributes property. In the
Default Aggregate Attributes dialog box, expand the Order Qty node, select the Total Order
Qty aggregate and click OK. Repeat the last step to add the Total Line Total aggregate of the
Line Total attribute.

9. Make sure that the InstanceSelection property of the Sales Order Item entity is set to Mandato-
ryFilter. This forces the user to filter the entity if it is used on the report.

10. Delete the Special Offer ID and Rowguid attributes.
11. Set the Hidden property of Modified Date to True.
12. Select the Unit Price, Unit Price Discount, Line Total attributes and all of their aggregate varia-

tions and set the Format property to C2 to format them as currency with two decimal places.

 Sales Order Header entity
Make the following changes to the Sales Order Header entity.

1. Rename the Sales Order Header entity to Sales Order and #Sales Order Headers attribute to
#Sales Orders.

2. Make sure that the InstanceSelection entity property is set to MandatoryFilter.
3. Delete the Revision Number, Rowguid, Bill To Address ID, Ship To Address ID, Ship Method

ID, Credit Card ID, and Currency Rate ID attributes.
4. Set the Hidden property of the Modified Date attribute to True.

If you explore the data in the SalesOrderHeader table you will notice that the Status column
contains integer values. This is why the Report Model Wizard generated aggregate variations
of the Status attribute and formatted the Status attribute as a general number. However, the
Status field could be more useful to end users if it did not have aggregate variations and
showed the status name instead of a numeric value. Let's define an expression that will trans-
late the numeric status codes to human-readable names.

5. Rename the Status attribute to Status Code. Delete its aggregate variations: Total Status, Avg
Status, Min Status and Max Status.

6. Set the Hidden attribute of the Status Code attribute to True to make it unavailable to end
users.

7. Right-click on an empty space inside the Attributes pane and choose New Expression to open
the Define Formula dialog box.

8. Click the Functions tab, as shown in Figure 8.15. Note that Report Builder 1.0 supports many
functions that you can use in expressions. The Switch function, found in the Conditional sec-
tion, evaluates a list of expressions and returns the value associated with the first condition
that returns True.

CHAPTER 8 324

Figure 8.15 Report
Builder 1.0 supports many
functions that you can use
in your expressions.

9. Expand the Conditional node and double-click the Switch function. This generates the follow-
ing line in the Formula textbox:
Switch(condition1, value1)

The condition1 and value1 arguments are highlighted in yellow to let you know that you need
to replace them with fields or functions.

10. Switch to the Fields tab.

NOTE If you need to use a field in a formula you cannot just type in the field name because Report Builder 1.0 won't
be able to create a field reference. Instead, you need to use the Fields tab and either drag the field or double-click on it.

11. Click the condition1 argument to select it.

Figure 8.16 Use the
Fields tab if you need
to insert a field refer-
ence in the formula.

12. Double-click the Status Code to replace the condition1 argument with the Status Code field.
13. Place the mouse cursor after Status Code in the formula and type =1, as shown in Figure 8.16.

The formula text changes to the following expression:
SWITCH(Status Code=1, value1)

BUILDING REPORT MODELS 325

14. If the status code is 1, we want our expression to return "New" as the order status. Click the
value1 argument to select it and type "New". The formula is now SWITCH(Status Code=1,
"New").

15. Enter comma after "New" and repeat the last three steps four more times to define the follow-
ing formula:
SWITCH(Status Code=1, "New", Status Code=2, "Cancelled", Status Code=3, "Backordered",
Status Code=4, "Onhold", Status Code=5, "Shipped")

16. Click OK to close the Define Formula dialog box. Rename the NewExpression expression
you've just created to Status.

17. Change the Nullable property of the Status expression to True and the ValueSelection proper-
ty to Dropdown.

 Sales Person entity
The Sales Person entity represents the Adventure Works employees who are sales people. For
now, we will make just a few changes. Later on, we will make more changes in section 8.3.2.

1. Select the Sales Person entity and make sure its InstanceSelection property is set to Dropdown.
2. Delete the Rowguid attribute.
3. Change the Hidden property of the Modified Date attribute to True.
4. Rename the Sales Order Headers role to Sales Orders.

 Sales Territory entity
Adventure Works sells products both in the USA and internationally. The Sales Territory enti-
ty defines a common geographical hierarchy where sales territories are organized by conti-
nents (groups), countries, and regions. Unfortunately, Report Builder 1.0 doesn't support
multi-level and parent-child hierarchies so we won't be able to define any. However, you can
arrange attributes in an order that best approximates a parent-child hierarchy.

1. Make sure that the InstanceSelection of the Sales Territory entity is set to Dropdown.
2. Rename the Name attribute to Region and Country Region Code attribute to Country.
3. Select the Sales Territory entity and configure the DefaultDetailAtributes collection to include

only the Region, Country, and Group attributes. Rearrange the attributes into the the order
Group, Country, and Region so the user can see them ordered this way when they drag and
Sales Territory Entity on the report. Click OK.

4. Select the Region, Country, and Group attributes and change their ValueSelection to Drop-
down.

5. Delete the Rowguid attribute and change the Hidden property of the Modified Date attribute
to True.

6. Remove the Modified Date field from the DefaultDetailAttributes collection of the Sales Terri-
tory entity.

7. Rename the Sales Order Headers role to Sales Orders to make its name more intuitive to the
user.

 Store entity
Besides direct sales over the Internet to individuals, Adventure Works sells to resellers. The
Store entity represents a reseller.

CHAPTER 8 326

1. Because the Demographics attribute is XML-based, it can't be shown as-is to end users. Select
the Demographics attribute and delete it. Delete also the Rowguid attribute.

2. Set the Hidden property of the Modified Date attribute to True.
3. Remove the Modified Date field from the DefaultDetailAttributes collection of the Store entity.

As you have seen, refining a Report Builder 1.0 model requires a fair amount of routine and
repetitive work. Let's now leverage a few advanced modeling techniques to enhance the Ad-
venture Works model.

 Verifying the model
When you build a Report Model project, Report Builder 1.0 verifies the model consistency
against a set of pre-defined validation rules. Report Builder 1.0 flags all discovered violations
as errors in the Visual Studio Error List pane. I recommend you build the model on a regular
basis to catch and correct errors as early as possible during the design cycle.

1. In the Solution Explorer pane, right-click on the Adventure Works Report Model project and
click Build or click Build Build Adventure Works Report Model from the main menu.

2. Examine the Error List pane.

There shouldn’t be any errors listed.

8.3.2 Advanced Report Modeling
Report Builder 1.0 supports additional features to help you meet more advanced business re-
quirements and make your models more intuitive to end users. These features include entity
inheritance, role expansion, lookup entities, advanced expressions, and perspectives.

 Entity inheritance
Report Builder 1.0 is typically used for ad hoc reporting against relational data sources. Rela-
tional databases are typically heavily normalized to operate at peak performance and store data
efficiently. Unfortunately, normalized database schemas are not so suitable for ad hoc report-
ing. Consequently, business users may get lost trying to find the entity they need. Report
Builder roles can certainly help by guiding the users to related entities, but many models can
also benefit from denormalization techniques that reduce the perceived schema complexity.

The first technique for report model denormalization is entity inheritance. Consider this
technique when one entity derives from another entity; that is, when one entity is another ent-
ity. For example, in the Adventure Works model, a sales person is an employee. It is likely
that the end users would prefer to see the employee-related attributes when they browse the
Sales Person entity instead of having to navigate to the Employee entity. Assuming that a for-
eign key relationship already exists between the two entities, you can implement entity inhe-
ritance easily by setting the Inheritance property of the derived entity.

1. In the Entities pane, select the Sales Person entity.
2. Expand the Inheritance property.
3. Expand the InheritsFrom drop-down list and select the Employee entity.
4. Expand the Binding drop-down list and select the FK_SalesPerson_Employee_SalesPersonID

relationship, as shown in Figure 8.17.

BUILDING REPORT MODELS 327

Figure 8.17 Set up the Inheritance
property of the Sales Person entity to
configure it to inherit from the Em-
ployee entity.

5. Select the Employee entity in the Entities pane and delete the Sales Person role. Report Builder
1.0 also deletes the Sales Person role in the Sales Person entity and removes the Manager
Name attribute from the IdenfyingAttributes collection of the Sales Person entity.

6. In the Entities pane, select the Sales Person entity and click the … button inside the Identi-
fyingAttributes property and remove all attributes from the IdenfyingAttributes collection.

7. Click the Add button. Notice that the Fields pane of the Identifying Attributes dialog now lists
both Sales Person and Employee attributes and roles because the Sales Person entity inherits
from the Employee entity.

8. Select the National ID Number attribute and click OK to return to the AttributeReference
Collection Editor and then click OK again to return to the Model Designer.

9. Remove all attributes from the DefaultDetailAttributes collection of the Sales Person entity.
Add the National ID Number, First Name, Last Name attributes to it.

10. Build the project again. Report Builder 1.0 shouldn't report any errors.

Configuring an entity for inheritance will not break existing reports that use that entity. How-
ever, removing entity inheritance is a braking change.

 Role expansion
Sometimes, you may have an entity whose attributes logically belong to another entity. For
example, the Contact entity represents the employee's contact details that logically should be a
part of the Employee entity. However, to optimize storage, the database schema designer has
decided to refactor the contact-related columns from several tables, such as Employee, Indi-
vidual, Vendor, and so on, into a separate Contact table. From a reporting perspective, the
end user would rather see the Contact fields inside the Employee entity. In other words, we
need to expand the Employee entity to include the Contact fields.

1. In the Entities pane, select the Employee entity.
2. Select the Contact role and change its ExpandInline property to True.

CHAPTER 8 328

Since a role expansion unites two entities, you may want to hide the roles of the referenced
entity (in this case, Contact) to prevent duplicating roles and self-references (where Employee
references itself).

3. Select the Contact role and click the … button inside the HiddenFields property to open the
Hidden Fields dialog box.

Figure 8.18 Consider hiding the
roles of the expanded entity to pre-
vent duplicating roles.

4. Check the Sales Orders and Employees roles to select them, as shown in Figure 8.18. Click
OK.

5. Since we are merging the Contact fields into the Employee entity, consider also hiding the
entire Contact entity so it doesn't confuse end users. In the Entities pane, select the Contact
entity and set its Hidden property to True. The Contact entity name should now appear
grayed out in the Entities pane.

Changing the value of the ExpandInline property will not break existing reports.

 Lookup entities
The third and last denormalization technique is defining lookup entities. As its name suggests,
use this technique when you have entities based on narrow lookup tables in the database. For
example, the Adventure Works model includes a Product Subcategory and Product Category
entities that have a single useful attribute Name. The end users would probably appreciate
"promoting" the product category and subcategory to the Product entity to minimize entity
navigation.

In general, it is useful to define an entity as a lookup entity when you want to flatten out a
hierarchical (snowflake) database schema. When Report Builder 1.0 encounters a role whose
related entity is a lookup entity, it displays the identifying attribute of that entity as if it were
an attribute on the current entity. A lookup entity must have only one identifying attribute.

1. In the Entities pane, select the Product Subcategory entity and change its IsLookup property
to True.

2. In the Entities pane, select the Product entity and note that the Model Designer displays the
Product Subcategory role as an attribute although its type is Role.

BUILDING REPORT MODELS 329

The role's ContextualName property defines the name of the lookup entity. The default value
for the ContextualName property is Role. This means that the lookup entity name will match
the role name. If you change the ContextualName property to Merge, the name of the lookup
entity will be a combination of the role name and the name of the identifying attribute, such as
Product Category Name.

You can promote a lookup entity via another lookup entity. For example, you can pro-
mote the Name identifying attribute of the Product Category entity all the way to the Product
entity via the Product Subcategory entity.

3. In the Entities pane, select the Product Category entity and change its IsLookup property to
True.

4. In the Entities pane, select the Product Subcategory entity. Select its Product Category role
and change its PromoteLookup property to True.

Changes to PromoteLookup, IsLookup, and ContextualName are non-breaking changes to
existing reports.

 Creating perspectives
Denormalization techniques can go a long way towards making your model simpler and more
intuitive to end users, but they may not be enough. Consider implementing perspectives if
you want to further reduce the perceived complexity of large models. A perspective is a logical
subset of the model that contains selected entities and fields. Perspectives cannot be used as a
security mechanism. You cannot restrict access to items included in the perspective. Follow
these steps to create Internet Sales and Reseller Sales perspectives in the Adventure Works
report model.

Figure 8.19 Create model
perspectives to implement logical
subsets of the model.

1. In the Entities pane, right-click on the root Model node and choose New Perspective to
open the Edit Perspective dialog box, as shown in Figure 8.19.

2. By default, a perspective includes all items. Exclude the Employee and Store entities from the
new perspective by clearing their checkboxes because they are not applicable to Internet sales.

CHAPTER 8 330

3. Expand the Customer entity and observe that the Model Designer has removed the Store role.
This is because excluding an entity removes all roles to that entity.

4. Click OK to return to the Model Designer and rename the NewPerspective item to Internet
Sales.
Follow similar steps to create a Resellers Sales perspective that excludes the Customer entity.

TIP Although unsupported, you can force the end user to select a perspective by defining a model-level custom proper-
ty called MustUsePerspective. To do so, select the Model node in the Entities pane and click the ellipsis (…) button
inside the CustomProperties. Then, click the Add button and set up a new custom property MustUsePerspectives with a
Boolean data type and namespace http://schemas.microsoft.com/sqlserver/2004/11/semanticquerydesign. Deploy the
model. When the end user launches the Report Builder 1.0 client, the root model will be disabled forcing the user to
choose a perspective.

 Authoring advanced expressions
Sometimes, report requirements call for more advanced calculated fields that span entities.
While the end user can author expression-based fields at the report level, I recommend you
define frequently used business calculations as expressions in the model. Besides helping the
end user, model-level expressions are preferred because they are defined and maintained in
one place—the model. For example, if you need to change an expression formula later on, you
can simply update the expression in the model. All reports that include the expression will
automatically pick up the new formula.

Suppose that security requirements dictate that the Adventure Works sales managers are
denied access to customer orders. Instead, they can only see the total order amount for all
shipped orders to a given customer. You can fulfill this requirement by creating an opaque
expression for Total Order Amount as follows:

Figure 8.20 You can define
formulas that span entities.

1. Right-click the Customer entity and choose New Expression to open the Define Formula
dialog box.

BUILDING REPORT MODELS 331

2. Click the Functions tab and double-click the SUM function found under the Aggregate node
in the tree.

3. Click the Field tab. In the Formula pane, click the aggregate argument of the SUM formula.
4. In the Entities pane, click the Sales Orders role, and then the Sales Order Details role.
5. In the Fields pane, double-click the Line Total field to replace the formula argument, as

shown in Figure 8.20.

To apply the formula to shipped orders only, we need to define a filter for the formula as fol-
lows.

6. Double-click the Line Total argument inside the SUM formula to see the expanded formula, as
shown in Figure 8.21.

Figure 8.21 Create a filter
to select a subset of the
entity rows.

7. The Expanded Formula pane lets you define filters for each entity related to the root entity.
Click the No Filter Applied link next to the Sales Orders entity and choose Create a New Filter
to open the Filter Data dialog box, as shown in Figure 8.22.

The Filter Data dialog box lets you create sophisticated filters that can have multiple condi-
tions and filter on multiple entities. Since the Report Builder 1.0 client uses the same dialog
box to let users filter report data, I will defer discussing the Filter Data dialog in more details
to chapter 9.

8. In the Filter Data dialog box, double-click the Status field to add it to the right pane.
9. Expand the Status drop-down list and choose Shipped. Incidentally, all Adventure Works

sales orders have a Shipped status, which is why the drop-down list has a single item.
10. Enter Shipped Orders for a filter name and click OK to return to the Define Formula dialog

box. Click OK to return to the Model Designer.
11. Rename the new expression to Total Order Amount and format it as currency.
12. Make sure that the Nullable property of Total Order Amount is set to True.

CHAPTER 8 332

Figure 8.22 Report
Builder 1.0 supports ad-
vanced filtering capabilities.

The only remaining step is to implement a model item security policy that restricts access to
the Sales Order entity. To do so, we need to use Report Manager to prevent the Adventure
Works sales manager (or the Windows group to which they belong) from reading Sales Order
data. I will postpone this step to the next chapter where I will discuss model security.

8.3.3 Dealing with Changes
Change is a part of life and your models will undoubtedly evolve over time. Since the report
model is a layer above the database schema, schema changes may affect and sometimes break
the report model. Report Builder 1.0 doesn't support any built-in mechanism to detect schema
changes and adjust the underlying model. It will not drop attributes that are bound to deleted
columns, nor will it notify you if a data type has changed or a new column is added. In other
words, all schema changes must be resolved manually. As a report modeler, you need to learn
how to deal with schema changes, such as adding new tables, changing column names, and
deleting columns.

 Adding new entities
As it stands, the Customer entity is not very useful as it includes only Customer Type and Ac-
count Number customer-related attributes. That's because its base table, Sales.Customer,
stores both individual customers and resellers. Specifics about the individual customer are
stored in the Sales.Individual table, while the reseller-specific details are in the Store table. We
already have the Store entity included in the model. Let's see what it takes to enhance the Ad-
venture Works model to handle individual customers.

1. In the Solution Explorer, double-click the Adventure Works.dsv file to open in the DSV De-
signer.

BUILDING REPORT MODELS 333

2. In the DSV Designer, click the Add/Remove Objects toolbar button to open the Add/Remove
Tables dialog box, which is similar to the Data Source View Wizard's Select Tables and Views
dialog box (see again Figure 8.4).

3. In the Available Objects pane, select the Individual (Sales) table and press the > button to add
the table to the Included Objects pane. Click OK to add the table to the Adventure Works
DSV.

4. Open the Adventure Works model in the Model Designer.

5. In the Entities pane, right-click on the Model node and choose New Entity.
6. Rename the NewEntity entity you just created to Individual.
7. To associate the Individual entity with a DSV table, select it in the Entities pane and click the

ellipsis (…) button inside the Binding property to open the Entity Binding dialog box, as
shown in Figure 8.23.

Figure 8.23 Use the Entity Binding
dialog box to bind an entity manually
to a data source table.

8. Select the Sales_Individual table in the Entity Binding dialog box and click OK.
9. You could manually add the entity fields but this is time-consuming. Instead, let's auto-

generate its fields. Right-click on the Individual entity and choose Autogenerate. Confirm the
warning message that follows.

10. The familiar Report Model Wizard starts. In the Selected Item Autogeneration confirm that
only the Individual entity is listed.

11. Accept the defaults in the Select Report Mode Generation Rules step.
12. In the Collect Model Statistics step, select the Use Current Model Statistics setting to save

time.
13. In the Completing the Wizard step, click Run to auto-generate the Individual entity. Notice

that once the process completes, the following error message is shown in the Status field:
The Entity 'Individual' doesn't have any IdentifyingAttributes.

CHAPTER 8 334

14. This error is generated because the Report Model Wizard was unable to locate an identifying
attribute for the Individual entity and the IdentifyingAttributes collection empty. Go back to
the Model Designer and add the Account Number field from the Customer Entity to the Iden-
tifyingAttributes collection of the Individual entity.

15. Similar to the Employee entity, select the Contact role of the Individual and set its ExpandIn-
line property to True to expand the role.

16. In the Entities pane, select the Customer entity. Observe that the Report Model Wizard has
added a new role, Individual. This is because the Report Model Wizard has detected the rela-
tionship between the Customer and Individual tables.

17. Since both the Individual and Store entities are customers, set their Inheritance property to
inherit from the Customer entity.

18. Let's add a new expression field to the Customer entity for the customer name based on the
following formula:
IF(Customer Type="I", First Name & " " & Last Name, Name)

The IF operator evaluates the Customer Type attribute of the Customer entity. If it is "I", the
customer is an individual and we derive the customer name from the First Name and Last
Name attributes of the Individual entity. Otherwise, we use the Name attribute of the Store
entity.

19. Finally, rename the new expression to Customer Name and make sure its Nullable property is
True.

 Breaking vs. non-breaking changes
Report Builder 1.0 can accommodate some schema changes without breaking existing reports.
For example, moving model items in and out of display folders and perspectives will not affect
existing reports. Changing expression formulas, bindings, or definitions of named queries and
named calculations in the DSV are non-breaking changes too, although they may produce dif-
ferent report results. In general, all model changes will be non-breaking except the ones listed
in Table 8.2.

Table 8.2 Report Model Breaking Changes

Item Type Change

Entity Model identifier (ID) and Inheritance properties

Attribute ID, DataType, IsAggregate properties, and entity membership

Role ID and Cardinality properties, entity membership, related role and its cardinality
and entity membership

The Report Builder 1.0 client detects breaking changes when loading an existing report and
displays an error message. The Semantic Engine detects breaking changes at run time and re-
turns an error message when previewing the report in the Report Builder 1.0 client or when
viewing the report on demand. An end user can fix a breaking change by opening the report
in design mode and making the necessary change, such as removing a column bound to a
field that has been deleted from the model.

BUILDING REPORT MODELS 335

TIP If you want to deprecate a field, consider setting its Hidden property to True instead of deleting it. Hiding a field is a
non-breaking change that will not affect existing reports.

8.3.4 Deploying Report Models
Now that the Adventure Works model is ready, let's deploy it to the server to make it available
for end-user reporting.

1. In the Solution Explorer, right-click on the Adventure Works Report Model project node and
choose Build to verify the model. If the Model Designer displays any error messages, review
them and correct the errors.

2. In the Solution Explorer, right-click on the Adventure Works Report Model project node and
choose Properties to open the familiar Property Pages dialog, as shown in Figure 8.24.

Figure 8.24 Before deploying the
report model, review and change
the project deployment settings.

3. Change the TargetModelFolder setting to AMRS to deploy the model to the AMRS folder.
4. Verify that the TargetServerURL setting points to an existing report server instance. You can

verify the URL by opening a browser window and enter the URL you plan to use. If it resolves
to the report server endpoint, you have a valid URL. Click OK to close the dialog.

5. In the Solution Explorer, right-click on the Adventure Works Report Model project node and
choose Deploy to start the deployment process.

The Visual Studio Output window shows the deployment progress. If all is well, you will see
the following message:
========== Deploy: 1 succeeded, 0 failed, 0 skipped ==========

You have successfully implemented and deployed the Adventure Works Report Model project!

8.4 Working with Analysis Services Models
Recall that one of the data sources supported by Report Builder 1.0 is Analysis Services. This
integration scenario is discussed in detail in the whitepaper "Building Ad-hoc Reporting Solu-
tions with SQL Server 2005 Report Builder and Analysis Services OLAP" (see Resources). I

CHAPTER 8 336

don't have much more to add except to share some real-life experience and provide a few
guidelines. Let's first see what it takes to generate a Report Builder 1.0 model on top of a cube.

8.4.1 Generating Report Models from Analysis Services
When you use Analysis Services, you need to auto-generate the report model. The steps for
auto-generating models from all supported data sources are identical.

 Auto-generating a model
Follow these steps to auto-generate a semantic model from the AdventureWorksAS2008 data
source:

1. Open the Report Manager application by pointing your Internet browser to the Report Manag-
er URL, such as http://localhost/reports.

2. Navigate to the folder that has a data source pointing to the Adventure Works 2008 cube. If
you have deployed the demo report you authored in chapter 1, you should have an Adventu-
reWorksAS2008 data source in the Data Sources folder that you can use for this exercise.

3. Click on the data source to go to the data source properties, as shown in Figure 8.25.

4. In the screen that follows, enter Adventure Works UDM as the model name.
5. Click the Change Location button to navigate to the AMRS folder to which you've been dep-

loying the sample reports and click OK.

 Editing the auto-generated model
Just because the report model is auto-generated doesn't mean that you cannot open it and
make changes to it in the Model Designer. Be warned though that if you subsequently auto-
generate the model again, your changes will be lost.

1. In the Report Manager, navigate to the AMRS folder the model was generated.
2. Click the Adventure Works UDM link to go to its property page, as shown in Figure 8.26.
3. Click the Edit link and save the model as a file locally.

Figure 8.25 Click the Gener-
ate Model button to auto-
generate a model from an
Analysis Services data source.

BUILDING REPORT MODELS 337

Once you save the model definition, you can add it to the Adventure Works Report Model
project and make changes to it. When you are done, go back to the model property page in
the Report Manager and click the Update link to upload the model definition.

Figure 8.26 Click the Edit link to
save the model definition as a file
or the Update link to update the
model from a file.

8.4.2 Understanding Analysis Services Limitations
As you've seen, auto-generating a model from an Analysis Services data source is simple. Fig-
ure 8.27 shows what happens when you do this. Auto-generating a model from SSAS means
wrapping UDM with a Report Builder 1.0 semantic layer—the top layer in the Report Builder
Report Model stack. This is needed because the Report Builder 1.0 client only understands
SMDL. When the report is run, the Semantic Engine interprets the semantic query and trans-
lates it to an MDX query. So far so good, or is it?

Figure 8.27 When you auto-generate a
report model from an Analysis Services
data source, Report Builder 1.0 adds a
semantic model on top of UDM.

Unfortunately, as it turns out, mixing a relational model to a dimensional model produces a
model which is neither dimensional nor relational. The problem is that when used with Anal-
ysis Services data sources, the semantic model wrapper gets in the way. First, it strips UDM
from features it doesn't support, such as parent-child dimensions, user-defined hierarchies,
multi-grain relationships, and so on. For more information about these limitations, read KB
Article 899825 and the whitepaper I've just mentioned.

Second, the Semantic Model doesn't translate the UDM metadata to an entity-based model
very well. Mapping UDM relationships to roles is especially problematic. For example, unlike
traditional OLAP browsers, which expose UDM metadata as a static list of dimensions and
measures, the Report Builder 1.0 client collapses the entity tree as soon as you add a dimen-
sion attribute or measure to the report. As a result, selecting dimensions and measures may
require several hops through the intervening roles. Not only does this confuse the user, but it
also results in various issues when filtering a report that spans multiple measure groups. The

CHAPTER 8 338

MDX query translator is another sore spot. Issues range from queries that produce wrong re-
sults to inefficient queries that take hours to execute.

REAL LIFE I wrestled the Report Builder-SSAS 2005 integration beast long and hard. One of the deficiencies that
caused the most grief was the inefficient queries that the MDX Query Translator produces when the user filters on
measures, such as show me all customers with sales greater than $1,000. Such reports would take hours to execute
with a medium-size cube. When I looked at the generated query, I was appalled to find out that it cross-joins all di-
mensions in the query subselect filter! This resulted in enormous amount of subcube requests by the SSAS query
engine. It turned out later that the performance improvements in SSAS 2008 reduced the query time to about a
minute, so SSAS 2005 was partly to blame for the poor query performance.

In summary, consider using semantic models and the Report Builder 1.0 client only with sim-
ple and relatively small cubes. If the cube has multiple measure groups, consider using the
Report Builder 1.0 if the users will report on a single measure group at a time. Avoid Report
Builder 1.0 if cross-measure group reporting is a requirement.

8.5 Summary
Report Builder 1.0 is an ad hoc reporting tool that targets business users. Before end users can
use Report Builder 1.0 to author reports, you need to build or auto-generate a report model. A
report model consists of data source, data source view, and semantic model layers. Use the
Report Model Wizard to generate the raw model. Refine the model by reviewing and making
changes to each entity and its fields.

Leverage denormalization techniques, such as entity inheritance, role expansion, and loo-
kup entities, to make your models more intuitive to end users. Define expressions that
represent useful business calculations. Consider display folders and perspectives to reduce the
perceived complexity of the model. Learn how to evolve your model in time to reflect schema
changes. Evaluate your reporting requirements carefully and know when to use Report Builder
1.0.

8.6 Resources
Select Report Model Generation Rules

(http://tinyurl.com/5qu3fy)—Explains the rules that the Report Model Wizard ap-
plies to generate the metadata from the data source.

Bob Meyers Blog
(http://blogs.msdn.com/bobmeyers/)—Tips and tricks from the Report Builder mas-
termind.

Object Role Modeling: An Overview
(http://tinyurl.com/2smdhn)—This paper discusses the Object Role Modeling
(ORM), a fact-oriented method for performing information analysis at the concep-
tual level.

Building Ad-hoc Reporting Solutions with SQL Server 2005 Report Builder and Analy-
sis Services OLAP whitepaper by Tian Ying He and Carolyn Chao

(http://tinyurl.com/273qzh)— This paper discusses how to integrate Report Builder
and Microsoft SQL Server 2005 Analysis Services UDM.

339

CChhaapptteerr 99

Authoring Ad Hoc Reports

9.1 Understanding Report Builder 1.0 Client 339
9.2 Designing Ad Hoc Reports 343
9.3 Advanced Ad Hoc Reporting 360

9.4 Securing Report Builder Models 372
9.5 Summary 377
9.6 Resources 377

In the previous chapter, we covered how to create and deploy report models. In this chapter,
we build on those skills by learning how to build ad hoc reports from these models. The Re-
port Builder 1.0 client is the premium tool for authoring reports that are based on a Report
Builder 1.0 report model. In this chapter, you will learn how to create table, matrix, and chart
ad hoc reporting views from the models you implemented in the previous chapter.

After walking through the steps required to author basic reports, this chapter teaches you
how to get the most from Report Builder 1.0 by covering advanced filtering, custom drill-
through reports, and how to use a report model as a data source for Report Designer reports.
Finally, you will polish your report management skills by understanding how to secure report
models.

9.1 Understanding Report Builder 1.0 Client
When the Report Builder 1.0 client was first introduced in SQL Server 2005, it had a well-
defined target audience—business users. In comparison, Microsoft envisioned the Report De-
signer as the tool of choice for developers and power users. As it turned out, there is no clear-
cut dividing line between these two user groups when it comes to report authoring. Develop-
ers would appreciate a more user-friendly interface that simplifies some of the groundwork
required for laying out a report, and business users would welcome the ability to create more
complex ad hoc reports outside of the Visual Studio environment.

In the long run, Report Builder 2.0, which I'll preview in chapter 10, is well positioned to
satisfy the requirements of both audiences. As it stands, however, Report Builder 2.0 leans
more towards the "developer" side and requires a report author to have a solid understanding
of the report authoring process even for creating simple ad hoc reports. Getting beyond these
barriers is where the Report Builder 1.0 client can help.

9.1.1 Understanding Features
The purpose of the Report Builder 1.0 client is to support end users who want to create simple
ad hoc reports, but without the learning curve that comes with adopting new business tools.
The intended audience for the Report Builder 1.0 client is a less technically savvy user who is
willing to trade advanced reporting features for the ability to produce simple reports quickly.
To keep the learning curve small, the Report Builder 1.0 client uses more built-in features

CHAPTER 9 340

such as templates and gives up some of the more powerful features that you find in the BIDS
Report Designer and Report Builder 2.0. For example, the Report Builder 1.0 client doesn't
support side-by-side or nested regions, list regions, page header and footers, page numbers,
and expression-based properties.

 Understanding the user interface
End users will undoubtedly find the Report Builder 1.0 client interface (see Figure 9.1) intui-
tive as it has a look and feel that is similar to Office products. For example, like PowerPoint,
Report Builder 1.0 client includes several panes and a work area for assembling items that you
drag and drop to the design surface. Report Builder 1.0 includes the Explorer pane used for
working with model metadata, an Entities pane that contains model items, and a Fields pane
that displays the fields that belong to the entity you select.

Figure 9.1 The Report Builder 1.0 client features an intuitive PowerPoint-like user interface.

Authoring a simple ad hoc report is a matter of dragging fields to the WYSIWYG (What You
See Is What You Get) design area. The Report Builder 1.0 client supports previewing, printing,
exporting, and publishing reports to the report server. The user can preview a report by press-
ing the Run Report button on the report toolbar. While in report preview mode, the user can
export a report to any of the supported export formats. Finally, the File menu lets you publish
the report definition to the server or save it to disk.

When the user runs the report, the Report Builder 1.0 client uploads the report definition
to the server on the fly by invoking the ReportExecutionService.LoadReportDefinition API fol-
lowed by a call to the ReportExecutionService.Render API. Therefore, a Report Builder 1.0
report is always processed and rendered on the server.

AUTHORING AD HOC REPORTS 341

 When to use Report Builder 1.0 client
So, when would you use the Report Builder 1.0 client as an end-user reporting tool? My short
answer is when you cannot use the forthcoming Report Builder 2.0. That said, considering
that in a long run Report Builder 2.0 will probably become the Microsoft premium tool for
both standard and ad hoc reporting outside Visual Studio, my advice will be to evaluate it first
and offer the Report Builder 1.0 client only if Report Builder 2.0 doesn't fit the bill. Specifical-
ly, I suggest you consider the Report Builder 1.0 client when the following conditions are true:
 Report Builder 2.0 is not an option—Less technically savvy users may find Report Builder

2.0 too complex and intimidating. For example, end users may not be willing to tinker
with parameters and query statements. Or, they may not have the patience to learn how
table groups work.

 The Report Builder Model meets your requirements—Please review chapter 8 for consid-
erations about when to use Report Builder 1.0 models. Again, the Report Builder 1.0
client requires a Report Builder model as a data source.

 Simple ad hoc reports—The Report Builder 1.0 client is a great tool for producing quick
and easy reports. More involved reports will require "graduating" to Report Builder 2.0
and more advanced report authoring skills.

Now that you know when to use the Report Builder 1.0 client, let's see how you can deploy it
to end users.

9.1.2 Deploying Report Builder 1.0 Client
When Report Builder 1.0 was still on the drawing board, the Reporting Services team debated
how to implement the Report Builder 1.0 client—as a thin web-based client or a rich Win-
dows Forms client. Finally, they settled on an approach that combines the best of both worlds.
To provide rich reporting experience, the Report Builder 1.0 client is implemented as a .NET
Windows Form application. To simplify setup, the Report Builder 1.0 client uses .NET Click-
Once technology for downloading and installing it on demand when a user requests its URL.

 About ClickOnce
The ClickOnce technology is baked into the .NET Framework. It lets developers create self-
updating Windows-based applications that can be installed and upgraded automatically. The
binaries of the ClickOnce-enabled application reside on the server, along with the application
and deployment manifest files that describe the deployment. For example, by default, the SQL
Server 2008 setup installs the Report Builder 1.0 client assemblies in the \Program
Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Services\ReportServer\Report-
Builder folder. With ClickOnce, the end user doesn't launch the application directly, such as
by double-clicking on the Report Builder 1.0 client executable. Instead, similar to opening
web-based applications, the end user requests a URL to the application manifest file that re-
sides on the server. The .NET Framework runtime on the client machine recognizes the file
extension and performs the initial ClickOnce deployment of the application by downloading
and executing the application on the user's desktop.

If the application binaries are updated on the server, ClickOnce detects the new version
when the user requests the application URL, downloads the new bits, and upgrades the client
copy automatically. No more building and shipping setup programs and patches to the end
user! If you want to learn more about ClickOnce, Duncan McCenzie's article "Introducing

CHAPTER 9 342

Client Application Deployment with ClickOnce" (see Resources) is a great start. Here is what
happens when the user starts the Report Builder 1.0 client.
 The user opens the Report Manager and clicks on the Report Builder button or directly

requests the Report Builder 1.0 client URL— http://<server>/ReportServer/ReportBuilder/-
ReportBuilder.application.

NOTE The above URL launches the Report Builder 1.0 client in full trust but under the permissions granted to the end
user. If the user has local administrator rights, the Report Builder 1.0 client will run with unrestricted access. As a precau-
tionary measure, ClickOnce will show a security prompt so the user can approve the application startup. In this release,
the Report Builder 1.0 client always runs in full trust.

 The SQL Server Report Builder 1.0 client requires the .NET Framework to be installed on
the user machine. If the .NET Framework is not installed, ClickOnce prompts the user to
download and install it. If the user clicks Yes, ClickOnce installs the .NET Framework.

 ClickOnce verifies whether the Report Builder 1.0 client is already installed and its version
matches the server version. If Report Builder 1.0 client is not installed, ClickOnce down-
loads and installs the Report Builder 1.0 client binaries in the ClickOnce local download
cache—\Users\<user>\AppData\Local\Apps\2.0\ Data (Vista) or \Documents and Set-
tings\<USER>\Local Settings\Apps\2.0\Data (Windows XP). In case of a version mismatch,
ClickOnce replaces the older version with the version used by the report server.

 ClickOnce launches the Report Builder 1.0 client from the ClickOnce download cache,
using the credentials of the interactive user.

 Understanding Report Builder 1.0 client parameters
When I first saw the Report Builder 1.0 client, I immediately tried to find a way to embed its
designer in a custom application so end users could design custom reports without leaving the
application. Unfortunately, this is not possible. The Report Builder 1.0 client is designed as a
monolithic Windows Forms application and it cannot be extended or programmatically con-
trolled. It provides only a limited startup control by supporting the input parameters listed in
Table 9.1.

Table 9.1 Report Builder 1.0 Client command-line parameters

Parameter Description Example

<reportpath> Loads an exist-
ing report

http://<servername>/reportserver/reportbuilder/reportbuilder.application?/AMRS/
<reportname>

model=<modelpath> Loads a model http://<servername>/reportserver/reportbuilder/reportbuilder.application?model=/AMRS/
Adventure Works

perspective=<perspectiveID> Loads a model
perspective

http://<servername>/reportserver/reportbuilder/reportbuilder.application?model=/AMRS/
Adventure Works&perspective=G801c203b-57ad-4126-a4bb-0626f5042664

Note the perspective parameter takes the perspective identifier and not the perspective name
as a parameter. To get the perspective identifier, in the Model Designer, select the perspective
and copy the (ID) property in the Properties window.

TIP Although unsupported, once initially installed, the Report Builder 1.0 client can be launched locally from the Click-
Once download cache, as follows: Reportbuilder.exe /s=http://<servername>/reportserver.The /s parameter specifies the
report server URL.

AUTHORING AD HOC REPORTS 343

9.2 Designing Ad Hoc Reports
Thanks to Report Builder’s intuitive interface, authoring an ad hoc report is simple as long as
the user is familiar with the model metadata. Therefore, make sure to document the report
model and walk users through it before they start using the Report Builder 1.0 client. Doing so
will minimize the trial-and-error routine that end users will be subjected to if they don't un-
derstand which entities and fields to use. Let's go through the steps required to author table,
matrix, and chart reports.

9.2.1 Authoring Table Reports
Suppose you are a sales manager at Adventure Works. You need a report that shows the per-
formance of each sales person for a given year broken down by sales territory. You will use the
Report Builder 1.0 client to create the Sales by Employee table report which is shown in Fig-
ure 9.2.

Figure 9.2 The Sales By Em-
ployee report shows sales by em-
ployee and territory for a given year.

This report demonstrates:
 Authoring ad hoc table reports
 Entity and value groups
 Entity navigation
 Sorting and filtering
 Prompted parameters

 Choosing a report model
Follow these steps to launch the Report Builder 1.0 client and select a model:

CHAPTER 9 344

1. Open Report Manager and click the Report Builder button or type in the Report Builder URL
directly in the browser. If you don’t see the button, verify you have a system user role assign-
ment that includes the Execute report definitions task. The ClickOnce deployment technology
verifies if the Report Builder 1.0 client is installed locally and downloads it if needed. Next,
ClickOnce launches the Report Builder 1.0 client.

2. The Report Builder 1.0 client queries the server and loads all available report models in the
Select a Source of Data for Your Report list in the Getting Started pane, as shown in Figure
9.3. Check the Show Path checkbox to show the full report catalog path to the folder where
the model is deployed. This will help you identify a model in case the list shows models with
the same name.

Figure 9.3 Use the Get-
ting Started pane to choose
a report model and layout.

3. Select the /AMRS/Adventure Works model you created in the previous chapter. Observe that
the model perspectives are shown below the model. The end user can select a perspective if
they prefer to work with a subset of the model. The Open section includes links that let you
open an existing report definition from the report server or a physical file.

The Report Builder 1.0 client supports three predefined report layouts: Table (columnar), Ma-
trix (cross-tab), and Chart. The Report Builder 1.0 client includes report templates for each
layout type. Once the Report Builder 1.0 client generates the report template, you cannot
change its layout. In addition, you can have only one report layout (region) on the report be-
cause the Report Builder 1.0 client doesn't support side-by-side regions.

4. Leave the Table (columnar) option selected and click OK.

AUTHORING AD HOC REPORTS 345

The Report Builder 1.0 client downloads the Adventure Works report model by calling the
GetUserModel API and shows its metadata in the Explorer pane. The metadata should look
familiar to you because it contains the entities and fields you created in the preceding chapter.
The Explorer pane supports a few more features you may find useful. The Search button lets
you search a model item and quickly navigate to it. When you click the Advanced Mode but-
ton, the Report Builder 1.0 client displays additional items that are not normally shown, in-
cluding reverse roles, lookup entities, and indirect inheritance roles.
 A reverse role is a role that points back to the same entity. For example, in advanced

mode, the Report Builder 1.0 client will show below the Customer entity the Sales Orders
role that points back to the Customer entity.

 Recall from the previous chapter that a lookup entity corresponds to a "lookup" table. By
default, the Report Builder 1.0 client doesn't show lookup entities. However, in advanced
mode, lookup entities, such as Product Category and Product Subcategories, are shown in
the Entities pane.

 Indirect inheritance roles points to entities that inherit from the direct ancestors of the
selected entity but are not a direct ancestor of the current entity. For example, although
the Store and Individual entities do not have role relationships with each other, they are
indirectly related because they both inherit from the Customer entity. As a result, in ad-
vanced mode, the user will see an "As Individual" role below the Store entity that lets the
user navigate to the Individual-related fields.

 Understanding entity and value groups
To lay out a report, you can drag both entities and fields to the design area. However, the type
of the item you select determines how data will be grouped on the report. An entity group
groups the report data for each instance of the entity. By contrast, if you select an individual
field, the Report Builder 1.0 client creates a value group for each distinct value of that field.
Don't worry if this is not immediately clear, as the examples that follow will clarify the differ-
ence between entity and value groups.

1. Select the Sales Person entity in the Entities pane. Observe that due to its inheritance relation-
ship to the Employee entity, the Fields entity shows both the Sales Person and Employee
fields. Select the First Name field and drag it to the table region in the design area.

2. Do the same with the Last Name field. Note that the Report Builder 1.0 client changes the field
font of these fields to bold in the Fields pane to indicate that they are used on the report.

Figure 9.4 Adding an indi-
vidual field to the design area
creates a value group.

At this point, your report layout should match the one shown in Figure 9.4. The blue text
boxes that show the field names represent report column headers. The text boxes with white
background below them represent the field values. The default field width is determined by
the Width property of the field in the model.

3. Click on any of fields inside the table region.

CHAPTER 9 346

The Report Builder 1.0 client displays tabs above each field. A tab represents a report group.
As it stands, the report will group data first on the employee's First Name and then on the
employee's Last Name. However, what we want is to group data by each employee and not by
the individual fields. To do so, we need an entity group instead of value groups.

4. Select the Edit Undo menu (Ctrl-Z) to clear the design area. Alternatively, right-click the
First Name tab and choose Delete, then do the same with the Last Name field.

5. Select the Sales Person entity in the Entities pane and drag it to the table region or just double-
click on Sales Person.

Figure 9.5 Drag an
entity to table region to
create an entity group.

Notice that the Report Builder 1.0 client adds the National ID Number, First Name, and Last
Name fields (see Figure 9.5) on the report because they are included in the entity's DefaultDe-
tailAttributes collection. More importantly, note that the all fields share the same Sales Person
tab. As a result, the Report Builder 1.0 client will group report data per sales person.

6. We don't need the National ID Number field on the report. Right-click on the National ID
Number column header and choose Delete.

NOTE In case you wonder what the little triangle glyph on the left corner of the table region does, it is a fixed column
marker. You can drag it between any two columns of a table report. The column marker is useful when if you have
more columns than what will fit on a page, and you want to “lock” the columns that are on the left to keep them from
scrolling off the page while you are looking at data in the other columns. If you want to test this feature, resize your
columns so that they exceed the page width and run the report.

If you want to add more fields from the Sales Person entity on the report, drag them onto the
table region or double-click each field. If you want to add more than one field at the same
time, select the fields in the Fields pane while holding the Ctrl key (or Shift key for extended
selection), and drag them to the table region.

AUTHORING AD HOC REPORTS 347

 Understanding entity navigation
When you add the first field to the report, the Report Builder 1.0 client promotes its entity to
a primary (root) report entity. Because we added fields from Sales Person, the Sales Person
entity becomes the primary entity. In other words, the Sales Person entity becomes the focus
of the report. As a result, the Report Builder 1.0 client collapses the Entities list and makes the
Sales Person entity the top node in the entity tree (see again Figure 9.5). In addition, the Re-
port Builder 1.0 client displays only those entities to which the Sales Entity is related via roles
in the model.

This feature may take you by surprise, especially if you have experience with OLAP
browsers whose metadata list is always static. So, what's going on here? Recall that the Report
Builder 1.0 client assumes no knowledge of the underlying database schema. If the entity list
is static, there is nothing stopping the user from using unrelated entities on the report. Readers
familiar with SQL know that querying two unrelated tables results in a Cartesian join that re-
turns all the rows in the two tables where each row in the first table is paired with all rows in
the second table. To avoid this, the Report Builder 1.0 client guides the user to select related
entities only. For example, glancing at the Entities pane, we can see that the Sales Person enti-
ty is related to the Individual, Manager, Store, and other entities.

1. Since our report requires grouping sales people by territory, select the Territory role below the
Sales Person entity. The Fields pane shows the fields of the Territory entity.

2. Drag the Group field of the Territory entity and drop it before the First Name column on the
report. As you drag it, the Report Builder 1.0 client will show a blue vertical line between col-
umns to indicate that you can drop the field there.

Figure 9.6 Adding
the Group field of the
Territory entity results
in a new value group.

3. Select any field on the report. Note that the Report Builder 1.0 client has created a value group

for the Group entity, as shown in Figure 9.6. As a result, the report will group data first by
territory and then by sales person.

Next, we need the order quantity field of the Sales Order Item entity. This is where things get
interesting. We need to use the Sales Orders role to get to the Sales Order Item entity. But
should we select the Sales Orders role of the Sales Person entity or should we select the one
below the Territory entity? As it turns out, each choice produces very different results. If we
choose the Sales Orders role of the Sales Person entity we will get the sales orders that are as-
sociated with a given sales person; that is sales orders submitted by that sales person. That's

CHAPTER 9 348

because we follow the direct relationship between the SalesPerson and SalesOrderHeader table
in the AdventureWorks database. In this respect, the Sales Person's roles represent more than
related entities. They point to specific entity instances that are associated with the root entity.

By contrast, if we choose the Sales Order role of the Territory entity, we follow the Sales-
Person Territory Sales Orders navigational path in the model. The business question
we're asking is "Show me all sales orders that have the same territory as the territory for which
a given sales person is responsible." Note that in this case the report may return orders that are
not directly associated with the sales person. For example, if Jae Pack is responsible for sales in
Europe, we will get not only his orders but also those orders by other sales people who over-
see Europe, as well as orders from Europe that are not associated with any sales person. In our
case, to get the total order quantity by sales person, we need to go via the Sales Person's Sales
Orders role.

4. Select the Sales Orders role of the Sales Person entity and then select the Sales Order Details
role below it to get to the Sales Order Item fields.

5. Note that there isn't an Order Qty field in the Fields pane. Instead, there is a Total Order Qty
field. Total Order Qty appears because it is set up as a default aggregate of the Order Qty field
in the model. As a result, using Total Order Qty on the report will sum the order quantity for
each report group. Drag the Total Order Qty field and drop it next to the Last Name column
in the design area.

6. Rename the Total Order Qty text in the column header in-place to Order Qty. Position the
mouse cursor on the right border of the Order Qty column so it turns into a resize cursor, and
drag the border to increase the column width a bit.

7. Repeat the last two steps to add the Total Line Total field to the report and rename it to Sales.
8. Add a title. The Report Builder templates include pre-defined text boxes for the report title,

number of rows returned, and the report filter. Click inside the Click to Add Title text box
and enter Sales by Employee.

At this point, you report layout should look like the one shown in Figure 9.7.

 Defining group totals and sorting
Let's preview the report to test it:

Figure 9.7 The
Sales by Employee
report in design
mode after adding
the Order Qty and
Sales columns.

AUTHORING AD HOC REPORTS 349

1. Click the Run Report button. Behind the scenes, the Report Builder 1.0 client invokes the
ReportExecutionService.LoadReportDefinition API to upload the report definition to the server
on the fly. Next, it calls the ReportExecutionService.Render API to render the ad hoc report.

Similar to running a report in the Report Manager, the Report Builder 1.0 client generates a
standard report toolbar. The standard toolbar lets you page through the report, print, zoom,
search, and export the report to any of the predefined export formats. Since this toolbar is
identical to the Report Designer toolbar, I will let you explore it on your own.

2. Note that the report doesn't have group totals and it is not sorted in a descending order by the
Sales field. Click the Design Report button to go back to design mode. Click on any field on
the report to show the report group tabs.

3. Right-click on the Group tab and select the Show Group Subtotals option. Note that a total
line is added to the report for the Group field.

4. Right-click on the Sales Person tab and select the Show Group Subtotals option to add a group
total for the Sales Person group.

5. Run the report. To change the report sorting order, click the Sort and Group button, which is
available in both design and preview modes.

6. In the Sort dialog box, note that you can define three-levels of sorting for each report group.
Select the Sales Person entity. Expand the first Sort By drop-down list and select Sales, as
shown in Figure 9.8.

7. Run the report to test the changes.

The Report Builder 1.0 client also supports interactive sorting at run time. Each column head-
er has an up-down indicator that lets the user sort the report in ascending or descending order
within the containing group. Interactive sorting can be disabled by selecting the Report
Report Properties menu and turning off the Allow Users to Sort the Report Data When They
View It checkbox.

Figure 9.8 Use the Sort
dialog box to sort the report in
descending order by Sales.

CHAPTER 9 350

 Formatting fields
Note that the Order Qty field doesn't have a thousands separator and the Sales field has two
decimal places.

1. In design mode, hold the Shift key to select the three fields below the Order Qty column
header.

2. Right-click on the selection and choose Format.
3. In the Number tab of the Format dialog box, select the format 1234.56. Change the Decimal

Places up-down field to 0 and check the Use 1000 Separator checkbox. Click OK.

TIP You can define custom format settings. To do so, select the Custom Format option and enter the custom format
string, such as $#,##0.00;($#,##0.00);Zero. For more information about the .NET rules for custom format strings, see
the Custom Numeric Format Strings and Custom DateTime Format Strings topics in the Format Types section of the
Visual Studio.NET documentation (see Resources).

4. Select the three fields below the Sales column and format them as currency with no decimal
places.

5. Select all fields in the Sales Person's Total line and click the B button in the Formatting toolbar
to format them in a bold font style. Repeat the same for the Group's Total line.

6. Select the Order Qty and Sales column headers and click the Right Justify button in the For-
matting toolbar to align them on the right.

 Filtering reports
As it stands, the Sales by Employee report shows data for all years. Let's filter the report by
year.

1. In either design or preview modes, click the Filter button in the Report toolbar to open the
familiar Filter Data dialog box.

The end user can filter the report on the root entity itself or on any entity related to the prima-
ry report entity.

2. Double-click the Sales Order entity. Note that a Sales Order In This List condition is added to
the right pane. Clicking on the (No Values Selected) link brings you to the Filter List dialog
that lets you find a sales order by a sales order number. That's because we set the InstanceSe-
lection property of the Sales Order entity to MandatoryFilter in the model.

3. Right-click on the Sales Order item in the right pane and choose Remove Condition to clear
the filter.

Thanks to the date variations that the Report Model Wizard has defined for us when we
created the model, we can conveniently filter by the order year.

4. Expand the Order Date field and double-click on the Order Year to add it to the report filter.
5. By default, the filter condition is Equals. Right-click on the Equals link and note that the Re-

port Builder 1.0 client supports other common filter criteria, such as Greater Than, Less Than,
and so on.

NOTE The In a List condition is very useful since it shows a multivalued list of the field’s distinct values if the field's
ValueSelection is set to Dropdown. However, since we left the Order Year ValueSelection property set to its default
value of None, selecting this option doesn't show a populated list. Instead, if you need to filter on multiple values, you
must enter the values manually. You can press Enter to go to the next line to enter the next value.

AUTHORING AD HOC REPORTS 351

6. To use a default value of 2004, which is the last year with data in the AdventureWorks data-
base, enter 2004 in the text box next to the Equals link. If you run the report at this time, it
will show data for the year 2004 only. Users cannot overwrite the year at run time.

7. To promote the Order Year to a prompted parameter, right-click on Order Year and choose
the Prompt context menu. A green question mark appears to the left of Order Year to denote
that the filter is now a report parameter, as shown in Figure 9.9.

8. Click OK to return to the report. Note that the Filter text box below the table region shows a
restatement of the report filter: Sales Order Headers with: Order Year = (prompted). If you run
the report now it should look similar to the one shown in Figure 9.2.

You can reposition the report items by dragging them to a new location. When you do this,
the Report Builder 1.0 client snaps the item to the design area grid. You can change the grid
settings in the report properties (File Page Setup menu).

 Generating drillthrough reports
As noted before, a unique Report Builder 1.0 feature is generating drillthrough reports on the
fly.

1. Run the Sales by Employee report.
2. Hover on top of any of the Order Qty or Sales numbers. Note that the mouse cursor changes

to a hand cursor to indicate the item is clickable.
3. Click on a number. Because you clicked on an aggregated value, Report Builder 1.0 generates

a multi-instance drillthrough report that shows the individual sales order items contributing to
that value. The report shows only the Line Number, Career Tracking Number, Order Qty, and
Line Total fields of the Sales Order Item entity because its DefaultDetailAttributes collection
includes these fields.

4. Click any of the carrier tracking numbers in the drillthrough report. Since you clicked on a
single instance of the Sales Order Item entity, Report Builder 1.0 generates a single-instance
report. Unlike a multi-instance report, which shows only the fields in the DefaultDetailAttri-
butes collection, a single-instance report includes all non-hidden fields of the target entity.

5. Hover on top of any of the Line Number fields. Note the cursor doesn't change and you can-
not drill through the line number. That's because the EnableDrillthrough property of the Line
Number field is set to False in the model. Changing EnableDrillthrough to True will make the
field clickable.

6. Click the back arrow on the report toolbar to go back to the main report.

Figure 9.9 Define an
Order Year prompt para-
meter that filters the report
by year.

CHAPTER 9 352

As long as the EnableDrillthrough field property is set to True and there is a navigational path
in the model, the end user can generate single and multi-instance drillthrough reports by drill-
ing through the field and navigating to another entity. This feature is called infinite drillthrough.

 Saving reports
The Report Builder 1.0 client lets you save the report to the report catalog or a physical file.

1. Select File Save menu. Alternatively, click the Save toolbar button or press Ctrl-S. Since the
report hasn't been saved yet, the Report Builder 1.0 client displays the Save As Report dialog
box, as shown in Figure 9.10.

Figure 9.10 You can publish
the finished report to the server
to share it with other users.

By default, the Report Builder 1.0 client lets you save the report to the report server where you
launched the Report Builder 1.0 client from. You can choose a different server by changing the
Look In drop-down list. The Report Builder 1.0 client shows only the folders to which you
have write permissions.

2. Assuming that My Reports is enabled in the Report Manager Site Settings, double-click the My
Reports folder. This will save the report to your private My Reports folder. If you want to
share the reports with other users, save the report to a shared folder. You can open a report
that was saved to the report catalog, by selecting the File Open menu or pressing Ctrl-O.

3. Enter Sales By Employee.rdl in the Name field and click Save.

4. To save the report to disk, select File Save to File menu. To open the report definition file
later on, choose File Open from File menu.

9.2.2 Authoring Matrix Reports
Recall from chapter 3 that a matrix (crosstab) report is a table report with dynamic columns.
At run time, the report expands horizontally to accommodate the actual data. Let's author a
matrix report that displays sales by territory on rows and years on columns. Figure 9.11 shows
the Sales by Territory report that demonstrates the following features:
 Value groups
 Images
 Relative date parameters

AUTHORING AD HOC REPORTS 353

 Multivalued parameters

Figure 9.11 The
Sales by Territory
report demonstrates
matrix reports.

 Designing the Sales by Territory report
Follow these steps to create a matrix report.

1. Launch the Report Builder 1.0 client. In the Getting Started pane, select the Adventure Works
model and choose the Matrix (cross-tab) report layout. Click OK.

2. The Report Builder 1.0 client loads the Adventure Works model and adds an empty matrix
region to the design area, as shown in Figure 9.12.

Recall that dragging the Sales Territory entity to the report creates an entity group that has a
grand total for the entire group. Since our report includes group totals at territory group,
country, and region levels, we need value groups for each of these fields.

3. Select the Sales Territory entity in the Entities pane and drag its Group field to the Drag and
Drop Row Groups area of the matrix region. This creates a value group for the Group field.

4. Drag the Country attribute and drop it to the right of the Group field on the report.
5. Drag the Region attribute and drop it to the right of the Country field on the report. Rename

the Region column caption to Region.

At this point, your report layout should look like the one shown in Figure 9.13. Each of the
three fields should have a tab and total line.

Figure 9.12 The Report
Builder default matrix template.

CHAPTER 9 354

6. In the Entities pane, select the Sales Orders role of the Sales Territory entity to navigate to the
Sales Order entity.

7. Expand the Order Date field in the Fields pane and drag the Order Year field to the Drag and
Drop Column Groups area of the matrix region. This creates an Order Year column group.
Rename the Order Year column caption in-place to Year.

8. In the Entities pane, select the Sales Order Details role to navigate to the Sales Order Item
entity.

9. Drag and Total Order Qty field to the Drag and Drop Totals area to create a matrix static
group.

10. Click any of the Total cells to show the Total Order Qty tab, as shown in Figure 9.14.

11. Drag the Total Line Total field and drop it on the Total Order Qty tab to create a second ma-
trix static group.

12. Rename the Total Order Qty caption in-place to Order Qty and Total Line Total to Sales.
13. Right-align all column captions below the Year column by selecting them and clicking the

Right Justify button on the Standard toolbar.
14. Format the total cells below the Total column header as bold.
15. Format the cells in the two Order Qty columns as a general number with a thousands separa-

tor and no decimal places.
16. Format the cells in the two Sales columns as currency with no decimal places.
17. Since a matrix report expands horizontally and needs more horizontal space, change the page

layout to landscape from the File Page Setup main menu.

At this point, you can run the report to verify that its layout matches the one in Figure 9.11.

 Working with images
If needed, you can add images such as company logos to your ad hoc reports.

Figure 9.13 The Group,
Country, and Region fields
form value row groups.

Figure 9.14 Click a total
cell in the matrix report to
show the group tab.

AUTHORING AD HOC REPORTS 355

1. Click inside the Click To Add Title text box and enter Sales by Territory as a report title. Select
the report title and move it to the right.

2. Select Insert Picture main menu and navigate to the ch09 folder. Select the awc.jpg image
and click Open.

3. Resize the image and move it to the desired location on the report.

You can also use commands on the Insert menu to add text boxes with static text.

 Implementing relative date parameters
As it stands, our matrix report aggregates all data. Let's define a parameter to let the user filter
the report by a relative date, such as the last five years.

1. Click the Filter button to open the Filter Data dialog box.
2. Ensure that the Sales Order entity is selected in the Entities pane. Relative dates work only

with the date fields in the model and not with their date variations. Double-click the Order
Date field to add it to the right filter pane.

Figure 9.16 When you change
the filter condition to In This List, the
Report Builder 1.0 client creates a
multivalued parameter.

3. Right-click on the Equals condition and select Relative Dates Last(n) Years context
menu, as shown in Figure 9.16. The filter conditions changes to In Last.

4. Default the filter to five years because the last year with data in the AdventureWorks database
is 2004.

5. Make the Order Date parameter a prompt parameter by right-clicking on Order Date and
choosing Prompt.

 Implementing multivalued parameters
The final change that you will make to the Sales by Territory report is defining a multivalued
parameter to filter the report data by one or more territories.

1. With the Filter Date dialog open, select the Territory role to navigate to the Sales Territory
entity and double-click on the Group field to add it to the filter area.

Figure 9.15 The Report
Builder 1.0 client sup-
ports relative date filters.

CHAPTER 9 356

Because you set the ValueSelection property of the Group field to Dropdown, the Report
Builder 1.0 client shows a drop-down list next to the Equals condition. As a result, you can
select a single territory group only. If you select the In This List filter condition, the Report
Builder 1.0 client creates a multivalued parameter. The Report Builder 1.0 client populates the
list with the distinct field values.

2. Right-click on the Equals filter condition and replace it with the In a List condition. Click the
(on values selected) link and notice that the Report Builder 1.0 client presents a multivalued
list.

3. Check North America to set the default value in the filter to this territory.
4. Set up the Group parameter as a prompt parameter.

Run the report to test your changes. Optionally, save the report to the report catalog or as a
file.

9.2.3 Designing Chart Reports
The Report Builder 1.0 client also supports simple chart reports based on the Reporting Ser-
vices 2005 chart region. Suppose that you need to create a line chart report that shows sales
by territory and time, similar to the Sales by Territory Chart report shown in Figure 9.17. This
report displays the order sales amount on the y-axis and sales regions grouped by a territory
group on the x-axis. As the legend shows, the four chart lines represent sales for years 2001,
2002, 2003, and 2004.

Figure 9.17 The Sales by
Territory Chart report
shows territory group and
region on the category axis,
order year on the series
axis, and order sales
amount on the value axis.

AUTHORING AD HOC REPORTS 357

 Designing the Sales by Territory Chart report
Follow these steps to create the report:

1. Assuming the Report Builder 1.0 client is open, click the New toolbar button to create a new
report. Make sure the Adventure Works model is selected in the Getting Started pane.

2. Select the Chart report layout and click OK. The Report Builder 1.0 client adds an empty chart
region to the design area.

3. Click the chart region. The Report Builder 1.0 client shows adornment areas around the chart
region (see Figure 9.18) where you can drop fields to bind the chart to data.

4. Select the Group and Region fields of the Sales Territory entity and drop them on the Drag
and Drop Category Fields adornment area.

5. In the Entities pane, select the Sales Orders role to navigate to the Sales Order entity.
6. In the Fields pane, expand the Order Date field and drag Order Year to the Drag and Drop

Series Fields adornment area.

7. In the Entities pane, select the Sales Order Details role to navigate to the Sales Order Item
entity.

8. Drag the Total Line Total field to the Drag and Drop Data Value Fields adornment area.

Figure 9.18 The chart region has
adornment areas where the user can drop
data value, category and series fields.

Figure 9.19 The Sales by
Territory chart report has a
category axis, data value axis,
series axis, and a legend.

CHAPTER 9 358

9. Right-click on the chart area and select Chart Type Line Simple Line from the context
menu to change the chart type to a line chart. Compare your report to the one shown in Fig-
ure 9.19.

10. Preview the report to test it.

 Refining the report
As it stands, the report is somewhat crowded. Let's make a few changes to improve its appear-
ance.

1. Go back to design mode, right-click on the chart, and choose Chart Options.
2. In the Chart Options dialog, on the Chart Type tab, change the Palette property to Pastel.
3. Click the Format Plot Area button. In the Format dialog box, switch to the Fill tab and change

the fill color to White. Click OK to return to the Chart Options tab.
4. In the Titles tab, clear the Chart Title text box to remove the chart title to free up more space.
5. In the Legend tab, change the Position property to Bottom Left. Click OK to close the Chart

Options dialog box.
6. Enter Sales by Territory Chart as a report title.
7. Change the page layout to Landscape and enlarge the chart both horizontally and vertically by

dragging its border handles.
8. Optionally, click the Filter button and create a Group prompt filter as you did in section

9.2.2.

Run the report now and compare its output to the one shown in Figure 9.17.

9.2.4 Authoring OLAP Reports
In chapter 8, you auto-generated the Adventure Works UDM model from the Adventure
Works cube. Let's author a matrix report that uses this model. Although very basic, the Resel-
ler Sales by Product Category report (see Figure 9.20) demonstrates some of the pros and cons
for integrating Report Builder 1.0 with Analysis Services, which I discussed in chapter 8.

 Implementing the report
The Reseller Sales by Product Category report is very similar to the Sales by Territory report
both in terms of layout and implementation, so I will gloss over its implementation steps.

1. Assuming the Report Builder 1.0 client is open, click the New toolbar button to create a new
report.

2. When you use an Analysis Services cube-based report model, you must choose a perspective.
Select the Adventure Works perspective of the Adventure Works UDM model.

3. Select the Matrix layout and click OK to create the report template.

Although the Entities pane lists more entities than the Adventure Works model, you should be
able to recognize many of them.

4. Select the Product entity. Drag the Category field and drop it on the Drag and Drop Row
Groups area of the matrix region. Drag the Subcategory field and drop it next to the Category
column on the report.

AUTHORING AD HOC REPORTS 359

Figure 9.20 The Reseller
Sales by Product Catego-
ry report uses an Analysis
Services 2005 cube as a
data source.

As soon as you drag the first field, the Report Builder 1.0 client collapses the Entities pane to
show only those roles directly related to the Product dimension in the cube. This behavior is
very different from OLAP browsers, such as Microsoft Excel, which display a static list. Al-
though very helpful with relational data sources, the Report Builder 1.0 entity navigation is
confusing with cubes and can quickly get us into trouble, as you will see in a moment.

5. Expand the Reseller Sales Order Details to navigate to the Reseller Sales measure group.
6. Drag the Reseller Sales Amount field to the Drag and Drop Totals area. Rename its column

header to Sales.
7. Select the Date role below Reseller Sales Order Details and then select the Calendar folder.

Drag the Calendar Year field to the Drag and Drop Column Groups matrix area. Rename the
column header to Calendar Year.

8. Enter Reseller Sales by Product Category as a report title and compare your report with the
one shown in Figure 9.21.

Figure 9.21 The Resel-
ler Sales by Product Cat-
egory report in the works.

CHAPTER 9 360

So far, so good. If you run the report at this point, it should look similar to the one shown in
Figure 9.20. More importantly, due to OLAP’s efficiency, the report should render almost in-
stantaneously. The improvement in the report response time may not be that obvious with a
modest database such as AdventureWorks. However, given larger data volumes, an Analysis
Services UDM model will outperform a report model that queries a relational database con-
taining the same data. Performance is the most important reason for choosing Analysis Servic-
es and its Unified Dimensional Model.

Now, the bad news. Cubes typically have more than one measure group. For example, the
Adventure Works cube has Internet Sales and Reseller Sales measure groups. Both measures
groups join the Product and Date dimensions. Suppose the end user would like to see the In-
ternet Sales side-by-side with the reseller sales on this report. To do this, the user needs to
navigate to the Internet Sales entity. Unfortunately, the Report Builder 1.0 client has set the
Reseller Sales Order Details as a root entity.

So, we embark on a quest to find Reseller Sales. Even if you find a navigational path that
leads to it, setting up a filter, such as a date filter, will result in an unhappy outcome, also
known as a run time exception. That’s because Report Builder 1.0 treats the cube measure
groups as separate entities and it doesn't recognize that both measure groups need be sliced by
the same filter. There are, of course, other rifts waiting for you ahead, such as poor perfor-
mance with larger cubes. By now, you probably appreciate my suggestion to re-consider the
Report Builder 1.0-Analysis Services integration scenario.

9.3 Advanced Ad Hoc Reporting
Now that I've covered the basic features of the Report Builder 1.0 client, let me kick it up a
notch and demonstrate some of its more advanced features. In this section, you will learn how
to implement more complex filters and formulas, custom drillthrough reports, and how to use
a Report Builder model as a data source for a Report Designer report.

9.3.1 Working with Filters and Formulas
One of my favorite Report Builder 1.0 client features is its advanced filtering capabilities. Sup-
pose that the Adventure Works sales department is planning a mailing campaign to promote a
new bike to targeted customers. They have requested a report that lists individuals who have
purchased a mountain bike in 2003 or a road bike in 2004, have spent more than a user-
specified value on bike products, and live in a given territory. The Customer Campaign List
report (see Figure 9.22) fulfills this requirement.

The report lets the user filter customers by one or more countries. The user can enter the
targeted total order amount as a report parameter. In this case, the report will return custom-
ers whose order amount exceeded $8,000.

 Implementing the basic report
The steps required to lay out the Customer Campaign List should be familiar to you by now.

1. Launch the Report Builder 1.0 client and choose the Adventure Works report model and a
table report layout.

AUTHORING AD HOC REPORTS 361

2. Drag the Customer entity from the Entities pane and drop it on the table region.
3. Remove the Customer Type field but leave the Account Number field to preserve the entity

group.
4. Add the First Name, Last Name, and Email Address fields from the Customer entity.
5. Remove the Account Number column from the report.
6. In the Entities pane, select the Sales Orders role and then the Sales Order Details role to navi-

gate to the Sales Order Item entity.
7. Add the Total Order Qty and Total Line Total fields to the report. Rename their column cap-

tions to Order Qty and Sales respectively.
8. In the Entities pane, select the Territory role to navigate to the Sales Territory entity and add

the Group field on the report before the First Name column. This creates a new value group
that groups customers by territory.

9. Format the report as needed. At this point your report layout should match the one shown in
Figure 9.23.

10. Enter Customer Campaign List as a report title in the Click to Add Title text box.
11. Attempt to run the report. The Report Builder 1.0 client displays an error message: "A filter

must be specified." That's because the report uses the Customer entity whose InstanceSelec-

Figure 9.22 This report shows individual customers who have purchased a mountain bike in 2003
or a road bike in 2004 and whose order amount exceeds a given value .

Figure 9.23 The Cus-
tomer Campaign List
report groups customers
by territory group.

CHAPTER 9 362

tion property is set to MandatoryFilter in the model. This means that the user must set up a
filter on the Customer Entity before running the report.

 Implementing the report filter
The Customer Campaign List report requires a fairly advanced filter. Previously, when setting
up report filters we didn't pay much attention to a little but rather important (and verbose)
checkbox located at the bottom of the Filter Data dialog box called When Adding a New Con-
dition, Apply to All Data in My Report checkbox. When left to its default checked status, it
propagates the report filter from the root entity to entities that are in one-to-many relation-
ships with the root entity. In other words, it applies the filter not only to the report rows, but
the totals as well.

For example, if you filter the Customer Campaign List to return sales orders for 2004, the
Report Builder 1.0 client will switch the primary report entity to the Sales Order entity. Sub-
sequently, only customers with orders in 2004 will be displayed and the Sales column will
display the total sales amount for these orders. This is most likely what the user would expect
anyway and it is consistent with the filtering behavior of other reporting tools, such as Excel
pivot reports.

If you uncheck the checkbox before setting up the filter, the Report Builder 1.0 client will
attempt to preserve the totals and apply the filter conditions to the report rows only. Assum-
ing the same scenario, this means that the Customer entity will remain the primary entity and
a filter group Any Orders with Order Year = 2004 will be created instead. As before, only cus-
tomers with sales orders in 2004 will be returned. However, the sales amount will not be af-
fected by the filter as it will show the cumulative totals for all orders submitted by the
customer, not only the 2004 orders. So, clearing the checkbox lets you separate the report row
filter from the filter used for the report totals.

1. Click the Filter button to open the Filter Data dialog box.
2. This is the most important step. Clear the When Adding a New Condition checkbox.
3. In the Entities pane, select the Territory role and double-click the Country field to add it to

the filter. Change its filter condition to In a List and pre-select all countries. Make the Country
filter a prompted parameter.

4. In the Entities pane, click the root Customer entity. Double-click the Customer Type field to
add it to the filter. Expand the drop-down list and select the "I" item to filter only individual
customers.

5. In the Entities pane, select the Sales Orders role. In the Fields pane, expand Order Date and
double-click the Order Year date variation field.

Since the Customer entity has a one-to-many cardinality to the Sales Order entity, Report
Builder 1.0 client creates a new Any Of filter group.

6. Enter 2003 in the Order Year text box.
7. In the Entities pane, select the Sales Order Details role below the Sales Order entity and then

the Product role below Sales Order Details to get to the Product entity.
8. Drag the Product Subcategory Name field inside the Any Sales Orders group and set the de-

fault to Mountain Bikes.

Compare your filter with the one shown in Figure 9.24. Click the Any Sales Orders With link
and observe that the Report Builder 1.0 client supports also All Sales Orders With, No Sales

AUTHORING AD HOC REPORTS 363

Orders With, and Not All Sales Orders With group types. You can also manually create a filter
group by using the New Group button.

9. Expand the New Group drop-down list and select Any Of to create a new Any of group.
10. Drag the Order Year date variation of the Order Date field inside the new group and set it to

2004.
11. Drag and Product Subcategory Name field of the Product entity inside the new group and set

it to Road Bikes.
12. Click the and filter condition between the two Any Of groups and change it to an or condition.

Click OK to return to close the Filter Data dialog.

What you've accomplished up to this point is to create a filter that selects all individual cus-
tomers in all countries who have placed Mountain Bikes orders in 2003 or Road Bikes orders
in 2004. The filter text box should show the following filter restatement:
Filter: Customers with: All of (Country in (prompted), Customer Type = "I",
Any of (Any Sales Orders with All of (Order Year = 2003,
Any Product with Product Subcategory = Mountain Bikes),
Any Sales Orders with All of (Order Year = 2004, Any Product with Product Subcategory = Road Bikes)))

 Filtering on totals
Recall that our report needs to filter on totals to return only customers with bike sales exceed-
ing a given amount. You may think you can use the Filter Dialog again to filter on the sales
order total but this won't work. If the When Adding a New Condition checkbox is selected,

Figure 9.24 If the When Adding a New Condition checkbox is unchecked, the Report Builder 1.0
client will create an Any Of group that doesn't affect the report totals.

CHAPTER 9 364

attempting to filter on Sales Order Details will change the primary entity to the Sales Order
Item. As a result, Report Builder 1.0 will apply the filter to the individual sales orders.

Assuming that the user enters 8,000 as the parameter value, the Report Builder 1.0 will at-
tempt to find sales order line items whose value exceeds $8,000. Since no Adventure Works
customers have spent that much on a single sales order, the report will return no data. Turn-
ing off the When Adding a New Condition checkbox won't help either because it won't apply
the filter to the report totals. What we really need is a way to apply the filter to the Sales field
on the report.

1. In the report design area, right-click on the Sales field that is immediately below the Sales
column header, and choose Edit Formula.

2. In the Define Formula dialog box, double-click the Total Line Total field.
3. Click the No Filter Applied link next to the Sales Order Details role and choose Create a New

Filter, as Figure 9.25 shows. This opens an empty Filter Data dialog box.

4. In the Filter Data dialog box, select the Product role and double-click the Product Category
Name field to add it to the report.

5. Set the Product Category Name drop-down list to Bikes and click OK to close the Filter Data
dialog box (see Figure 9.26). This filters the Sales field to include only orders for products in
the Bikes category.

6. Check the Save This Formula as a New Customer Field checkbox and click OK.
7. When prompted, enter Order Amount as the field name.
8. Back to the design area, select the Customer entity in the Entities Pane and note that the Re-

port Builder 1.0 client has added the Order Amount field to the Fields list.
9. Click the Filter button to open the main filter.

10. Double-click the Order Amount field of the Customer entity to create a new and group.
11. Change the Order Amount filter condition to Greater Than and default it to 8000. Configure

the Order Amount filter as a prompt and click OK.

Figure 9.25 Create a
field-level filter to select
customers with sales ex-
ceeding a given value.

AUTHORING AD HOC REPORTS 365

12. Press the Sort and Group button. Select the Group item in the Select Group pane and define
an ascending sort order on it. Check the Page Break Between Groups checkbox to start a new
page when the territory group changes.

13. Select the Customer group and sort it by Sales in descending order.

If you now run the report, the report should return only customers whose bike orders have
exceeded $8,000.

9.3.2 Working with Report Model Data Sources
As I mentioned earlier, you can use Report Designer to build reports that use a report model
as a data source. If end users demand sophisticated ad hoc reports that surpass the capabilities
of the Report Builder 1.0 client, consider using the Report Designer to produce reports from
an existing report model. This approach combines the best of both worlds—an intuitive Re-
port Builder model and a feature-rich report authoring tool— but it requires more advanced
report authoring skills.

For example, the Sales Order report shown in Figure 9.27 looks almost the same as the
Sales Order report discussed in chapter 4. The difference is that this report uses our Adven-
ture Works report model as a data source. Let me walk you through its high-level implemen-
tation steps.

 Defining a report model data source
Start by creating a data source in Report Designer that points to the report model.

1. Start the BIDS Report Designer and open a new report.
2. Create an Adventure Works Model data source as follows:

Figure 9.26 Use the
Order Amount field to
filter the customer totals.

CHAPTER 9 366

 Type: Report Server Model
 Connection string: Server=http://<servername>/reportserver; datasource=/amrs/adventure

works
 Credentials: Use Windows Authentication (integrated security)

When using the Report Server Model data provider, the connection string includes the report
server URL and the full path to the model that will be used as a data source.

 Defining a report model data source
Start by creating a data source in Report Designer that points to the report model.

1. Start the BIDS Report Designer and open a new report.
2. Create an Adventure Works Model data source as follows:
 Type: Report Server Model
 Connection string: Server=http://<servername>/reportserver; datasource=/amrs/adventure

works
 Credentials: Use Windows Authentication (integrated security)

When using the Report Server Model data provider, the connection string includes the report
server URL and the full path to the model that will be used as a data source.

 Creating the report dataset
The Report Designer includes a graphical Report Model Query Designer that lets you create
the semantic query by dragging and dropping fields.

1. Create a new dataset that uses the Adventure Works Model data source.
2. If the Report Designer loads the query in the Generic Query Designer, toggle the Generic

Query Designer toolbar button to switch to the Report Model Query Designer, which is shown
in Figure 9.28.

Similar to the Report Builder 1.0 client, the Report Model Query Designer loads the model
metadata in the Entities and Fields panes. Creating the report model dataset is a matter of

Figure 9.27 When the
Report Builder 1.0 client is
not enough, you can use
the Report Designer to
author reports from a Re-
port Builder model.

AUTHORING AD HOC REPORTS 367

dragging fields from the Fields pane and dropping them on the Drag and Drop Column Fields
area.

3. In the Entities pane, select Sales Order and then drag the Sales Order Number, Purchase Or-
der Number, Account Number, and Status fields from Fields to the Drag and Drop Column
Fields area.

Figure 9.28 The Report
Model Query Designer
auto-generates the seman-
tic query as the user drags
and drops model items.

4. In the Entities pane, select Sales Order Item and then drag the Line Number, Career Tracking
Number, Total Order Qty, Total Unit Price, Total Unit Price Discount, and Total Line Total
fields to the column fields area.

5. Select the Customer entity and then drag the Customer Name and Email Address fields.
6. Select the Product entity and drag Product Number and Name fields.
7. Click the Generic Query Designer to see the semantic query generated as a result of the drag-

ging and dropping fields.

If you execute the query at this point, it will fetch all sales orders and their associated line
items. This is a lot of data so let's filter the query to return a single order only.

8. Click the Filter button to open the Filter Data dialog box. Double-click the Sales Order Num-
ber field of the Sales Order entity to create a filter condition. Optionally, default the Sales Or-
der Number to a given order number, such as SO50750, and configure it as a prompted
parameter. Click OK.

9. In the Report Data window, expand the Parameters node and notice that the Report Model
Query Designer has defined a Sales_Order_Sales_Order_Number report-level parameter to let
the user enter the sales order number at runtime.

10. Click the exclamation toolbar button to execute the query and see the results.
11. Click the Refresh Fields toolbar button to update the dataset field definition.

Once the report dataset is in place, authoring a report that uses it should be familiar to you.

CHAPTER 9 368

9.3.3 Implementing Custom Drillthrough Reports
Recall that the Report Builder 1.0 client generates drillthrough reports when the user clicks on
a field whose EnableDrillthrough property is set to True. Specifically, Report Builder 1.0 gene-
rates a single-instance drillthrough report that shows all non-hidden entity fields when the
clicked item represents a single instance. It generates a multi-instance report that includes all
default detail attributes when the clicked item is an aggregated value.

Sometimes, you may need more control over the drillthrough report layout and data. For
example, you may need to show a standard Sales Order report when the user clicks on the
sales order number. Or, the drillthrough report may need to retrieve data from another data-
base. Fortunately, Report Builder 1.0 lets you customize both single-instance and multi-
instance drillthrough reports.

 Implementing custom drillthrough reports
The easiest way to get started with a custom drillthrough report is to use the Report Builder
1.0 client. Suppose that you need to replace the default single-instance Sales Order report
with a report that you created in the Report Designer.

1. Launch the Report Builder 1.0 client and choose the Adventure Works model and a table
report layout.

2. Drag the Sales Order entity on the table region to have a starting point for the drillthrough
report.

3. This is the important step. Go to the Report Report Properties menu and check the Allow
Users to Drill to This Report From Other Reports option.

When you do this, the Report Builder 1.0 client creates two report-level parameters: Drill-
throughSourceQuery and DrillthroughContext. When the user initiates the drillthrough ac-
tion, the Report Builder 1.0 client passes the semantic query to the first parameter and the
user selection to the second. A drillthrough report must have both these parameters.

4. Click File Save to File menu and save the report definition to disk. Open the report defini-
tion in Notepad and copy the entire <DataSources> element because you will need to change
the report data source in the BIDS Report Designer.

5. Open the report in Report Designer and change the report data source to point to your report
model, as demonstrated in section 9.3.2.

6. Use the Report Model Query Designer to add additional entities as needed and test the query.
When doing so, make sure that the Sales Order entity remains the primary entity (the top
entity in the Entities list). Report Builder 1.0 will throw a run time exception if the primary
entity in a single-instance drillthrough report is different than the clicked entity.

7. Lay out the report as needed. Once you're done, save the report to disk. Open its definition in
Notepad and restore the <DataSources> element.

8. Use the Report Manager to upload the report to the AMRS folder. For your convenience, I
have included the finished report, Sales Order Drillthrough, in the source code for this chap-
ter.

AUTHORING AD HOC REPORTS 369

 Configuring drillthrough reports
Once the drillthrough report is deployed, you have to associate it with the appropriate entity
in the model. Follow these steps to associate the Sales Order Drillthrough report with the Sales
Order entity.

1. In Report Manager, navigate to the AMRS folder and click the Adventure Works model.
2. In the model properties page, select the Clickthrough link.
3. In the model entity list, select the Sales Order entity, as shown in Figure 9.29.
4. Click the Browse button next to the Single Instance Report text box and navigate to the Sales

Order Drillthrough report. Click Apply.

5. Close the Report Builder 1.0 client if it is open. Start Report Builder 1.0 client and open the
Adventure Works model.

6. Author an ad hoc report that uses fields from the Sales Order entity or open the Sales Order
Drillthrough Test report that I provided.

7. Click on a field that drills through to more data. When you click on a field, you should see the
Sales Order report instead of a default drillthrough report.

 Authoring external drillthrough reports
The Sales Order Drillthrough report retrieves data from the Adventure Works model. But
what if you want the drillthrough report to show data from an external database, such as the
AdventureWorks relational database? Although not officially supported, it is possible to parse
the DrillthroughContext parameter and extract the identifier of the clicked item. You can then
use this identifier as a query parameter. The Sales Order Drillthrough Action report demon-
strates this approach. I used the word "action" in the report name because external drill-
through reports resemble UDM report actions.

Figure 9.29 Use Report
Manager to associate the
custom drillthrough report
with the entity.

CHAPTER 9 370

SLEAZY HACK The DrillthroughContext parameter and the modeling interfaces used by the Sales Order Drillthrough
Action report were not intended to be public and may change in a future release. Use them at your own risk.

As I mentioned, a drillthrough report must have DrillthroughSourceQuery and Drillthrough-
Context parameters. An external drillthrough report can obtain the identifier of the clicked
item from the DrillthroughContext parameter. Here is what the DrillthroughContext parame-
ter may look like when the user clicks on a Sales Order field:
<DrillthroughContext xmlns="http://schemas.microsoft.com/sqlserver/2004/10/semanticmodeling">
 <SelectedItems>
 <SelectedItemName>Sales Order Number</SelectedItemName>
 </SelectedItems>
 <GroupingValues>
 <GroupingValue Name="Sales Order">AKQhAQA=</GroupingValue>
 </GroupingValues>
</DrillthroughContext>

So, the Report Builder 1.0 client base64-encodes the identifier and writes it to the Grouping-
Value element. If you examine Parameters tab of both report queries you will see that the val-
ue of the @SalesOrderNumber parameter uses the following expression:
="SO" + Code.GetSetting(Parameters!DrillthroughContext.Value, "//GroupingValue[@Name='Sales Order']")

The GetSetting helper function is embedded in the report. You can access it from the Code tab
on the Report Properties dialog box. GetSetting loads the XML value of the DrillthroughCon-
text parameter into an XmlDocument object and navigates to the GroupingValue parameter.
Unfortunately, getting the identifier requires a bit more work than simply decoding it from
base64 because the semantic engine stores it in an internal format. GetSetting "decodes" the
identifier as follows:
Return Microsoft.ReportingServices.Modeling.EntityKey.FromBase64String(node.InnerText).
ToKeyParts(new Type() {Type.GetType("System.Int32")},Nothing) (0)

This line returns the primary key of the clicked Sales Order instance as an integer. This value
is passed to the report query which retrieves the details of a single order. Note also that the
report references System.Xml and Microsoft.ReportingServices.Modeling assemblies by going
to the Report Properties dialog box and selecting the References tab.

9.3.4 Capturing Native Queries
Sometimes, when troubleshooting an ad hoc report, you may want to see the native query that
the semantic engine sends to the data source. There are two ways to do this. The first ap-
proach captures the native queries in the report server log file and works with all supported
data sources. The second approach applies only to SQL Server and Analysis Services data
sources.

 Using the report server log file
By default, the report server doesn’t log semantic queries so you need to increase the trace lev-
el as follows:

1. Open the Reporting Services Windows service configuration file (ReportingServicesSer-
vice.exe.config) located by default in the \Program Files\Microsoft SQL Serv-
er\MSRS10.MSSQLSERVER\Reporting Services\ReportServer\bin folder.

2. Locate the RStrace section and change the Components setting as shown below:

AUTHORING AD HOC REPORTS 371

 <RStrace>
 <add name="FileName" value="ReportServer_" />
 …
 <add name="Components" value="all,RunningJobs:3,SemanticQueryEngine:4,SemanticModelGenerator:2" />
 </RStrace>

You don't need to restart the Report Server Windows service because the server will recycle
the Reporting Services application after detecting changes to its config files.

3. Run the report in the Report Builder 1.0 client. To get the latest trace output, you may need to
restart the Report Server Windows service to flush the trace log.

4. Go to the \Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Servic-
es\LogFiles and open the latest log file whose name will be ReportServer__<date stamp>.log
and search for SELECT to locate the native query.

 Using the SQL Server Profiler
If your Report Builder model uses SQL Server or Analysis Services as data sources, you can use
the SQL Server Profiler to watch the Report Builder real-time queries.

1. Start the SQL Server Profiler from the Performance Tools group inside the Microsoft SQL
Server 2008 program group.

2. Create a new SQL Server or Analysis Services trace.

To minimize the number of trace events captured, consider setting up a column filter. For ex-
ample, to watch only queries submitted by a user whose Windows login is t_lachev, set up a
wildcard column filter on the NTUserName column, as shown in Figure 9.30. Once you run
the report, you should see the native query text in the TextData column.

Figure 9.30 Use the SQL Server Profiler to capture Report Builder native queries submitted by a given user.

CHAPTER 9 372

9.4 Securing Report Builder Models
An important management task is securing user access to the model. Reporting Services sup-
ports setting up security polices at different levels. The administrator must grant end users
permission to download the Report Builder 1.0 client and run ad hoc reports. Published ad
hoc reports can be secured in the same way as any other report server item. With report mod-
els, however, you can work with more granular security policies. You can leverage model-level
security to restrict access to model entities and fields. Finally, you can implement data security
in the model to filter data returned on the report based on the user identity.

9.4.1 Granting Report Builder Access
By default, only members of the System Administrator and System User report server roles can
author ad hoc reports. This means that out of the box, only Windows local administrators will
be able to use the Report Builder 1.0 client. Others users won't see the Report Builder button
when they open the Report Manager. They need Execute Report Definition rights to be able to
use the Report Builder 1.0 client.

Figure 9.31 Create a
new system role that
includes the Execute
Report Definitions task to
let end users access the
Report Builder 1.0 client.

 Defining role assignments
You can assign end users to the pre-defined System Administrator or System User roles but
they will get extra rights they may not need. For example, besides the Execute Report Defini-
tions task, the System User role will grant them rights to view shared schedules and server
properties. Instead, consider creating a new Report Builder Users system role and granting
users rights to execute report definitions only, as follows:

1. Open SQL Server Management Studio (SSMS). In the Object Explorer pane, expand the Con-
nect drop-down list and choose Reporting Services. Connect to the report server instance you
want to manage.

2. Expand the Security folder and then System Roles folder.
3. Right-click on the Security folder node and choose New System Role.

AUTHORING AD HOC REPORTS 373

4. In the New System Role dialog box, name the role Report Builder Users and select the Execute
Report Definitions task, as shown in Figure 9.31. Click OK to create the Report Builder Users
system role.

Once the role is in place, you can open Report Manager and assign the Windows users or/and
groups to the role.

5. Open the Report Manager application and click on the Site Settings link in the upper right
corner.

6. On the Site Settings page, click the Security link.
7. Click the New Role Assignment button.

Figure 9.32 Define a new
role assignment to grant rights
to Windows users and groups
to access Report Builder 1.0.

8. In the New System Role Assignment page (Figure 9.32), enter the name of the Windows user
or group in the format <domain>\<login> (or <machine>\<login> for local users and groups).

9. Check the Report Builder Users role and click OK to create the role assignment.

You need to repeat the last three steps for each user and group that will access the Report
Builder. For easier maintenance, consider assigning all users to a domain or local Windows
group and create a single role assignment for that group only.

You may need also to grant end users rights to the report catalog. For example, you need to
grant at least Browser rights to the Home folder if users will start the Report Builder 1.0 client
by clicking the Report Builder button. Content Manager rights will be needed if you want to
let them publish ad hoc reports to the server. Therefore, you need to define an item-level role
assignment. The easiest way is to do this at the Home folder level because it propagates down
the folder namespace.

10. Click the Home link to go to the Home folder and select the Properties tab to access the Secu-
rity settings.

11. Click the New Role Assignment button and create role assignments for each Windows user or
group. SSRS includes a predefined role called Report Builder that grants the permissions end
users need to view folders, reports, and models but it doesn't let them publish reports. Select
this role and click OK. If you want to let the Report Builder users save reports, consider as-
signing them to the predefined Publisher role.

 Controlling server-wide Report Builder access
There are two server settings, EnableLoadReportDefinition and EnableReportDesignClient-
Download, which control the Report Builder 1.0 availability for all users.

CHAPTER 9 374

1. In Management Studio, right-click on the Reporting Services server node in the Object Ex-
plorer and choose Properties.

2. Select the Advanced page and note the Security section in the properties grid.

By default, both settings are enabled. The EnableLoadReportDefinition property is only appli-
cable for a report server running in a SharePoint integration mode. When set to False, Enable-
LoadReportDefinition prevent the end users from previewing reports in the Report Builder 1.0
client although they can author reports. The EnableLoadReportDefinitions setting is also avail-
able on the Security page in the server properties (Enabled ad hoc report executions check-
box). If the EnableReportDesignClientDownload setting is False, the end users won't be able
to download the Report Builder 1.0 client and the Report Builder button won't show in the
Report Manager.

Once you publish the report model and grant access to the Report Builder 1.0 client, end us-
ers can start using it to author reports.

9.4.2 Implementing Model Item Security
Model item security lets you provide restricted access to entities, attributes, and roles in the
model to Windows users and groups. For example, you can use model item security to let on-
ly members of the Human Resources department access the Employee entity or specific fields
in it. In this respect, you will find model item security similar to database schema security
which protects database tables and columns.

Figure 9.33 You can
use model item securi-
ty to grant access to
specific entities or
fields in the model.

You can set up model item security by going to the model Properties page in the Report Man-
ager, as shown in Figure 9.33. The Security link lets you secure the model as a whole. For ex-
ample, you can use the Security link to grant Content Manager rights to the user who will
administer the model. Follow these steps to implement model item security that lets only us-
ers of the HR Windows group access the Employee entity.

AUTHORING AD HOC REPORTS 375

3. In Report Manager, navigate to the AMRS folder and click the Adventure Works model link.
4. In the model properties page, click the Model Item Security link.
5. By default, users who can browse the model have unrestricted access to the model content.

Check the Secure Individual Model Items Independently For This Model checkbox. This re-
verses the default security policy by requiring each user to have model item permissions be-
fore they can access model content.

6. Select the root Adventure Works node, which represents the entire model. Enter a semi-colon
separated list of all Windows users and/or groups that will use the model in the Assign Read
Permissions text box. Click Apply.

7. Select the Employee entity. By default, model items inherit their permissions from their par-
ent. Therefore, the Windows users and groups you entered in the previous steps will have
access to the entire model. Clear the Inherit Permissions From the Parent Item checkbox to
break the inheritance chain.

8. Enter a semi-colon separated list of the Windows users and groups that will be able to access
the Employee entity. For example, assuming that the HR Windows group includes users from
the Human Resources department, enter HR and click Apply.

When the Report Builder 1.0 client downloads the model, the report server evaluates the
model item security polices and returns only those items that the end user is authorized to see.
If the user is not authorized to see an item, the item simply doesn't exist for that end user. As a
result of the above steps, only members of the HR group will see the Employee entity.

9.4.3 Implementing Data Security
Finally, the most granular security model is data security. By default, if the user can access an
entity, the user can view all rows of that entity. Suppose that you want to implement a security
policy that lets a sales person view his orders only. This is where data security can help. You
implement data security by setting up security filters that limit the data returned based on the
user identity.

With the default Windows authentication, the user identity is the user Windows login. If
custom security is used, the user identify will be the user name that your application passes to
the LogonUser API. In order for data security to work, your database needs to store the user
identity. For example, in the AdventureWorks database, the user identity is stored in the Lo-
ginID column in the HumanResources.Employee table.

 Setting up a security filter
1. Open the Adventure Works model in Model Designer and select the Sales Person entity. Since

the Sales Person entity derives from the Employee entity, it inherits the fields of the Employee
entity.

2. Right-click on the Sales Person entity and choose New Filter.
3. In the Filter Data dialog box that follows, double-click the Login ID field to create a new filter

condition.
4. Right-click the Login ID field in the filter condition and choose Edit As Formula.

The Define Formula dialog box that follows shows the following formula text:
Login ID = EMPTY

CHAPTER 9 376

5. Select the Functions tab. Double-click on the EMPTY word to select it.
6. Expand the Information section of the Functions tab and double-click the GETUSERID func-

tion.
7. Click OK to dismiss the Define Formula dialog box and return to the Filter Data dialog box, as

shown in Figure 9.34.

Figure 9.34 Implement data
security by creating a security
filter that passes the user identi-
fy to the database.

8. Click OK to close the Filter Data dialog box.
9. Rename the NewFilter attribute to Security Filter and set its Hidden property to True so the

end users cannot see this attribute.
10. This is the most important step. Click the ellipsis (…) button inside the SecurityFilters prop-

erty of the Sales Person entity. In the AttributeReference Collection Editor dialog box, add the
Security Filter attribute and click OK.

11. Deploy the model to the server.

TIP In real life, you will probably need to let power users or administrators see all rows. To meet this requirement, create
a new filter but leave the filter dialog empty. This works because an empty filter doesn't filter anything.

You've now set up a security filter which limits the Sales Order entity to return only rows
where the Login ID column matches the user login id.

 Testing the security filter
Let's use the Report Builder 1.0 client to test the filter.

1. Launch the Report Builder 1.0 client and select the Adventure Works model. Choose a table
layout.

2. Drag the Sales Person entity to the table region and run the report. Note that the report re-
turns no rows because your Windows login doesn't match any of the Adventure Works logins.

3. In the SQL Server Management Studio, connect to the relational engine and open table
Sales.SalesPerson. Note that the SalesPersonID column of the first row is 269.

4. Open table HumanResoures.Employee and locate the record with EmployeeID=269.
5. Copy the value in the LoginID column (adventure-works\stephen0) and replace it with your

Windows login in the format domain\loginid or computername\loginid if you computer
doesn't belong to a domain.

AUTHORING AD HOC REPORTS 377

6. Refresh the report. Now, the report should return a single row showing Stephen Jiang.

If you run the SQL Profiler and inspect the native query behind the report you will see that it
has the following WHERE clause:
WHERE [HumanResources_Employee].[LoginID] = '<login>'

If you don’t see the WHERE clause make sure that the Sales Person's SecurityFilters property
includes the Security Filter attribute.

9.5 Summary
The main advantage of the Report Builder 1.0 client as an ad hoc reporting tool is that it is
designed with business users in mind. Its intuitive user interface helps users to get started
quickly with authoring reports without requiring them to be familiar with the underlying da-
tabase schema or query syntax.

The Report Builder 1.0 client supports three pre-defined report templates. Use the Table
report template to author reports that display data in a tabular form. Choose the Matrix report
template to author crosstab reports. Choose the Chart report template to present the report
data in a chart. The Report Builder 1.0 client supports powerful filtering capabilities. You can
construct entity filters that limit the rows returned in an entity and value filters that limit the
rows contributing to an aggregated value.

Power users can produce ad hoc reports from a report model in the Report Designer. You
can plug in single-instance and multi-instance custom drillthrough reports. When trouble-
shooting report execution, you can capture native queries in the report log or SQL Server Pro-
filer. Reporting Services supports a comprehensive security model that lets you secure both
model items and data.

Report Builder 1.0 has not been enhanced in Reporting Services 2008. Report Builder 2.0,
which I'll discuss next, is designed to replace the Report Builder 1.0 technology in a long run.

9.6 Resources
Introducing Client Application Deployment with "ClickOnce" by Duncan Mackenzie

(http://tinyurl.com/my7p4)— Introduces you to the click-once technology.
Formatting Types

(http://tinyurl.com/nf6fs)—Learn how to create custom numeric and date format
strings.

378

CChhaapptteerr 1100

Previewing Report Builder 2.0

10.1 Understanding Report Builder 2.0 378
10.2 Authoring an OLAP Report 383
10.3 Authoring a Relational Report 392

10.4 Summary 398
10.5 Resources 398

As you've seen in the preceding two chapters, non-technical users can leverage the Report
Builder 1.0 technology to author ad hoc reports from SQL Server, Oracle, and Analysis Servic-
es data sources. However, Report Builder 1.0 supports only a subset of the RDL features and
supports simple template-based reports. Moreover, before end users can start building reports,
an IT professional must pre-configure a report model as an underlying data source for the re-
ports.

To let end users access all report authoring features and the full range of supported data
sources, Microsoft has completely redesigned Report Builder in Reporting Services 2008. Due
to time constraints, Report Builder 2.0 doesn't ship with SQL Server 2008, but will instead be
available as a separate download in the SQL Server 2008 timeframe. In this chapter, I'll intro-
duce you to the pre-release version of Report Builder 2.0 technology. The bulk of the chapter
covers tutorials that walk you through the steps of authoring an OLAP report and a relational
report. These practices should give you a taste of how Report Builder 2.0 changes the author-
ing experience relative to its predecessor.

The usual disclaimer for pre-release technology applies to this chapter. The pre-release
version of Report Builder 2.0 is subject to change until the product finally ships. The features
and user interface described in this chapter may vary in the final release.

10.1 Understanding Report Builder 2.0
Reporting Services has evolved based on the feedback Microsoft gets from customers. Part of
this evolution includes improving the user experience in the area of report design. When it
was first introduced in Reporting Services 2005, Report Builder 1.0 promised to empower
non-technical business users by giving them the ability to author their own reports. While
business users rejoiced over the user-friendly Report Builder client, more advanced users
found it too limiting. The key request from customers using Report Builder was to enhance it
to support the full spectrum of RDL features, including multiple data regions, expression-
based styles, and support for more data sources besides SQL Server, Analysis Services and
Oracle.

The Reporting Services product group went back to the drawing board and realized that
by combining the design foundation of the BIDS Report Designer and the Office user expe-
rience, they could move Report Builder in a direction that that would meet their customer’s
requirements. BIDS Report Designer provided a baseline of the functionality that customers

PREVIEWING REPORT BUILDER 2.0 379

wanted to see in all of their report authoring tools. To use its features in Report Builder 2.0,
the team re-factored the Report Designer layout surface as a shared component. The outcome
of that effort is that the application environment and steps for setting up data and creating the
report layout is virtually identical in both BIDS Report Designer and the next generation Re-
port Builder 2.0.

As a result, Report Builder 2.0 "inherits" full access to all RDL features and supported data
sources. To ensure that less technically savvy users wouldn’t be left behind, Microsoft simpli-
fied the user interface and packaged Report Builder 2.0 in an Office 2007-like authoring envi-
ronment. Microsoft is currently working on enhancing Report Builder with other features to
make it even easier for business users to create reports.

DEFINITION Report Builder 2.0 is a report designer for authoring full-featured ad hoc reports outside the Visual Studio
environment. Report Builder 2.0 is the successor of Report Builder 1.0, which was introduced in SQL Server 2005 and
is still available in SQL Server 2008.

10.1.1 Introducing Report Builder 2.0 Environment
Business users will undoubtedly find the Report Builder 2.0 client interface (see Figure 10.1)
familiar by virtue of its Microsoft Office 2007 Ribbon interface. The blue background gradient
gave Report Builder 2.0 the code name "Blue", which is still affectionately used internally by
Microsoft.

Figure 10.1 Report Builder 2.0 features the familiar Office 2007 ribbon interface.

CHAPTER 10 380

 Understanding the Report Builder 2.0 Ribbon Interface
Since you are already familiar with Report Designer, you will undoubtedly notice similarities
between the Report Designer and Report Builder 2.0 environments. They both include the
same Report Data pane (called Data pane in Report Builder 2.0), Group pane, Properties pane,
dialogs, and design surface. Again, this is because behind the scenes both designers share the
same design surface. For the most part, the only difference between the two designers is the
hosting environment. The BIDS Report Designer is hosted in the Visual Studio shell and sup-
ports developer-oriented features, such as debugging, source control, and projects. By con-
trast, Report Builder 2.0 runs outside the Visual Studio IDE and lets you work on only one
report at a time.

The Ribbon interface helps you quickly find the commands that you need to complete a
task. The tasks are organized in logical groups called tabs (Home, Insert, View tabs). The tool-
bar buttons in each tab are organized in groups, such as Font and Alignment groups. As with
other Microsoft Office 2007 products, the Report Builder 2.0 Button lets you initiate common
actions, including creating a new report, saving a report to disk, and publishing a report to the
report server.

The Home tab is a collection of commonly used commands, including those that you use
to control the appearance of items within your report. You can use the Home tab to access the
Windows clipboard for copying and pasting, change the textbox font, preview the report, and
so on.

DEFINITION Unlike Report Designer, which supports only client-side report preview, the release version of Report
Builder 2.0 is expected to support both client-side and server-side preview modes. Previewing reports on the server
could be useful when the report references external resources, such as shared data sources, subreports, and external
images. Currently, only client preview is available.

The Insert tab substitutes the Visual Studio toolbar for Report Server projects. It lets you insert
report items, as well as a page header and page footer. The View tab lets you switch between
design and preview modes, as well as to toggle elements of the shared layout surface, includ-
ing Data pane, Grouping pane, Properties pane, and ruler. All of these should be familiar to
you because they are available in the BIDS Report Designer.

Besides using the Ribbon, you can also switch between design and preview modes by
clicking the corresponding button in the status bar. Pressing F5 is a shortcut for previewing a
report. Finally, unlike Report Designer, Report Builder 2.0 supports zooming. The zoom slider
in the status area lets you zoom the design surface in and out.

 Understanding setup and configuration
Report Builder 2.0 is not included in the SQL Server 2008 setup. Instead, Microsoft provides a
stand-alone installer that can be downloaded from the latest SQL Server 2008 Feature Pack
web page. This simplifies installing Report Builder 2.0 because end users don't need to run the
SQL Server 2008 setup program just to author reports. At the time of this writing, the latest
SQL Server 2008 Feature Pack is Microsoft SQL Server 2008 Feature Pack RC0 (see Resources
for a link). The RC0 release of Report Builder 2.0 does not specify the licensing details. More
than likely, Report Builder 2.0 will follow the same licensing model as Report Builder 1.0 and
require the end user to have a SQL Server 2008 license to use it.

When it ships, Report Builder 2.0 is expected to support ClickOnce deployment similar to
Report Builder 1.0. The administrator will be able to configure which Report Builder version
the user can launch by specifying the URL to the ClickOnce *.application file. In SQL Server
Management Studio, this can be done by setting the ReportBuilderLaunchURL setting in the

PREVIEWING REPORT BUILDER 2.0 381

Server Properties (Advanced tab). In Report Manager, you can configure the Report Builder
version URL in the Site Settings page.

The web download installs Report Builder 2.0 in the \Program Files\Microsoft SQL Serv-
er\100\Tools\Reporting Services\Report Builder 2.0\ folder. End-user help is included in the
download as a Microsoft Compiled HTML (.chm) file that gets installed in the same folder.
Similar to the BIDS Report Designer, Report Builder 2.0 uses configuration files for feature
customization and security. The ReportDesigner.config file lets you customize the available
rendering and data extensions. The rspreviewpolicy.config configuration file is for setting up
Code Access Security (CAS) policies if the report uses external custom code. For example, if
your report calls an external assembly, you need to grant that assembly the appropriate rights
by registering it in rspreviewpolicy.config. This is identical to configuring custom code in Re-
port Designer.

Report Builder 2.0 is dependent on .NET Framework 3.5, which the user must install
first. The Feature Pack resource page provides a link to the .NET Framework 3.5 redistributa-
ble package.

10.1.2 Understanding Report Builder 2.0 Features
When Report Builder 1.0 was first introduced in SQL Server 2005, it had a well-defined target
audience—business users. In comparison, Microsoft envisioned the Report Designer as the
tool of choice for developers and power users. As it turned out, there is no clear-cut dividing
line between these two user groups when it comes to report authoring. The ambitious goal of
Report Builder 2.0 is to unite the best from both worlds. It gives you full-featured access to
RDL without requiring Visual Studio.

 Comparing Report Builder 1.0 and Report Builder 2.0
Now that you've been introduced to Report Builder 2.0 at a high level, you may wonder how
it measures up against its predecessor, Report Builder 1.0, and which one to choose for your
reporting needs. Table 10.1 outlines the significant differences between the two tools.

Table 10.1 Report Builder 1.0 vs. Report Builder 2.0

Criteria Report Builder 1.0 Report Builder 2.0

Target audience Business users Power users, bisiness users

Report layout Basic template-based layout Full RDL support

RDL support RDL 2005 RDL 2008

Report model Required Not required but supported as a data source

Queries Auto-generated Native language of the target data source

Data sources SQL Server, Oracle, Analysis Services Any data source

Extensibility Not extensible Can be extended with custom code

The intended audience for Report Builder 1.0 is a less technically savvy user who is willing to
trade advanced reporting features for the ability to produce simple reports quickly. By con-
trast, Report Builder 2.0 assumes that the user understands the database schema and knows

CHAPTER 10 382

how to write queries. To keep the learning curve small, Report Builder 1.0 uses more built-in
features such as templates and gives up some of the more powerful features that you find in
Report Builder 2.0.

Features that you won’t find in Report Builder 1.0 include side-by-side or nested regions,
list regions, page headers and footers, page numbers, and expression-based properties. By
contrast, Report Builder 2.0 fully supports RDL 2008 and an open design experience (no tem-
plates). Report Builder 1.0 has not been enhanced in this release and supports only RDL 2005.
It cannot open a report produced with Report Builder 2.0 or BIDS Report Designer. However,
Report Builder 2.0 can open Report Builder 1.0 reports by upgrading them to RDL 2008.

Report Builder 1.0 requires a report model that abstracts the data source. When the user
runs the report, the model auto-generates the native query. You can build models on top of
SQL Server, Oracle and Analysis Services data sources. By contrast, Report Builder 2.0 con-
nects directly to the database. It supports any data source, including Report Builder models.
However, with Report Builder 2.0, the report author must provide the report query written in
the syntax supported by the data source. When not using a Reporting Builder entity model as
a data source, Report Builder 2.0 doesn't auto-generate queries at run time but instead pro-
vides graphical query designers that facilitate creating and testing the queries at design time.

Finally, while reports produced by Report Builder 2.0 can be extended with custom code
and third-party components, Report Builder 1.0 reports are not extensible. For example, you
cannot plug in a custom function library in Report Builder 1.0. As you can see, apart from its
name, Report Builder 2.0 has very little in common with its predecessor. In fact, Report Build-
er 2.0 is much closer to Report Designer because both share the same design foundation.

 When to use Report Builder 2.0
I have to admit that I am excited about Report Builder 2.0 and the direction Microsoft is tak-
ing with the report design tools. I believe that in the long run Report Builder 2.0 will blur the
difference between standard and ad hoc reporting and satisfy the requirements of both tech-
nical and non-technical users. As it stands, however, the pre-release version of Report Builder
2.0 leans more towards the "professional" side. Consequently, the end user must have a solid
understanding of the report authoring process even for creating simple ad hoc reports.

It's unfortunate that as they stand, none of the four Microsoft-provided report designers is
currently capable of targeting equally well both developers and business users. Don't despair
though! While waiting for Report Builder 2.0 to evolve to a point where it can satisfy the
needs of both audiences, consider turning lemons into lemonade by offering several design
choices to your users. Table 10.2 shows report design tool positioning based on report author
expertise for a BI project that involves standard and ad hoc reporting from an Analysis Servic-
es cube.

Table 10.2 Positioning the Microsoft report design tools as clients of Analysis Services

Reporting Tool User Audience Reporting Needs

Excel 2007 Executive managers Historical and trend reporting

Report Builder 1.0 Non-technical users Simple ad hoc reports

Report Designer Developers, power users Full-featured standard reports

Report Builder 2.0 (when available) Power users, non-technical users Full-featured ad hoc and standard reports

PREVIEWING REPORT BUILDER 2.0 383

Executive management is typically interested in the "big picture" of the company business.
The most effective channels for delivering this information are digital dashboards and canned
reports, especially chart reports. Should executive managers be willing to author reports, Excel
is probably your best choice for OLAP historical and trend reporting.

Less technically savvy users may find Report Designer too complex and intimidating. For
example, end users may not be willing to tinker with report parameters and query statements
or may not have the necessary knowledge to do so. When the Report Designer features exceed
user skills, consider using Report Builder 1.0.

The BIDS Report Designer remains the premium report authoring tool for developers. De-
spite its tight integration with Visual Studio, the Report Designer end-user enhancements may
make it a good choice for power users who are not willing to compromise report authoring
features for simplicity.

Definitely evaluate Report Builder 2.0 for full-featured standard and ad hoc reporting out-
side the Visual Studio IDE. Power users and users who already know BIDS Report Designer
will easily adapt to the new tool. Although it shows great promise, it remains to be seen how
well the release version will support non-technical users.

Now that you've been introduced to Report Builder 2.0, let's take it for a ride and author a
few reports. In the first practice, you will author a chart report from an Analysis Services cube.
In the second practice, you'll design a chart report that retrieves data from a relational data-
base. If you've read through the Report Designer chapters (chapters 3-7), you may find these
practices somewhat redundant because Report Builder 2.0 is functionally almost identical to
Report Designer. However, I advise you not to skip them. If nothing else, you'll at least be able
to evaluate the Report Builder 2.0 user interface and its ad hoc reporting environment. Who
knows, you may even find a nugget of report authoring treasure left uncovered in the preced-
ing chapters.

Figure 10.2 The Territory
Sales report draws data from
the Adventure Works cube.

10.2 Authoring an OLAP Report
Multidimensional OLAP cubes are well suited for ad hoc reporting. This is because they
present data schema in a set of intuitive dimensions and measures the business users can
quickly relate to. Moreover, the relationships are built into the cube so the user doesn't need
to know how to navigate the data source schema and join tables. Let's wear a business user's

CHAPTER 10 384

hat and use Report Builder 2.0 to author a crosstab report from the Adventure Works Analysis
Services cube.

The Territory Sales report (see Figure 10.2) shows Internet and reseller sales by territory
on rows and time on columns. The user can filter report data by selecting one or more prod-
uct categories in the Category parameter. The report demonstrates the following report au-
thoring features:
 Using the MDX Query Designer to auto-generate MDX queries and report parameters
 Authoring a crosstab report
 Implementing drilldown interactive features to see more data on the report
 Sorting the report interactively

Before jumping to the report implementation details, let's make sure we’ve configured Report
Builder 2.0 so that it works the way we expect it to.

10.2.1 Getting Started with Report Builder 2.0
One of the first steps in working with Report Builder is to configure the design environment
and the report page.

 Configuring the design environment
The setup program installs the Report Builder 2.0 executable and its help in the Microsoft SQL
Server 2008 Report Builder program group.

1. Click Start All Programs Microsoft SQL Server 2008 Report Builder Report Builder
2.0.
Report Builder 2.0 opens to the Home tab, with a blank report named Untitled shown in the
layout surface. By default, the report has page header and footer sections. The Data and
Groupings panes are visible.

Figure 10.3 A new
report includes a page
header, report body, and
page footer section.

PREVIEWING REPORT BUILDER 2.0 385

2. Click the View tab and check the Property Pane and Ruler options.

This shows the Data pane, Property pane, Grouping pane, and ruler, as Figure 10.3 shows. A
new report has a page header, report body, and page footer sections. The Property pane is
analogous to the Visual Studio Properties window and gives you access to the properties of the
selected item in the design surface. The ruler is useful to help you size and position report
items. Alternatively, you can activate these features by right-clicking the layout surface outside
the white report area and clicking the View menu.

3. The Territory Sales report doesn't require page header and footer sections. To turn them off,
click the Insert tab. Expand the Header button in the Header & Footer group and click Re-
move Header. Alternatively, right-click the layout surface outside the report area and click
Remove Page Header.

4. Repeat the last step to remove the page footer.

If you decide later that you need page header and/or footer sections, you can re-enable them
by reversing the last two steps.

 Configuring the report page
Another common start-up task is setting up the report page. Since crosstab reports tend to be
quite wide, let's change the page layout to Landscape.

1. Right-click an empty area outside the report body and click Report Properties.
2. In the Report Properties dialog box (Page Setup tab), select the Landscape orientation.
3. Set all margins to one inch.

If you have completed the Report Designer practices, you'll undoubtedly find the Report
Properties dialog boxes familiar. Again, this is because both Report Designer and Report
Builder 2.0 share the same layout surface and windows. This brings consistency and allows
you to access the same features in both designers. For example, you can use the same Code,
References, and Variables tabs to add custom code to advanced reports, as previously dis-
cussed in chapter 7. Spend some time getting familiar with the Report Builder 2.0 environ-
ment. Make sure to check out the zoom slider in the status bar area to zoom the surface area
in and out.

10.2.2 Configuring the Report Data
The report authoring process should be familiar to you by now. It involves setting up the re-
port data, creating the layout, and testing the report. In the steps that follow, we’ll configure
the report data. If you have already gone through the Report Designer part of this book, you
will find that the steps are identical.

 Setting up the report data source
The Territory Sales report draws data from the Adventure Works cube. Start by configuring a
data source that points to the Adventure Works DW 2008 Analysis Services database.

1. In the Data pane, expand the New button and click New Data Source.

Report Builder 2.0 shows the familiar Data Source Properties dialog box. This is one of the
common dialogs included in the shared layout surface component that both Report Designer
and Report Builder 2.0 share. You can use it to either create a report-specific data source

CHAPTER 10 386

whose definition gets embedded in the report, or reference an existing data source definition
on the server (shared data source). Chapter 4 explains the two data source types in detail. For
the purposes of this practice, you will create a report-specific data source.

NOTE The final release of Report Builder 2.0 will let the end user reference shared data sources whose definitions
are deployed to the report catalog. This feature doesn’t work with the RC0 build.

2. In the Data Source Properties dialog box, rename the data source to AdventureWorksAS2008.
3. To configure a report-specific data source, expand the Type drop-down list and select Micro-

soft SQL Server Analysis Services.
4. In the Connection String field, enter the following connection string:

Data Source=(local);Initial Catalog="Adventure Works DW 2008"

Alternatively, you can click the Edit button and use the Connection Properties dialog box to
configure the connection string. This will also let you test the connection.

5. Click OK.

Report Builder 2.0 adds the AdventureWorksAS2008 data source to the Data pane.

 Setting up the report dataset
Once the data source is in place, it's time to configure the report dataset.

1. In the Data pane, right-click the AdventureWorksAS2008 data source and click Add Dataset.
2. In the Dataset Properties dialog box that follows, click the Query Designer button.

Because you used an Analysis Services database as a data source, Report Builder 2.0 launches
the MDX Query Designer. This is the same query designer you used when you authored the
Product Sales by Category chart report in chapter 1. Recall that this query designer is capable
of auto-generating MDX queries as you drag entities from the Metadata pane and drop them in
the Query Results pane. Consequently, business users can author basic reports without having
to know MDX.

3. In the Metadata pane, expand the Measures folder and the Internet Sales folder under it. Drag
the Internet Sales Amount measure from the Metadata pane to the Query Results pane.

The MDX Query Designer auto-generates an MDX Query that requests the grand total Internet
Sales amount across all dimensions. You can toggle the Design Mode toolbar button to see the
actual MDX query statement.

4. In the Metadata pane, expand the Measures folder and the Reseller Sales folder under it. Drag
the Reseller Sales Amount measure from the Metadata pane to the Query Results pane.

5. To slice the measures by territory, in the Metadata pane, expand the Sales Territory dimen-
sion. Drag the Sales Territory hierarchy to the Query Results pane.

The Sales Territory hierarchy lets users browse data by the Group Country Region navi-
gational path. However, our report only needs to show data broken down by territory groups
and countries. In the next step, we’ll remove Region from the navigational path.

6. In the Query Results pane, click a cell inside the Region column and click the Delete toolbar
button to remove the Region column. Alternatively, you can remove a column by dragging the
column header away from the Query Results pane.

At this point, the Territory Sales report shows data broken down by years and quarters.

PREVIEWING REPORT BUILDER 2.0 387

7. In the Metadata pane, expand the Date dimension and the Calendar folder under it. Drag the
Date.Calendar hierarchy to the Query results pane and drop it after the Country column.

8. Since the report needs to show data at the quarter level, remove the Month and Date columns
from the Query Results pane. Remove also the Calendar Semester column.

Let's define a report parameter to filter the report data by product category. Because the MDX
Query Designer is capable of auto-generating the report parameters, we can do this with just a
few mouse clicks.

9. In the Metadata pane, expand the Product dimension. Drag the Category attribute to the Filter
pane.

10. To set the Bikes category as the default value for the parameter, click the Filter pane, expand
the drop-down list in the Filter Expression column and check the Bikes category.

11. Check the Parameters checkbox in the last column.

Compare your dataset configuration with the one shown in Figure 10.4. Click OK to create
the dataset. Report Builder 2.0 adds the DataSet1 dataset under the AdventureWorksAS2008
data source in the Data pane.

10.2.3 Designing the Report
With the dataset in place, you can proceed with laying out the report. This involves using tab-
lix to configure the raw report, refining the report appearance, and testing the report. Next, I'll
walk you through a "click-intensive" process to get this done.

Figure 10.4 Use the MDX Query Designer drag and drop support to set up data for basic OLAP reports.

CHAPTER 10 388

 Working with the matrix region
Recall from the Report Designer chapters that this release of Reporting Services introduces a
versatile tablix control that powers the table, matrix, and list data regions. For example, the
matrix region is really a tablix that is pre-configured for a crosstab report layout.

1. Click the Insert tab and click the Matrix button to add an empty matrix region to the design
surface.

2. To set up the matrix rows, drag the Group field from the Data pane and drop it in the Rows
cell of the matrix region. Report Builder 2.0 creates a Group row group and adds it to the Row
Groups pane.

3. Drag the Country field from the Data pane and drop it to the right of the Group cell in the
matrix region. This creates a new Country group shows it in the Row Groups pane below the
Group row group.

4. To set up the matrix columns, drag the Calendar_Year field from the Data pane and drop it in
the Columns cell of the matrix region. Report Builder 2.0 creates a Calendar_Year column
group and adds it to the Column Groups pane.

5. Drag the Calendar_Quarter field from the Data pane and drop it below the Calendar_Year cell
in the matrix region. This creates a new Calendar_Quarter group and shows it in the Column
Groups pane below the Calendar_Year group.

6. Drag the Internet Sales field from the Data pane and drop it in the Data cell of the matrix re-
gion. By default, matrix uses the Sum function to aggregate data. This explains the
[Sum(Internet_Sales_Amount)] placeholder, which is a concise version of the following ex-
pression:
=Sum(Fields!Internet_Sales_Amount.Value)

7. Drag the Reseller_Sales_Amount field from the Data pane and drop it to the right of the
[Sum(Internet_Sales_Amount)] cell.

Figure 10.5 This figure shows
the structure of the Territory
Sales report.

Compare your report layout with the one shown in Figure 10.5. The
[Sum(Internet_Sales_Amount)] and [Sum(Reseller_Sales_Amount)] fields should be located
inside the double-dotted line in the matrix region because they are detail cells. Clicking on
either one of these cells should show an orange active group selector above the Calen-
dar_Quarter cell and to the left of the Country cell. This means that the innermost group on
which the matrix region will group data is the Country group on rows and Calendar_Quarter

PREVIEWING REPORT BUILDER 2.0 389

group on columns. If your results don't match Figure 10.5, press Ctrl+Z (or the Undo button
in the Report Builder 2.0 title bar) to undo your changes and repeat the previous steps.

8. Press F5 (or click the Run the Report button in the status bar or the View tab Preview but-
ton) to preview the report.

Report Builder 2.0 connects to the cube, executes the query, retrieves the results and generates
the report on the client. Although plain looking, the report should have a crosstab appearance
with years and quarters on columns and territory groups and countries on rows.

9. Click the Report Builder 2.0 Button and click Save to save a working copy of the report on
your hard drive. Choose a file location and name the report Territory Sales.

 Formatting the report
Let's polish the report’s appearance by making format and layout changes, implementing
drilldown features, adding a company logo, and adding a report title.

1. Click the matrix outer border to select the matrix. Alternatively, click a matrix cell and press
Esc. Use the Properties pane to make the following changes:

Property Value Property Value

BorderColor Default DimGray Location Left 0

BorderStyle Default Solid Location Top 0.83in

RepeatColumnHeaders True Size Width 4.29167in

RepeatRowHeaders True Size Height 1.09in

2. Click the Calendar_Year cell to select it and make these changes:

Property Value Property Value

BackgroundColor #60759b Font Family Tahoma

Font Color White Font Size 10pt

3. Repeat the last step for the Group cell.
4. Format the Calendar_Quarter, Country, Internet Sales, and Reseller Sales cells, as follows:

Property Value Property Value

BackgroundColor LightSteelBlue Font Size 10pt

Font Family Tahoma

5. Rename the Internet Sales Amount column header to Internet Sales and Reseller Sales Amount
header to Reseller Sales.

6. To create a subtotal by territory group, right-click the [Country] cell and click Add Total.
7. Select the four numeric cells (with text [Sum(Internet_Sales_Amount)] by holding Shift and

clicking each one of them. Format these cells as follows:

CHAPTER 10 390

Property Value Property Value

Font Family Arial Narrow Font Size 10pt

Format C

8. Click the row selector of the last row to select all cells in this row and click the Bold button in
the Font group (Home tab) to change their font to bold.

 Implementing a company logo
Let's add the Adventure Works company logo inside the matrix corner.

1. Select the four empty cells in the matrix corner. Right-click the selection and click Merge Cells
to merge them into a single cell.

2. Click the matrix corner cell to select it. Make sure you are not in edit mode (the mouse cursor
shouldn't be blinking inside the cell).

3. Select the Report Builder Insert tab and click the Image button.
4. In the Image Properties dialog box (General tab), click the Import button and navigate to the

Reports folder in the chapter 10 source code. Select the AWC.jpg image and click Open.
5. Back to the Image Properties dialog box, select the Size tab and click the Fit Proportional dis-

play option. Click OK.

Report Builder 2.0 saves the image inside the report and shows it in the matrix corner.

 Implementing drilldown
Next, you'll implement conditional visibility to hide the quarter data when the report is initial-
ly rendered, but show them when you drill down from a given year.

1. Click the Calendar_Year cell to select it and change its Name property in the Properties pane
to txtYear. Assigning meaningful names to textboxes is helpful when you need to reference
them, such as when configuring conditional visibility.

2. In the Column Groups pane, double-click the Calendar_Quarter group. In the Group Proper-
ties dialog box that follows, click the Visibility tab.

3. Click the Hide option in the When the Report is Initially Run group.
4. Check the Display Can be Toggled by This Report Item checkbox. Expand the drop-down list

below and select txtYear.

Preview the report. Notice that the report no longer shows quarter-level data. However, you
can click the plus sign for any given year to drill down to quarterly data.

 Implementing the report title
A single textbox is sufficient to implement both the report title and subtitle.

1. Click the report body outside the matrix region.
2. In the Insert tab, click the Text Box button to add a new textbox report item.
3. Double-click the textbox to enter edit mode. Enter Territory Sales.
4. Press Esc to select the textbox. Click the Home tab and use the buttons in the Font and

Alignment groups to change the textbox font to Trebuchet MS, 18pt, Bold and alignment to
Left. In the Properties pane, change the textbox Color property to #1c3a70.

5. Resize the textbox to a width of 4 inches and a height of 0.64 inches.

PREVIEWING REPORT BUILDER 2.0 391

We will reuse the same textbox to implement the report subtitle.
6. Click inside the textbox to enter edit mode and place the cursor after "Territory Sales". Press

Enter to start a new paragraph.
7. Type Category and add a space.
8. Drag the ProductCategory parameter and drop it after "Category ", as shown in Figure 10.6.

Report Builder 2.0 displays the [@ProductCategory] placeholder in place of the parameter.
This placeholder is replacement of the expression =Parameters!ProductCategory.Value

9. Select the entire subtitle and change its font to Trebuchet MS, 14pt, Normal.

If you preview the report at this point, it will show #Error in place of the parameter. This is
because the ProductCategory parameter is a multi-valued parameter and its Value property
returns an array of the selected parameter values.

Figure 10.6 Drag the Product-
Category parameter to add it to
the report subtitle.

10. With the textbox in edit mode, right-click the @ProductCategory placeholder and click Ex-
pression.

11. In the Expression dialog box that follows, replace the entire expression text with:
=Join(Parameters!ProductCategory.Label, ",")

This expression concatenates all selected categories in the Category parameter and returns
them as a comma-delimited string. If you preview the report, its layout should match the one
shown in Figure 10.2.

 Publishing the report
Now that the report is ready, let's publish it to the report server to share it with other users.
Because Report Builder 2.0 produces RDL 2008, you can deploy reports only to a SQL Server
2008 report server.

1. Click the Report Builder 2.0 Button and click Save to save a local copy of the report.

2. To publish the report to the server, click the Report Builder 2.0 Button and click Publish
Settings.

3. In the Deployment Settings dialog box, verify the Report Server URL and Report Folder set-
tings and change them if needed. You must have Content Manager rights to publish reports.
Click OK.

4. Click the Report Builder 2.0 Button and click Publish Deploy. Accept the Deployment
Settings dialog box and click OK to publish the report to the server.

CHAPTER 10 392

5. Open Report Manager and navigate to the folder you specified in the deployment settings.
6. Click the Territory Sales report to preview it.

If other users have Browser rights, they can use Report Manager to navigate and view the Ter-
ritory Sales report.

10.3 Authoring a Relational Report
Next, I'll walk you through the steps of implementing a relational report with Report Builder
2.0. The term relational means that the report will retrieve source data from the Adventure-
WorksDW2008 SQL Server database as opposed to an OLAP cube. Top N/Bottom N filtering
is a common ad hoc reporting requirement that is easy to implement with Transact-SQL. Fig-
ure 10.7 shows the Top Customers report that you will author in this practice.

Figure 10.7 The Top Customers report shows the top customers for a given date grouped by
country and sorted by sales in descending order.

In addition to showing you how to get the top customers, the report also demonstrates the
following features:
 Using the graphical query designer
 Authoring a table report with the tablix region
 Implementing a "green bar" report with alternating row shading
 Sorting the report interactively
 Implementing a page footer

The user can use the Order Date parameter to pick a date and click the View Report button to
run the report. The report query retrieves the top 100 customers for the given date based on
their total order amount. The report groups the customers by country and shows the customer
details and the total sales amount for each customer. The page footer shows the report execu-
tion time, the name of the user who requested the report, and the page number.

PREVIEWING REPORT BUILDER 2.0 393

10.3.1 Configuring the Report Data
As you know by now, you start the report by preparing the report data. This involves setting
up a connection to the data source and configuring the report dataset.

 Creating a new report
Before you set up the data source, follow these quick steps to create a new report in Report
Builder 2.0 and configure the report design environment:

1. Launch Report Builder 2.0 from the Microsoft SQL Server 2008 Report Builder program
group.

2. Click the View menu and turn on all options in the Show/Hide group pane.
3. Click the Insert menu. Expand the Header drop-down menu in the Headers and Footers sec-

tion and click Remove Header to remove the page header section.
4. Click the Report Builder 2.0 Button Save As to save the report to your hard drive. Name the

report Top Customers.

 Setting up the report data source
The Top Customers report draws data from the AdventureWorksDW2008 database. Let's set
up a report-specific data source that points to this database.

1. In the Data pane, expand the New drop-down list and click Data Source.
2. In the Data Source Properties dialog box, change the data source name to Adventure-

WorksDW2008. Leave the Type drop-down list set to the Microsoft SQL Server data provider.
3. Click the Edit button.
4. In the Connection Properties dialog box, specify the connection details to the Adventure-

WorksDW2008 database. Click OK to return to the Data Source Properties dialog box.
5. In the Data Source Properties dialog box, select the Credentials tab and verify that the Use

Windows Authentication option is pre-selected. Consequently, the database server will au-
thenticate you based on your Windows identity.

If you prefer to use standard security, select the Use This User Name and Password option,
and enter credentials of a SQL Server login that has read rights to the Adventure-
WorksDW2008 database.

6. Click OK. The AdventureWorksDW2008 data source is added to the Date pane.

 Setting up the report dataset
Once the data source is in place, you are ready to set up the report dataset.

1. In the Data pane, right-click the AdventureWorksDW2008 data source and click Add Dataset.
2. In the Dataset Properties dialog box, name the dataset Customers and click the Query Designer

button.

Microsoft has provided two query designers for authoring SQL queries. Use the generic query
designer to send a pass-through query to SQL Server without validating its syntax. When con-
necting to SQL Server, you can use also the graphical query designer. The graphical query de-
signer can auto-generate the query for you. If you click the Edit As Text button in the Query
Designer, Report Builder 2.0 switches to the generic query designer.

3. If the Edit As Text button is not selected, click it to switch to the generic query designer.

CHAPTER 10 394

4. Type the following query. Alternatively, you can switch to the graphical query designer and
author the query interactively. Or, to save time, click the Import button to import the query
from the Customers.sql file located in the Queries folder of the book source code for this
chapter.
SELECT TOP (100)
 DimGeography.EnglishCountryRegionName, DimCustomer.FirstName, DimCustomer.LastName,
 DimCustomer.EmailAddress, DimCustomer.Phone, SUM(FactInternetSales.SalesAmount)
 AS SalesAmount
FROM DimCustomer INNER JOIN
 FactInternetSales ON DimCustomer.CustomerKey = FactInternetSales.CustomerKey INNER JOIN
 DimDate ON FactInternetSales.OrderDateKey = DimDate.DateKey INNER JOIN
 DimGeography ON DimCustomer.GeographyKey = DimGeography.GeographyKey
WHERE (DimDate.FullDateAlternateKey = @OrderDate)
GROUP BY DimGeography.EnglishCountryRegionName, DimCustomer.FirstName, DimCustomer.LastName,
 DimCustomer.EmailAddress, DimCustomer.Phone
ORDER BY SalesAmount DESC

This query groups the customers by country and sorts them by sales in descending order. It
uses a TOP 100 clause to return the top 100 customers. It also defines a @OrderDate query
parameter to parameterize the query by date.

5. Click the Run button to execute the query. In the Define Query Parameters dialog box, enter a
valid Adventure Works order date, such as 7/1/2004 (recall that the Adventure-
WorksDW2008 database stores data for the 2001-2004 time range).

6. Click OK.

Report Builder 2.0 adds the dataset definition under the AdventureWorksDW2008 data
source and adds an OrderDate parameter under the Parameters node. Our report will need to
display the full name of the employee. However, as currently defined, the query returns the
employee's first and last name as independent fields. You can use an expression in the tablix
field to concatenate them together, but you'll need to repeat the expression when you confi-
gure the interactive sort on the Name column. A better approach is to define a FullName data-
set calculated field that defines the expression once.

7. In the Data window, right-click the Customers dataset and click Add Calculated Field.
8. In the Dataset Properties dialog box, enter FullName in the Field Name column and add the

following expression in the Field Source column.
=Fields!FirstName.Value & " " & Fields!LastName.Value

9. Click OK. The FullName field is added to the Customers dataset. Its value will be calculated at
run time by concatenating the customer's first and last names.

 Configuring a report parameter
Let's make a few changes to finalize the configuration of the OrderDate parameter.

1. In the Data pane, expand the Parameters node and double-click the OrderDate parameter.
2. In the General tab of the Report Parameter Properties dialog box, change the Prompt field to

Order Date and the Data Type drop-down list to Date/Time.
3. Next, let's configure the OrderDate parameter to default to the current date. Click the Default

Values tab and click the Specify Values option.
4. Click the Add button and click the fx button next to the new row.
5. In the Expression dialog, enter the following expression:

=Today()

PREVIEWING REPORT BUILDER 2.0 395

This expression uses the Visual Basic Today function which returns the current date.
6. Click OK to close the Expression dialog box and OK one more time to close Report Parameter

Properties dialog box. Press F5 to preview the report.

Notice that you can use the date picker control to select a date. Do you see how the OrderDate
parameter shows the current time after the date (for example, 5/19/2008 10:25:30 AM)? If you
want just the date, you can modify the expression accordingly.

7. Back to the Default Values tab, change the expression to:
=CDate(Today().ToString("d"))

This expression formats the date as a short date and uses the CDate Visual Basic function to
cast the resulting string back to a date type.

8. Preview the report.

Notice that the OrderDate parameter no longer displays the time alongside the date.

10.3.2 Designing the Report Layout
The next step of implementing the report involves designing the report layout. This includes
configuring Reporting Services data regions, designing page headers and footers, working with
images, and implementing interactive features, such as end-user sorting. During this process,
you can use the Report Builder Preview feature to test the report.

 Getting started with designing the report
Let's start by setting up the page layout.

1. Right-click the design surface outside the report body and click Report Properties.
2. In the Report Properties dialog box, select the Landscape paper size orientation and click OK.
3. Drag the right border of the report body to resize to a width of 9 inches. Alternatively, click

the report body and set its Size Width property in the Properties pane to 9 inches.

Next, let's add a report title.
4. Click the Insert menu and click the Text Box item in the Report Items menu group. Report

Builder 2.0 adds a textbox report item to the report body.
5. Configure the textbox properties in the Properties pane, as follows:

Property Value Property Value

Location Left 2.85" Color RoyalBlue

Location Top 0" Name Title

Font FontFamily Trebuchet MS Value Top Customers

Font FontSize 24pt TextAlign Center

Font FontWeight Bold

TIP Another way of formatting report items besides setting property values in the Properties pane is to use the toolbar
buttons in the Home menu. Recall that the Home menu lets you apply font, alignment, border, and position settings.

CHAPTER 10 396

 Working with the table region
The Top Customers report has a tabular layout. You will use the table data region to lay out
the body of the report.

1. Click the Insert menu and click the Table button to add a table region to the report body.
2. Drag the table region handle to position the table region below the report title.
3. Report Builder 2.0 has pre-configured the table region with three columns. Excluding the

Country column, which groups customers by country, our report needs four columns to dis-
play the customer details (see again Figure 10.7).

4. Right-click the last column of the tablix region and click Insert Column Right to add a new
column to the table region.

Next, you'll bind dataset fields to the detail cells in the tablix region. You can do this by drag-
ging dataset fields from the Data pane to the detail cells or by using the field selector.

Figure 10.8 Use the field
selector to bind a dataset field
to a table cell.

5. Position your mouse cursor on top of the first detail cell in the Data row and click the field
selector button. Report Builder 2.0 displays the fields of the Customers dataset, as shown in
Figure 10.8.

6. Click the FullName field.
7. Repeat the last two steps to bind the other detail cells to EmailAddress, Phone, and SalesA-

mount fields.
8. Preview the report. Enter 7/1/2004 in the Order Date parameter.

Notice that the report displays all customers who have placed orders on that date, sorted in
descending order by sales.

 Grouping report data
Next, you'll set up a row group to group the customers by country.

1. If the report is in preview mode, click the Design toolbar button to switch to design mode.
2. Click the table region to select it.

Notice that the Rows Groups pane in the Grouping pane below the report body includes only
the Details group. The Details group represents the individual rows of the report dataset. To
group report data by country, you need to set up a new row group.

3. Drag the EnglishCountryRegionName field from the Customers dataset in the Data pane and
drop it above the Details group in the Row Groups pane, as shown in Figure 10.9.

PREVIEWING REPORT BUILDER 2.0 397

Alternatively, you can drop the EnglishCountryRegionName field to the left of the [FullName]
cell in the tablix region. In both cases, Report Builder adds a new column to the left of the ta-
ble region and configures the column as tablix header.

4. To show report grand totals, right-click the EnglishCountryRegionName detail cell and click
Add Total. A new row is added to the table region to display the report grand total.

 Formatting the report
Let's apply a few format settings to improve the appearance of the report.

1. Select all cells in the first row by clicking the row selector and change their font style to Bold.
2. Rename the header of the first column to Country.
3. Click the EnglishCountryRegionName detail cell and change its font style to Bold.
4. Right-click the SalesAmount detail cell and click Text Box Properties.
5. In the Text Box Properties dialog box, select the Number tab. Format the textbox as Currency

with zero decimal places and a thousand separator. Repeat the last two steps to format the
[Sum(SalesAmount)] textbox.

6. Click the SalesAmount column header to select all cells in this column. In the Home tab, click
the Align Text to the Right button in the Alignment group to right-justify the column.

7. Select all cells in the footer row by clicking the row selector and change their font to Bold.
8. To alternate the row background color, press and hold the Shift key and click all detail cells

except EnglishCountryRegionName to select them. In the Properties pane, enter the following
expression for the BackgroundColor property:
=IIF(RowNumber(Nothing) Mod 2 = 0, "White", "Azure")

The RowNumber function returns the ordinal row number. Because Nothing is used as an
expression scope, the expression operates on the outermost scope, which is the report dataset.
The Iif function sets the background color to White for even rows and Azure for odd rows.

9. Click any cell inside the table region and press Esc to select the table region itself.
10. In the Properties pane, expand the NoRowsMessage drop-down list and click Expression.
11. In the Expression dialog box, enter the following text:

No data<Ctrl><Enter>
Select a different date

12. Preview the report. Notice that when the query returns no rows, Report Builder displays the
NoRowsMessage text.

Figure 10.9 Create a new row group
by dragging a dataset field and drop-
ping it above the DetailsGroup group
in the Rows Groups pane.

CHAPTER 10 398

 Implementing interactive sorting
Follow these steps to let the user sort by customer within each instance of the Country group:

1. Right-click the Name column header cell and click Textbox Properties.
2. In the Text Box Properties dialog box, turn on Enable Interactive Sort on this Text Box.
3. Select the Detail Rows sort option.
4. Expand the Sort By drop-down list and select [FullName]. Preview the report.Notice that

there is an up-down sort indicator in the Name column header cell.
5. Click the sort indicator to sort customers within each Country group in ascending order. Each

time you click the sort indicator, you toggle the sort order of the customers.

 Implementing a page footer
The only remaining task is to add the page footer. Page footers can contain text and images.
To demonstrate the use of images, we’ll start by adding the Adventure Works company logo.

1. In the Data pane, right-click the Images folder and click Add Image. Alternatively, you can
right-click the page footer section and click Insert Image. This will bring you to the familiar
Image Properties dialog box.

2. In the File Open dialog box that follows, navigate to the chapter 10 Reports folder and select
the AWC.jpg image. Click OK.

3. Drag the AWC image from the Images folder to the page footer. Resize the image by dragging
its resize handles as needed.

4. Click the image to select it and change its Sizing property to Fit in the Properties pane.

Follow the steps in the Implementing the Report Footer practice in section 3.3.9 (chapter 3)
to configure the rest of the report footer.

10.4 Summary
This chapter previewed the pre-release version of Report Builder 2.0, which is one of the Mi-
crosoft-provided report design tools. Report Builder 2.0 aims to replace Report Builder 1.0
sometime after the SQL Server 2008 release date. You can use Report Builder 2.0 to author
standard and ad hoc reports outside the Visual Studio environment. Remember that Report
Builder 2.0 raises the bar on technical skills required to author reports.

Report Builder 2.0 shares components with the BIDS Report Designer, but without the
dependency on Visual Studio. It provides full-featured access to RDL and supports the full
range of OLAP and relational data sources. The report definitions can be saved to disk or pub-
lished to the report server.

Recall that the typical report lifecycle includes authoring, management, and delivery phas-
es. This chapter concludes the report authoring part of this book. Next, we’ll see how report
administrators can manage and secure the report server.

10.5 Resources
Microsoft SQL Server 2008 Feature Pack RC0

(http://tinyurl.com/5h46tn)—Includes a link for downloading Report Builder 2.0.

399

 Management
An enterprise-level platform, such as Reporting Services, must be trustworthy. A trustworthy
system is easy to manage and support. It is also highly-available and scalable. Finally, it pro-
vides the means to protect data assets by enforcing restricted access to authorized users only.

Report Manager is the tool of choice for administrators who manage report servers run-
ning in native mode. This web application can be used to perform routine management tasks,
such as uploading report content, setting up data sources and report parameters, creating sub-
scriptions, and enforcing restricted access to reports. SQL Server Management Studio can be
used to manage server-wide properties and security role definitions. In SharePoint integration
mode, SharePoint provides the management framework, and Report Manager is not available.

As a report administrator, you can configure how reports are executed. Typically, end us-
ers would prefer to see the latest data on the report. However, if some data latency is accepta-
ble, you can optimize report performance by configuring the report for caching. Besides
requesting reports on demand, you can let end users subscribe to reports to receive them au-
tomatically on a schedule. As report administrator, you can set up data-driven subscriptions
that retrieve dynamic recipient and configuration data from an external database.

Occasionally, Report Manager and SharePoint may not be up to the task to meet more ad-
vanced management requirements. When the management tools provided by Microsoft don't
meet your needs, you can write custom applications that pick up from where these manage-
ment tools leave off. These applications can integrate with the Reporting Services API to man-
age the report server programmatically.

It is unrealistic to expect that your management responsibilities will come to an end once
the reports are deployed to the production server. By monitoring the report server and ex-
amining its log files and performance counters, you can ensure that it functions correctly at an
acceptable performance level.

PP AA RR TT

401

CChhaapptteerr 1111

Management Fundamentals

11.1 Understanding Report Management 401
11.2 Managing Report Server Content 411
11.3 Managing Security 422

11.4 Summary 430
11.5 Resources 430

In a typical enterprise environment there are usually three different groups of users who get
involved in the different phases of the report lifecycle. Report authors focus on report design
and programming. Administrators deploy and manage the report server. End users run re-
ports. In this chapter, we will wear the administrator’s hat and dive into the mechanics of
managing report server content and operations. As we will find, Reporting Services provides
not one but several tools and approaches for doing this work.

This chapter starts by providing an overview of the Reporting Services management tools
and interfaces. The main focus of this chapter is Report Manager, which is the primary tool for
managing content in Reporting Services. I will show you how to leverage Report Manager to
perform common administrative tasks, such as managing the folder space and securing report
server content and operations.

The exercises in this chapter use the Adventure Works sample reports. If you haven't in-
stalled the Adventure Works sample reports yet, follow the instructions in the book front mat-
ter to install them.

11.1 Understanding Report Management
As a report server administrator, tasks that you will perform on a routine basis include manag-
ing the report server, controlling access to the report catalog, adding or deleting reports,
working with report data sources and parameters, automating repetitive tasks, and monitoring
the server performance. Reporting Services provides a comprehensive set of management tools
and interfaces to help you perform all of the above activities.

11.1.1 Understanding Report Management Tools
While Reporting Services provides several management tools, the ones that you will use the
most are Report Manager, SQL Server Management Studio, and Reporting Services Configura-
tion Manager, as shown in Figure 11.1. All Reporting Services management tools use public
programming interfaces to integrate with the report server.

 Report Manager
Report Manager is the out-of-the box Web front-end tool for managing a report server in-
stance that is configured for native mode. In SharePoint integration mode, SharePoint pro-
vides the management functionality via the SharePont Web front end and Report Manager is

CHAPTER 11 402

not supported. In native mode, you use Report Manager to both view and manage reports.
Report Manager supports common management tasks that you are likely to perform on a daily
basis, including searching, printing, and viewing reports, managing the report content, defin-
ing security policies that determine access to the report server, configuring the report execu-
tion and history, and defining report subscription delivery.

Figure 11.1 Reporting Services pro-
vides three main management tools:
Report Manager, SQL Server Manage-
ment Studio, and Reporting Services
Configuration Manager.

Report Manager is implemented as an ASP.NET web application that is installed by default in
the \Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Services\Report-
Manager folder. Regretfully, Microsoft doesn't provide the source code for Report Manager so
you are out of luck if you need to make changes to any of its functionality. On a superficial
level, Microsoft lets you customize Report Manager’s appearance by changing its Cascading
Style Sheet (\Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Servic-
es\ReportServer\Styles\ReportingServices.css).

If you need more customization than this and you are really adventurous, you can take the
unsupported road and write client-side JavaScript to enhance (hack) the Report Manager. In
case you decide to try this approach, I provided a link in the Resources section to a blog that
demonstrates how to add a custom logo image.

NOTE In my opinion, the best thing that Microsoft can do to satisfy the barrage of customization needs is to declare
Report Manager a "sample" and publish its source code. Not only an open source Report Manager will let developers
tailor its functionality but also will serve as a great learning tool for integrating custom applications with Reporting Ser-
vices. If you agree, log this wish on http://connect.microsoft.com.

Report Manager runs in a browser window. You open Report Manager by entering the Report
Manager URL in the address bar. By default, the URL is http://<servername>/reports. You can
find the actual URL that is valid for your installation in the Reporting Services Configuration
tool (Report Manager URL tab). You can use Report Manager to administer a single report
server instance and view reports on demand. Behind the scenes, Report Manager uses the Re-

MANAGEMENT FUNDAMENTALS 403

port Server Web service for all management tasks. Report Manager uses both the Report Serv-
er Web service and URL access for on-demand report viewing.

 SQL Server Management Studio (SSMS)
SQL Server Management Studio is an integrated environment for managing all components of
SQL Server, including Reporting Services. You can find SSMS in the Microsoft SQL Server
2008 program group. In SQL Server 2005, SSMS provided full-featured management access to
the report server, including features that Report Manager didn't have, such as scripting man-
agement tasks and the ability to set model item security. As it turned out, most administrators
(including myself) preferred using Report Manager for a report server running in native mode
(or SharePoint for a report server configured for SharePoint integrated mode). Given customer
preference and a desire to reduce the overhead of supporting and enhancing several manage-
ment interfaces, the Reporting Services team decided to streamline the management tool set by
eliminating redundant functionality.

In SQL Server 2008, the Reporting Services team scaled down SSMS to support server set-
tings and moved all content management tasks to Report Manager. Specifically, in version
2008, SSMS doesn't provide access to the report content or the folder namespace, so you can-
not view, secure, or manage report folders and their content. Furthermore, SSMS discontinued
scripting support for report management tasks. What you can do in SSMS is carry out the fol-
lowing system management tasks: connect to one or more report servers running in native or
SharePoint mode, set server properties, enable or disable features, view and cancel running
jobs, define security roles used on the server, and define server schedules.

In Report Manager, Microsoft removed role and job management features. Report Manager
also lost the checkbox for enabling or disabling My Reports and execution logging server
properties, but kept schedule management. Personally, I think that these changes make sense.
The idea is to rely on the Report Manager for your day-to-day management activities and use
SSMS occasionally to manage system settings.

If you enter only the server name (or <server name>\<instance name> with instance dep-
loyments) on connect, SSMS uses the report server Windows Management Instrumentation
(WMI) provider to connect to the server and retrieve the Report Server Web service URL. Next
it uses the Report Server Web service for all tasks. If you directly provide the Report Server
Web service URL, sich as http://localhost/reports, then SSMS doesn't use WMI provider. SQL
Server 2008 introduced breaking changes to the report server WMI provider as a result of the
new hosting model and URL reservation system. Consequently, if you need to use SSMS 2008
to manage SQL Server 2005 report server, specify the Report Server Web service URL instead
of the server name to bypass the WMI provider.

NOTE Perhaps, you've heard about the new SSMS management features for the Database Engine in SQL Server
2008, such as Policy Management, Data Collection, and Resource Governor. Unfortunately, Reporting Services
doesn't integrate with the SQL Server 2008 management framework in any way. Microsoft realizes the importance of
consolidating all services to leverage the management framework and will work toward this goal in a future release.

 Reporting Services Configuration Manager
I introduced you to the Reporting Services Configuration Manager in chapter 2 when I
showed you how to make URL reservations for the report server and Report Manager. Recall
that Reporting Services Configuration Manager is a Windows-based tool for configuring local
or remote servers. You can find Reporting Services Configuration Manager in the Microsoft
SQL Server 2008 Configuration Tools program group. You can use it to perform various

CHAPTER 11 404

configuration tasks, including changing the service account that the report server runs under,
managing URL reservations and SSL settings, connecting to or creating a new report server
database, specifying the database credentials, configuring e-mail settings for subscription-
based report delivery, managing the report server unattended execution account and encryp-
tion keys, and configuring scale-out deployment.

Behind the scenes, the Reporting Services Configuration Manager uses the report server
WMI provider to read from and write to the report server configuration file. Although the con-
figuration tool should be your first stop to verify server configuration, it shouldn't be treated
as a troubleshooting or diagnostic tool. Its main design goal is to accurately present current
configuration settings of your report server and allow you to reliably and consistently change
these configuration settings based on your needs. It may flag certain conditions as warnings
or errors, but it doesn't communicate with the server to verify that it is operational or monitor
its health. In addition, the configuration tool doesn’t support WMI events, so it cannot notify
you when a change takes place.

 Other management options
Reporting Services supports additional management tools to support more advanced man-
agement scenarios, such as automating report deployment or programmatic management.
These tools include:
 Reporting Services Script Host (rs.exe)—Rs.exe is a command-line utility that lets you run

a script file to automate management tasks. For example, you can use rs.exe to publish re-
ports to a report server. You use Visual Basic.NET to code the script file. Then, you can
pass the script file as an input to the Reporting Services Script utility or schedule it to run
unattended. I will demonstrate the Reporting Services Script Host in chapter 13.

 Rskeymgmt Utility—Rskeymgmt is a command-line utility that lets you manage the report
server encryption key. For example, suppose that you need to install a report server data-
base from another server. Assuming you have a backup of the encryption keys from the
source server, you can prevent losing the encrypted content by restoring the encryption
keys on the target server. To do this, execute the following commands in the order shown:
rskeymgmt –e, rskeymgmt –r, and then rskeymgmt –a. Alternatively, you can use the Re-
porting Services Configuration Manager to manage the encryption key since it supports
most of the rskeymgmt features.

 Rsconfig Utility—This utility lets you manage the connection string to the report server
database. Unless you need a command-line utility, I would recommend you use the
graphical interface of the Reporting Services Configuration Manager to configure the re-
port server database.

 Custom Applications—Thanks to the open management APIs, you can write a custom
application to manage a report server if you need more features than what Microsoft pro-
vides off-the-shelf. The ReportService2005 and ReportService2006 Web service endpoints
provide full access to the report server management functionality in native and SharePoint
integration modes. To help you get started, Microsoft provides an RS Explorer sample ap-
plication (see Resources for a link). RS Explorer demonstrates how to develop a .NET
Windows application that uses the Report Server Web service to manage the report cata-
log and view reports.

MANAGEMENT FUNDAMENTALS 405

11.1.2 Understanding the Report Server Service
Besides the brief overview of the report server in chapter 1, we didn’t discuss how the server is
implemented and how it integrates with the rest of the SQL Server services. Let’s fill in this
gap now.

 How is the Report Server service implemented
As noted in chapter 1, SQL Server 2008 introduced a new hosting model. The report server is
a collective name for three applications: Report Manager, Report Server Web service, and
Background Processor. From an implementation standpoint, these three applications are
hosted in a single process—the Report Server service.

Figure 11.2 The report
server is implemented as
a Windows service that
hosts the Report Server
Web service, Background
Processor, and Report
Manager applications.

The Report Server service is implemented as a Windows service (ReportingServicesSer-
vice.exe). To see the Report Server service, open the Windows Services applet and locate SQL
Server Reporting Services. Double-click it to access its properties, as shown in Figure 11.2. In
my case, I have a single Report Server service which is configured to run on the default in-
stance (MSSQLSERVER).

However, if you install multiple instances of SQL Server or run SQL Server 2008 side-by-
side with an older version, you may have more than one report server instance. The setup
program installs the report server binary folder, whose default location (assuming that all SQL
Server components are installed) is \Program Files\Microsoft SQL Server\-
MSRS10.MSSQLSERVER\Reporting Services\ReportServer\bin folder.

 Understanding dependent services
The report server may rely on other SQL Server services to function properly. For example,
the SQL Server service must be running if the report server database is located on the same

CHAPTER 11 406

machine as the report server. If you have two or more SQL Server instances on the same ma-
chine, you also need to enable the SQL Browser service. This service listens for incoming re-
quests and redirects them to the appropriate server instance.

If you are planning to use subscribed report delivery or would like to automate manage-
ment tasks, you also need the SQL Server Agent service too. This service allows you to sche-
dule jobs and run them in an unattended mode. If you are using the management sample
reports to view report execution log data, you need Integration Services to configure and run
the package that extracts log data and copies it to a separate database, as I will demonstrate in
the next chapter.

Finally, if your reports retrieve data from Analysis Services cubes hosted on the same ma-
chine, the SQL Server Analysis Services service must be running as well. You can manage the
startup properties of the SQL Server services from Windows Services applet or the SQL Server
Configuration Manager tool, which is located in the Microsoft SQL Server 2008 Configura-
tion Tools program group.

Figure 11.3 You can use
Reporting Services Configu-
ration Manager to perform
various management tasks,
including restarting the Re-
port Server service and view-
ing the SQL Server edition
and version.

11.1.3 Managing the Report Server
As an administrator, you need to know how to manage and troubleshoot the report server.
Common report server management tasks include starting and stopping the report server and
setting server properties.

 Starting and stopping the report server
The Report Server service must be running at all times in order for the report server to be
functional. Sometimes, you may need to restart the service, such as when you need to deploy a
new version of a custom assembly and the old assembly is locked by the report server. Besides
using the Windows Services applet and the SQL Server Configuration Manager, there are oth-

MANAGEMENT FUNDAMENTALS 407

er ways to restart the Report Server service. For example, you can use the Reporting Services
Configuration Manager.

1. Open the Reporting Services Configuration Manager and connect to the report server.
2. Click the top node in the left pane that represents the report server.

Note that the Current Report Server pane shows the instance details, such as the edition, the
version, the integration mode, and server status. For example, looking at Figure 11.3, you can
see that I am running SQL Server Enterprise edition and the report server is configured in na-
tive (non-SharePoint) mode. You can also start and stop the report server by running the fol-
lowing command-line statements.
net stop "SQL Server Reporting Services (MSSQLSERVER)"
net start "SQL Server Reporting Services (MSSQLSERVER)"

Replace MSSQLSERVER with the instance name if Reporting Services is not installed on the
default instance.

 Changing the service account
You define the account that the Report Server service runs under when you install the server,
as I demonstrated in chapter 2. Sometimes, you may need to change the service account. Sup-
pose you may have selected the NETWORK SERVICE account at install but have found it to
be too restrictive. For example, you may need to report from a data source located on another
server, such as an Analysis Services cube, and you want to pass the user credentials to the data
source. To avoid the double-hop NTLM limitation, you decide to use Kerberos security and
change the Report Server service account to Local System, which is trusted for delegation by
default.

While you can change the service account in the Windows Services applet, you should use the
Reporting Services Configuration Manager for three reasons. First, it adds the new account to
the SQLServerReportServerUser Windows group (or $<instance_name>SQLServerReport-

Figure 11.4 Use the Re-
porting Services Configura-
tion Manager to change the
service account.

CHAPTER 11 408

ServerUser with instance deployment), which has the necessary ACL permissions to the report
server folders. Second, it grants the account access to the report server database by adding it to
the RSExecRole role. Third, it updates the service identity portion of encryption key data,
enabling the service to continue to access its copy of the key. To change the service account
using the Reporting Services Configuration Manager:

1. Start the Reporting Services Configuration Manager from the Microsoft SQL Server 2008
Configuration Tools program group.

2. Select the Service Account page, as shown in Figure 11.4.
3. Select the Use Built-in Account option to choose Local System, Network Service, or Local

Service Windows built-in accounts. Or, use the Another Account option if you need another
account and enter the account name in the format domain\user (or servername\user for local
accounts), and the account password. Click the Apply button.

Before making a selection, you may want to review the considerations for choosing a service
account that I discussed in chapter 2.

 Managing server properties
The report server supports various system properties that control the server functionality and
security. Follow these steps to view and manage the server properties in SQL Server Manage-
ment Studio.

1. In Object Explorer, expand the Connect drop-down list and choose Reporting Services.
2. In the Connect to Server dialog box, you can enter either the Report Server Web service URL,

or URL to the SharePoint Document library in SharePoint mode, or name of the SQL Server
instance that hosts the report server. Click Connect

3. In Object Explorer, right-click on the Report Server node and choose Properties to bring up
the Server Properties dialog box, as shown in Figure 11.5.

Figure 11.5 Use SQL
Server Management Studio
to manage the report server
properties.

SSMS reads the system properties from table ConfigurationInfo in the ReportServer database
and displays them in the Server Properties dialog box. You can overwrite the default settings if

MANAGEMENT FUNDAMENTALS 409

needed. For example, the My Reports feature is disabled by default to prevent end users from
draining system resources. If you want end users to save reports to their private My Reports
folders, you can use the General page to enable the My Reports role, as shown in Figure 11.5.
The Advanced page gives you access to all system properties.

NOTE While you can update the system properties directly in the ConfigurationInfo table in the ReportServer data-
base, the recommended and supported way is to use a management tool, such as SSMS, or call the SetProperties
API. This will ensure that the property value is evaluated properly and the new value becomes effective immediately.

You can also use Report Manager to manage a subset of the system properties, such as the site
name and report execution settings.

4. Open Internet Explorer and navigate to the Report Manager URL, such as
http://<servername>/reports.

5. Click the Site Settings menu link on the top right, as shown in Figure 11.6.

If you don't see the Site Settings link, you don't have administrator rights to the report server.
By default, only Windows local administrators are granted rights to manage the report server.
However, as I mentioned in chapter 2, administrator permissions are not automatically availa-
ble to local administrators if you are using the User Account Control (UAC) feature of Win-
dows Vista or Windows Server 2008. Use SQL Server Management Studio to create explicit
role assignments for your account that grant it System Administrator rights.

The Report Server System Properties topic in the SQL Server Books Online describes the pur-
pose and supported values for all report server system properties. I'll explain many of them on
as-needed basis throughout the book.

 Managing jobs
Jobs are running processes on the server. User jobs are activities initiated by the user, such as
running a report and manually generating a snapshot. System jobs are activities initiated in an
unattended mode by the report server, such as scheduled report execution snapshots and da-
ta-driven subscriptions. The report server periodically scans the RunningJobs table in the re-
port server database to discover any in-progress jobs.

The RunningRequestsDbCycle setting in the report server configuration file (rsreportserv-
er.config) determines how often the report server polls the database. By default, the report
server scans the database every 60 seconds to evaluate running jobs. The RunningRequestsAge

Figure 11.6 The Report Manager Site
Settings page gives you access to a sub-
set of the report server system properties.

CHAPTER 11 410

setting specifies the interval at which the report server changes the job status from New to
Running.

You can use SSMS to view and cancel user jobs and system jobs. The Long Running Re-
port sample report included in the book source code simulates a long running job. The dataset
query uses the WAITFOR statement to delay the query execution for one minute:
WAITFOR DELAY '00:01:00';
SELECT * FROM HumanResources.Employee;

Follow these steps to run the report and monitor the user job in SSMS.
1. Publish the Long Running Report definition to the report server.
2. Use the Report Manager to run the report.
3. In SSMS, connect to the report server.
4. Expand the Jobs folder and double-click the Long Running Report job to view its Properties,

as shown in Figure 11.7.

Figure 11.7 Use SSMS to view and cancel running jobs on the server.

The Job Properties dialog box shows that this is a user job as a result of rendering Long Run-
ning Report. In case of reports, you can see the report path, the job start time, and user name.
You can cancel certain jobs, such as on-demand report delivery, scheduled report execution,
and standard subscriptions. To cancel a job, right-click the job and choose Cancel Job(s). You
can select and cancel multiple jobs at the same time.

MANAGEMENT FUNDAMENTALS 411

11.2 Managing Report Server Content
Managing content on a report server is an ongoing management task that every administrator
needs to master. This includes managing folders, reports, data sources, models, and resources.
Note that the terms "server namespace", "folder namespace", and "report server content" are
used interchangeably to represent the items stored in the report catalog. As an administrator,
you will rely on Report Manager to manage report server content.

11.2.1 Understanding Report Server Content
Similar to the Windows file system, Reporting Services organizes content into hierarchical
folders. Unlike Windows, Reporting Services stores the content in the report server database
instead of on disk. This is needed to enable scale-out deployment where multiple report serv-
ers share the same content.

 Understanding content types
Reporting Services supports the following content types: folder, report, data source, model,
and resource. Table 8.2 shows the content types, the icons that the Report Manager associates
with them, and a brief description for each content type.

Table 11.1 Content types supported by Reporting Services

Content Type Icon Description

Folder A logical container of items

Report An SSRS report

Data Source A data source object that represents a connection to a database

Model A Report Builder model

Resource Any other item in the report catalog

You are already familiar with the first four content types. The resource content type deserves
more attention. A resource represents an external file that is not a report definition, data
source definition, or a Report Builder 1.0 model definition. While you can upload any file to
the report catalog, it rarely makes sense to do so. Instead, you would upload only files that can
be used by reports, including image files for external report images, web pages for report
hyperlinks (for example, to display helpful information to the end user), and XSLT files for
reports that use XSL transformations when exported to XML. If the MIME type of the resource
files is one of the standard MIME types, Report Manager will display a MIME-specific icon for
the resource. Otherwise, a generic resource icon, as the one shown in Table 8.2, will be used.

TIP To prevent denial-of-service attacks, ASP.NET limits the maximum file size for uploading files to 4 MB. If you need to
upload a report or resource that is bigger than 4 MB, increase the maxRequestLength setting in the web.config.comments
file, which is located in the \%systemroot%\ Microsoft.NET\Framework\<version>\CONFIG folder.

 Understanding content navigation
As an administrator, you can organize related catalog items in folders. Folders can be nested to
an arbitrary nesting level. End users or custom applications can request a catalog item by its

http://localhost/Reports/Pages/Folder.aspx?ItemPath=/AdventureWorks+Sample+Reports&ViewMode=List�
http://localhost/Reports/Pages/Report.aspx?ItemPath=/AdventureWorks+Sample+Reports/Company+Sales�
http://localhost/Reports/Pages/DataSource.aspx?ItemPath=/Data+Sources/Adventure+Works�
http://localhost/Reports/Pages/Model.aspx?ItemPath=/AMRS/Adventure+Works�
http://localhost/Reports/Pages/Resource.aspx?ItemPath=/AMRS/setspn�

CHAPTER 11 412

path in the report catalog. For example, the path /AdventureWorks Sample Reports/Company
Sales points to the Company Sales report inside the AdventureWorks Sample Reports folder.
Note that an item path always starts with a forward slash.

Reporting Services supports a My Reports feature to let end user save reports in a private
folder for his own use. By default, this feature is turned off to prevent end users from draining
the server resources. When you enable My Reports (see again Figure 11.5), users can reference
its content by navigating to /My Reports, such as /My Reports/Sales Report. Behind the scenes,
the server maps My Reports to /users/<username>/My Reports. If the server is configured for
Windows security, the user name will be the user Windows login. If custom security is used, it
will be the username argument that the application passes to the LogonUser API.

11.2.2 Managing Folders
Users with Content Manager rights can manage folders and their content. This includes creat-
ing new folders, deleting existing folders, and uploading items. Let's use Report Manager to
demonstrate folder management.

 Navigating content
Navigating report server content with Report Manager is easy.

1. Open the Report Manager application in Internet Explorer by entering the Report Manager
URL in the address bar. By default, the URL is http://<servername>/reports.

Report Manager shows the content of the root folder in a list view, as shown in Figure 11.8.
For user convenience, Report Manager names the root folder Home. However, when you ref-
erence items in the catalog by URL or programmatically, you use a forward slash to represent
the root folder. Report Manager provides also a Home link in the main menu, which you can
click to get to the root folder from anywhere in the folder namespace.

Figure 11.8 The Report Manager
displays the content of the root folder.

The default name of the Report Manager application is SQL Server Reporting Services. How-
ever, if you want to personalize the site, you can change the site name from the Site Settings
page if needed. The New Folder button lets you create a new folder. Use the New Data Source
button to create a new data source. Use the Upload File button to upload report content. If
Report Builder 1.0 is enabled on the server, you can click the Report Builder button to launch
the Report Builder 1.0 client.

2. Suppose you want to quickly find all sales-related reports. In the Search For field, enter sales
and click the green arrow button. Report Manager searches the report catalog and shows you a
list of reports whose name contains the criteria. Click the Home menu link to go back to the
Home folder.

3. Right-click on the AdventureWorks Sample Reports folder and choose Properties. The Ad-
dress (URL) property shows the following link:

MANAGEMENT FUNDAMENTALS 413

http://localhost/Reports/Pages/Folder.aspx?ItemPath=%2fAdventureWorks+Sample+Reports&ViewMode=List

The Report Manager knows that the content type of AdventureWorks Sample Reports is a
folder and will navigate to the Folder.aspx page to display the folder properties when you
click on the link. The ItemPath parameter shows the URL-escaped path to the item in the re-
port catalog.

Figure 11.9 Use the Show
Details mode to see the details
of the items in the folder and
conveniently delete items.

4. Click the Show Details button. The Report Manager shows the folder details, such as when the
folder was last modified and who modified it. The Show Details mode also lets you select and
delete multiple catalog items. Clicking the Hide Details mode button will get you back to the
list view. I typically use the Show Details mode when I want to go directly to the report prop-
erties page and bypass viewing the report, since clicking a report link runs the report.

5. Click the Data Sources folder to see its content. If you wonder how the Data Sources folder got
created, the TargetDataSourceFolder project property of all Report Server demo projects is set
to Data Sources. As a result, when you deploy the project in BIDS, BIDS creates the Data
Sources folder and uploads the project shared data sources to it.

Figure 11.10 Use the folder's
Properties page to rename the fold-
er, enter a folder description, and
exclude the folder from the list view.

6. Select the Properties tab to access the folder properties of the Data Sources folder, as shown in
Figure 11.10. The Properties page lets you rename a folder and enter a folder description. You
can use the Properties page to delete a folder or move it to a new location in the report cata-
log.

7. You can hide a catalog item to exclude it from the list view of its containing folder. Suppose
that you want to exclude the Data Sources folder from the folder list to reduce clutter. Select
the Properties tab of the Data Sources folder and check the Hide in List View checkbox. Click
the Apply button and then click the Home menu link on the top right.

CHAPTER 11 414

Observe that the Data Sources folder is no longer shown in the Home folder content. Howev-
er, clicking the Show Details button will show the Data Sources folder. Hiding items in the list
view is not a security measure; it is only meant to reduce the perceived complexity of busy
folders. You need to set up role-based security policies if you want to prevent users from see-
ing and accessing folders and their content.

8. Go back to the Properties page of the Data Sources folder and clear the Hide in List View
checkbox to restore the original view. Click the Apply button and then click the Home menu
link to go back to the Home folder.

 Creating new folders
Suppose that you cannot use BIDS to deploy the Adventure Works sample reports. Instead,
let's use Report Manager to create the AdventureWorks Sample Reports folder and upload
manually report definitions to it.

1. Navigate to the Home folder and click the Show Details button.
2. Select the checkbox of the AdventureWorks Sample Reports folder to select it and click the

Delete button. Confirm the action to delete the item. Report Manager deletes the Adventure-
Works Sample Reports folder and its content.

3. Click the New Folder button. In the New Folder page, enter AdventureWorks Sample Reports as
a folder name and click OK.

The Report Manager creates the AdventureWorks Sample Reports folder. Report Manager
shows a green glyph that says !NEW next to the report name to indicate that this is new con-
tent.

 Uploading content
Let's now upload the Adventure Works sample reports to the new folder.

1. Click the AdventureWorks Sample Reports link to go to the Contents page of the folder.
2. Click the Upload File button.

Figure 11.11 Use the Upload
File page to upload folder content.

3. In the Upload File page (see Figure 11.11), click the Browse button and navigate to the Ad-
ventureWorks Sample Reports folder in the book source code.

4. Unfortunately, Report Manager doesn’t let you upload multiple items at the same time, so we
need to upload the Adventure Works reports one at a time. Select the Company Sales.rdl re-
port definition file and click OK to go back to the Upload File page. Click OK to upload the
Company Sales report.

MANAGEMENT FUNDAMENTALS 415

NOTE The server always stores the original RDL file that you publish. If you edit properties or parameter values in
Report Manager, your changes are not applied to the RDL that was uploaded to the report server.

5. Repeat the last three steps to upload the rest of the reports (*.rdl files) to the AdventureWorks
Sample Reports folder.

Do not upload the AdventureWorks.rds and AdventureWorksAS.rds data source definition
files because they should already exist in the Data Sources folder. In the next exercise, you will
set up the Company Sales sample report to reference the existing data source definitions in the
Data Sources folder. For now, this means that you won't be able to run the reports you've up-
loaded just yet.

11.2.3 Managing Data Sources
Recall that Reporting Services supports report-specific and shared data sources. A report-
specific data source is embedded in the report definition and cannot be shared among reports.
By contrast, a shared data source can be centrally managed and can be referenced by multiple
reports. The AdventureWorks sample reports use two shared data sources: AdventureWorks,
which represents the AdventureWorks relational database, and AdventureWorksAS which
points to the Adventure Works DW Analysis Services database.

 Understanding broken data source references
As a best practice, I'd recommend you store all data source definitions in a separate folder.
This will let you define security policies that prevent end users from accessing that folder and
viewing the data source definitions. This doesn't prevent users from running reports that ref-
erence these data sources because rights to view reports imply rights to use the report data
sources.

1. Navigate to the AdventureWorks Sales Report folder and attempt to run the Company Sales
report. Note that Report Manager displays the following error message:
The report server cannot process the report. The data source connection information has been deleted.
(rsInvalidDataSourceReference)

That's because the Company Sales report is no longer associated with a valid data source. Un-
fortunately, the error message doesn’t include the name of the data source that the report was
associated with at design time, but you can get that information from the report definition.

2. Select the Properties tab of the Company Sales report, and then click the Edit button to view
the report definition. Locate the DataSources element toward the top of the report definition
and note the DataSourceReference element below it.
<DataSourceReference>AdventureWorks</DataSourceReference>

This means that the report author referenced the AdventureWorks shared data source at de-
sign time.

 Understanding data source properties
Let's verify that the Adventure Works data sources exist and view their definitions.

1. Click the Home link to go to the Home folder and then click the Data Sources folder.
2. Click the AdventureWorks data source to view its properties, as shown in Figure 11.12.

CHAPTER 11 416

Many of the data source properties should look familiar to you, as I discussed them in chapter
4. For example, the General tab lets you manage to the data source type, connection string,
and credentials. However, Report Manager adds a few more properties that deserve further
explanation. To start with, Report Manager lets you disable a data source by clearing the Ena-
ble the Data Source checkbox. Disabling a data source could be useful to quickly prevent
processing all reports, report models, and data-driven subscriptions that use that data source.

Figure 11.12 Use the Data
Source General tab to man-
age the data source connec-
tions string and credentials.

Report Manager also gives you more control over stored credentials; that is, the Credential
Stored Securely in the Report Server option. First, you can tell the server to use the stored cre-
dentials as Windows credentials by checking the Use as Windows Credentials option. This
could be useful for data sources that support only Windows integrated security. For example,
you may have an Analysis Services database on another server. If the server that hosts Report-
ing Services is not configured for Kerberos delegation, the connection to Analysis Services will
fail because Windows will not pass credentials a second time. Passing credentials to a second
computer is known as a “double-hop” connection and NTLM doesn’t support it.

However, if you don't need to pass the user identity all the way to Analysis Services, you
can store and use the credentials of a trusted account that has access to the cube. As a result,
all requests to the cube database will go under that trusted account. This could be useful to
get a report running as quickly as possible, such as for demo or testing purposes. Make sure
that if you store credentials, the account you specify has Log On Locally permissions on the
report server computer.

The Impersonate the Authenticated User option only works for logins with administrator
rights and database servers that support user impersonation. In the case of SQL Server, this
option executes the SETUSER system function to impersonate the database connection. For
example, imagine that you log in to Windows as adventure-works\bob. The report administra-
tor has chosen the Credentials Stored Securely option and has entered the credentials of an

MANAGEMENT FUNDAMENTALS 417

account that belongs to the sysadmin SQL Server role. When you run the report, behind the
scenes the report server will send the SETUSER adventure-works\bob command to the SQL
Server to impersonate Bob. The net result is the same as if Windows Integrated security was
used because the report connects to the database under Bob's identity. The difference is that
the server uses the stored credentials to establish the initial connection.

 Viewing dependent items
A shared data source can be used by many items in the report catalog. You may want to know
which items will be affected by changes to the data source definition. To view the dependent
items, do the following:

1. Open the data source properties.
2. Select the Dependent Items tab.

The Dependent Items page will show all reports and models that reference the data source.
You can click the Show Details button if you want to delete or move the dependent items.

3. Select the Subscriptions tab if you want to view the data-driven subscriptions that depend on
the data source.

Figure 11.13 A common
reason for non-operational
reports is a broken data
source reference.

 Fixing broken data source references
Back to the problem at hand. Let's make the Adventure Works sample reports operational by
fixing the data source references.

1. Navigate to the AdventureWorks Samples Reports and click the Show Details button.
2. Click the Properties button located in front of the Company Sales report to open its properties

and click the Data Source link.
3. Report Manager detects the invalid data source reference and displays an error message, as

shown in Figure 11.13.
4. Click the Browse button to open the Browse Folders page, as shown Figure 11.14.
5. Expand the Data Sources folder. Don't be surprised if your list of data sources differs from

mine.
6. Select the AdventureWorks data source and click OK to return to the Company Sales report.

Click the Apply button to apply the changes to the report.
7. Select the View tab to test the report and make sure it runs successfully.

CHAPTER 11 418

8. Repeat steps 2-6 to associate the rest of the reports with the AdventureWorks data source,
except for the Sales Reason Comparison report. Since this report uses the Adventure Works
DW cube database, associate it with the AdventureWorksAS data source.

11.2.4 Managing Reports
When you publish a report, the report server extracts the report metadata from the report de-
finition and saves the metadata in the report server database. The report metadata includes the
report name, description, data source information, and certain parameters properties. Once
the report is published, the report metadata takes on a life of its own. When the report is sub-
sequently re-published, the report server doesn't update the report metadata even though it
may have changed. This behavior is sure to take report authors by surprise, but it is by design.
The Reporting Services team decided to favor the report administrator so design-time changes
don't wipe out the changes made by the administrator.

 Viewing reports
Before I show you how you can manage the report content, let me point out that organizations
can use the Report Manager not only for report management but also for viewing reports in
the default HTML format. Let's demonstrate this feature.

1. Navigate to the AdventureWorks Sample Reports folder and click the Product Line Sales re-
port link.

2. The report server renders the report in HTML. The Report Manager displays the report in the
HTML Viewer, as shown in Figure 11.15.

Behind the scenes, the HTML Viewer uses the ReportViewer Web server control to display
reports that are requested by a user. The ReportViewer control includes a handy toolbar that
lets the user perform common report tasks with a click of a button. If the report has parame-
ters, the toolbar includes a parameter area. For example, the Product Line Sales report takes
four parameters. The end user can enter the parameters that he or she wants to use, and click
the View Report button to regenerate the report with those values.

Figure 11.14 Fix a
broken data source
reference by selecting a
shared data source.

MANAGEMENT FUNDAMENTALS 419

From a management standpoint, you can control the availability of export formats (renderers)
and the print functionality. Chapter 7 demonstrated how you can customize the renderer con-
figuration to hide or disable an export option. Although you can use the browser printing
functionality to print a report, the Print button on the report toolbar provides a better printing
experience. It lets you preview and control the report layout and margins before printing the
report. Behind the scenes, the Print functionality is provided by an ActiveX control that gets
downloaded and installed on first use.

NOTE You cannot add custom functionality to the report toolbar of the HTML Viewer. However, you can change its
appearance via a Cascading Style Sheet (.css) file. The HTML Viewer CSS file is HtmlViewer.css and it is installed by
default in the \Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Services\ReportServer\-
Styles folder. I'll show you an example of customizing the HTML Viewer with CSS styles in chapter 14.

You can disable the ActiveX control download by connecting to the report server in SQL Serv-
er Management Studio and setting the EnableClientPrinting server property (Advanced tab) to
False. If printing is problematic, it could be because the user has the old version of the con-
trol. The user can re-install the ActiveX control as follows:

3. Assuming Internet Explorer, go to Tools Manage Add-ons Enable or Disable Add-ons
menu.

4. Expand the Show drop-down list and select the Downloaded ActiveX Controls item.
5. Select the RSClientPrint Class and press the Delete button to delete it.

The next time you click the Print button, the browser will download and install the latest ver-
sion of the ActiveX control from the server.

Figure 11.15 The Report
Manager uses the Web-
Forms ReportViewer con-
trol for report delivery.

CHAPTER 11 420

 Managing report parameters
Report Manager gives you access to the report parameters that the report author created for
the report. You can change the parameter visibility, prompt string, and default values. You
can't add or delete parameters, change the parameter data type, or modify the Multivalued and
Available Values properties.

1. Select the Properties tab of the Product Line Sales report.
2. Click the Parameters link, as shown in Figure 11.16.

Figure 11.16 The
Report Manager lets
you manage some
parameter properties.

As I noted, once the report is published, the report parameters can be managed independently
from the report definition. Once you begin modifying parameter properties on a published
report, be aware that subsequently changing them in Report Designer and republishing the
report definition does not overwrite the parameter values that you set in Report Manager. If
this is not the desired behavior, you can delete the report and re-publish it again.

If you want to assign a default value to a parameter, check the Has Default checkbox and
enter the default value. You can't modify the parameter default value if it is query-based. The
Hide and Prompt User checkboxes are exclusive options. Hiding a parameter doesn't show the
parameter to the user. However, the user or client application can still set the parameter in the
report URL or programmatically. If you uncheck the Prompt User checkbox and leave the
Display Text property blank, the parameter will not be displayed and the default parameter
value will be used when the user runs the report. If you leave the prompt blank and the para-
meter doesn't have a default value, the report cannot run and the report server returns the fol-
lowing error:
Parameter validation failed. It is not possible to provide valid values for all parameters. (rsParameterError)

Report Manager does not validate parameter values. You must know which values are valid for
your report. Because you cannot customize the Report Manager functionality, you cannot im-
plement custom validation rules either.

 Working with linked reports
A linked report is a "smart" shortcut that provides a level of indirection to an existing report
that runs on a native (non-SharePoint integrated) report server. A linked report can have its
own execution, history, and security settings. More importantly, a linked report can have pa-
rameter settings, including default values, visibility, and prompt text, that are different from
the existing report upon which it is based. However, you can't add parameters to a linked
report nor can you change their valid values list. Another important aspect of linked reports is
that the report server automatically updates the link when the location of the original report
changes. The ability to independently move the linked and original report enables some inter-
esting deployment scenarios.

MANAGEMENT FUNDAMENTALS 421

In one of my real-life projects, I used linked reports to implement master reports. A cus-
tom application would let the user define a master report that contains an arbitrary number of
subreports. The catch was that the user could move a subreport to another location. If the
subreport points to a regular report, changing the report location would invalidate the master
report. Using linked reports gave us a way to work around this limitation. Let's take a closer
look at the solution.

1. In Report Manager, navigate to the AdventureWorks Sample Reports folder and click the Upl-
oad File button.

2. In the Upload File page, browse to the Report Package with Subreports.rdl file in the source
code for this chapter. Name the new report Report Package and click OK.

The Report Package with Subreports report contains two subreports that point to the Compa-
ny Sales and Product Line Sales reports.

3. View the Report Package report. It should run successfully.
4. Now, let's change the location of the Company Sales report. Go to the Properties page of the

Company Sales report and click the Move button. Choose the Home folder and click OK to
move the Company Sales report to the root folder.

5. View the Report Package report again and note that the Company Sales report is not shown.
Instead, the following error message is displayed:
Error: Subreport could not be shown.

6. Move the Company Sales report back to the AdventureWorks Sample Reports folder.
7. Go to the Company Sales report General Properties page and click the Create Linked Report

button, as shown in Figure 11.17. Name the linked report Company Sales Linked.

8. Open the Properties page of the Report Package report and click the Update button to update
its report definition from the Report Package with Linked Reports.rdl file that uses the Com-
pany Sales Linked report.

9. View the Report Package report to verify that it runs successfully.

Figure 11.17 Create a linked re-
port that updates its link automati-
cally as the location of the target
report changes.

CHAPTER 11 422

10. Move the Company Sales report to the Home folder again. View the Report Package report. It
should run successfully this time.

The master report runs successfully because it uses a linked report that actively tracks the lo-
cation of the report to which it is linked. You can even delete the Company Sales report and
republish it without affecting the master report. As long as the report link points to an existing
report, the linked report will work fine.

11.3 Managing Security
One important task that every report administrator needs to master is managing security. You
won't get very far with a report server deployment if you don't have a good grasp of its securi-
ty model. Out of the box, only local Windows administrators have access to the report server.
As a report administrator, you are responsible for defining security policies that grant end us-
ers selective rights to the report server.

Because the Reporting Services security model is layered on top of Windows, understand-
ing security is not easy and explaining this topic in detail is beyond the scope of this book.
Therefore, I will assume that you have a basic knowledge of how Windows authentication and
authorization work. The Microsoft MSDN Security Center (see Resources) is a great place to
start if you want to get up to speed with Windows security.

11.3.1 Understanding Report Server Security
By default, the report server is configured for Windows authentication. This works well with
intranet deployments and Active Directory but it may not be practical for Internet-facing re-
porting solutions. When Windows authentication is not an option, you can replace it with
custom security, which I will demonstrate in chapter 19. Although the underlying concepts
for default and custom security are the same, the exercises in this chapter assume that the re-
port server is configured for Windows authentication.

 Understanding role-based security model
You will probably find the Reporting Services role-based security model similar to the security
models of other Microsoft or home-grown solutions you have come across. The implementa-
tion details are report server-specific but the basic ideas are the same. In a nutshell, the user is
authenticated based on the user identity, and authorized according to the security policies the
administrator has set up.

Figure 11.18 Reporting Services has a
role-based security model where the user is
authenticated based on the user identity
and authorized according to the security
policies the administrator has set up.

MANAGEMENT FUNDAMENTALS 423

 Figure 11.18 shows the components of the report server security model. The server enforces
restricted access to the report catalog through role assignments. A role assignment specifies
what rights a user or group has to a given catalog item.

Operations
Operations define the most granular permissions. There are system-level and item-level opera-
tions. The system-level operations give rights to system tasks. For example, CatalogOpera-
tion.CreateRoles is a system level operation that grants the user rights to create roles. Item-
level operations control access to items in the report catalog. For example, FolderOpera-
tion.UpdateProperties is an item-level operation that grants the user rights to update the folder
properties. Reporting Services has many predefined operations but you cannot view or cus-
tomize them in Report Manager. Only developers who write custom security extensions have
programmatic control over operations.

Tasks
To reduce the management effort, Reporting Services groups related operations into tasks.
Similar to operations, there are system-level and item-level tasks. An example of a system-level
task is Manage Roles, which includes all operations required to manage roles, such as Catalo-
gOperation.CreateRoles, CatalogOperation.DeleteRoles, CatalogOperation.ReadRoleProperties.
Similarly, Manage Folders is an item-level task that includes all item-level operations needed
to create, delete, and update catalog folders. Reporting Services comes with twenty-five prede-
fined tasks. Similar to operations, you cannot change these tasks and you cannot create new
tasks.

Roles
A role definition is a named collection of tasks that are used together. Reporting Services pro-
vides several pre-defined system and item-level roles, as shown in Table 11.2.

Table 11.2 The default system and item-level roles

Role Type Role Purpose

System System Administrators Enable system-wide features and security, create role definitions, and
manage jobs.

System System Users View report server properties and shared schedules. Can execute report
definitions, such as when previewing a Report Builder 1.0 report.

Item-level Browser Navigate folders and view reports.

Item-level Content Manager Manage report catalog, set security, and view items.

Item-level Publisher Publish items to the report catalog.

Item-level My Reports Publish reports to and manage the My Reports folder.

Item-level Report Builder View and edit report definitions in Report Builder1.0 client.

System-level roles authorize access at the site level. Item-level roles provide access to report
server items and operations that affect those items. They are defined on the root node (Home)
and all items throughout the report catalog. Item and system-level roles are mutually exclusive
but are used together to authorize user access to report server content and operations. The
administrator can customize the default roles or create new ones if needed. Reporting Services

CHAPTER 11 424

roles are additive, which means that the user is granted the union of the permitted tasks of the
roles that the user is assigned to.

 Understanding role assignments
The administrator controls access to the report catalog by defining role assignments. A role
assignment is a combination of a securable item, a user principal, and one or more role(s). In
Reporting Services, securable items are folders, reports, report models, resources, and shared
data sources. With the default Windows security model, a user principal can be an individual
Windows user or a group.

Figure 11.19 Role assignments
are inherited from a parent but
permission inheritance can be
broken at any level.

Similar to Windows ACL permissions, role assignments are inherited from the parent folder.
In the example shown in Figure 11.19, the user has Browser rights to the Home folder.
Thanks to security inheritance, you don't need to define explicit role assignments for the fold-
ers below the Home folder and their content. That's because the report server will automati-
cally propagate the Browser rights down the folder hierarchy. However, you can break the
security inheritance at any level or securable item. For example, assuming that the user needs
to have Content Manager rights for Folder B, you can break the security inheritance in folder
B and define a role assignment that grants the user Content Manager rights for that folder. The
new rights will flow down to the folder descendants until the inheritance chain is severed
again. The administrator can always restore security inheritance at any level to inherit from
parent.

To simplify security management, I suggest you stick with security inheritance as much as
possible. I recommend enforcing the minimum set of permissions at the top Home folder,
such as granting users Browser rights. Then, expand the user rights down the folder names-
pace on as-needed basis. It is important to point out that if the user doesn't have rights to view
a given item, the user won't be able to see that item. That's because, behind the scenes, when
the user browses the report catalog, Report Manager calls the ListChildren API. ListChildren
excludes items that the user is not authorized to see. Consequently, make sure to grant the
user at least Browser rights to folders above the user's working folder so the user can navigate
the folder hierarchy and get to the folder in the Report Manager or custom applications.

11.3.2 Granting Administrator Access
Now that you have a good understanding of how Reporting Services security works, let's apply
it in practice. One of your first tasks after installing Reporting Services may be granting anoth-
er user rights to manage the report server. The SQL Server 2008 setup program grants local
Windows administrators System Administrator rights and Content Manager rights for the
Home folder. This explains why members of the Windows local Administrators group have

MANAGEMENT FUNDAMENTALS 425

unrestricted rights to the report server. Let's say you want to grant another user, who is not a
local Windows administrator, rights to manage the report server. This will require granting the
user System Administrator and Content Manager rights.

 Reviewing role definitions
Let's use SQL Server Management Studio to review the definitions of the System Administrator
and Content Manager roles.

1. Open SSMS and connect to the report server instance you need to manage.
2. Expand the Security folder, as shown in Figure 11.20. Note that the item-level roles are listed

under the Roles folder, while the system-level roles are found under the System Roles folder.

Figure 11.20 Use
SSMS to review
role definitions and
create new roles.

3. Double-click the System Administrator role to view its definition.

The selected tasks in the System Role Properties dialog box are the tasks that the role provides.
You can change the role definition by adding additional tasks or remove tasks. You can create
a custom system or item-level role by right-clicking on the System Roles or Roles folder and
choosing New System Role or New Role respectively.

4. Double-click on the Content Manager item-level role to review its definition. Notice that the
Content Manager role grants the user rights to perform catalog management and report view-
ing tasks.

 Granting system administrator rights
Next, we will use the Report Manager to create role assignments for granting the user unre-
stricted rights to the report server. It is important to point out that although you are using Re-
port Manager to create role assignments, you are actually securing the report server and not
Report Manager. To understand this, recall that the Report Manager is just a front end to the
report server

CHAPTER 11 426

1. Open the Computer Management console from the Administrative Tools program group and
create a new Windows user, as follows:
 User name—Bob
 Password—P@ssw0rd
 Uncheck User Must Change Password at Next Logon and check Password Never Expires

options.
2. Open Report Manager and click the Site Settings menu link.
3. Click the Security link to review the system-level role definitions, as shown in Figure 11.21.

As noted, the SQL Server 2008 setup program assigns the local Windows administrators
group to the System Administrators role. This explains the single system role definition.

Figure 11.21 Use the Site
Settings Security page to
grant the user system rights.

4. Click the New Role Assignment button to open the New System Role Assignment page.
5. In the Group or User Name field, enter Bob, as shown in Figure 11.22. To use a domain user

or group, prefix the principal name with the domain name, such as adventure-works\Bob for a
single user or adventure-works\Sales Managers for a Windows domain group. In our case, be-
cause Bob is a local Windows user account that you created on your computer, the correct
format is <machinename>\Bob or just Bob.

6. Select the System Administrator role and click OK.

At this point, Bob is set up as a system administrator and he can perform all tasks included in
the System Administrator role.

 Granting Content Manager rights
The System Administrator role lets the user manage the report server site but it doesn't give
the user rights to manage the report catalog, such as rights to create new folders, upload con-
tent, and assign item-level role definitions. To delegate catalog management rights to Bob,
create a new role definition that grants him Content Manager rights for the Home folder.

Figure 11.22 Use the New
System Role Assignment page
to grant the user System Ad-
ministrator rights.

MANAGEMENT FUNDAMENTALS 427

1. In the Report Manager, click the Home menu link to navigate to the Home folder and select
the Properties tab.

2. Click the Security link to view the role definitions for the Home folder. By default, only the
Windows local administrators have Content Manager rights.

3. Click the New Role Assignment button to open the New Role Assignment page and assign Bob
to the Content Manager role.

Because permissions are inherited throughout the folder namespace, Bob has Content Manag-
er rights to the entire report catalog.

11.3.3 Granting User Access
By default, end users don't have access to the report server so they won't be able to browse the
report catalog and run reports. As an administrator, you need to create role assignments that
grant the users the permissions they need without compromising security.

 Granting Browser rights
In the following exercise, you will set up a new Windows user and grant the user rights to
browse the report catalog.

1. Open the Computer Management console from the Administrative Tools program group and
create a new Windows user, as follows:
 User name—Alice
 Password—P@ssw0rd
 Uncheck User Must Change Password At Next Logon and check Password Never Expires

options.
2. Run the Report Manager under the Alice's identity.

TIP In Windows XP and Windows Server 2003, the easiest way to run Internet Explorer as another user is to right-click
on the Internet Explorer, choose Run As, and enter the user credentials. For some obscure reason that probably has to
do with security, in Vista you can use Run As only if you log in to Windows as a non-administrator. While there is a ru-
nas command-line utility, it doesn't work for Internet Explorer. This means you will need to log off and log on as the new
user or use the Switch User feature.

3. Note that the Report Manager Home page is blank. That's because Alice is not assigned to any
role.

4. Open Report Manager as an administrator. Select the Properties tab to access the Security
page.

5. Create a new role assignment that grants Alice Browser rights to the folder.
6. Go back to the user instance of the Internet Explorer, and press F5 to refresh the page.

Notice that now Alice can browse the report catalog and run reports.

 Revoking folder access
As you know by now, role assignments are inherited from the parent folder. If this is not de-
sired, consider breaking the security inheritance by granting different rights on specified fold-
ers or items. For example, you may not want users to read data source definitions. Alice
cannot view the data source definitions in the Data Sources folder because the Browser role

CHAPTER 11 428

doesn’t include the View Data Sources task. However, Bob can because the Content Manager
role includes this task. Let's say you want to revoke Bob's rights to the Data Sources folder.

1. Log in the Report Manager as an administrator and navigate to the Data Sources folder, as
shown in Figure 11.23.

Figure 11.23 As a best practice,
consider revoking end user access
to the Data Sources folder.

2. Click the Edit Item Security button. Report Manager displays the following prompt.
Item security is inherited from a parent item. Do you want to apply security settings for this item that are different from
those of the Home parent item?

3. Click OK to break the security inheritance chain.

Report Manager copies the role assignments of the Home folder to the Data Sources folder. In
addition, Report Manager adds a Revert to Parent Security button to let you restore security
inheritance from the parent item later on.

Figure 11.24 The Revert to Par-
ent Security button lets you restore
security inheritance.

4. Select Bob's role assignment, as shown in Figure 11.24, and press the Delete button to revoke
Bob all rights to the Data Sources folder.

5. Log in to the Report Manager as Bob and notice that you cannot see the Data Sources folder.

If the user is not authorized to view an item, the report server excludes the item as though it
doesn't exist for that user. Again, note that Bob will be able to run reports that use the data
sources in the Data Sources folders because rights to run a report imply rights to use the re-
port data sources.

11.3.4 Viewing Security Policies
Using Report Manager to review the security policies requires navigating the folder namespace
and manually checking the security page of each folder and item. This may get difficult if you
have many nested folders. To avoid this, I authored a report that retrieves information about
all of the security policies defined for a given catalog item.

MANAGEMENT FUNDAMENTALS 429

 Understanding the Get Policies report
Figure 11.25 shows the Get Policies report, which is loaded in the BIDS Report Designer. The
report has a single parameter (Item), which accepts the full path to the catalog item, such as
the /AMRS folder. When you run the report, the report calls down to the Report Server Web
service to obtain the security policies for that item. The Inherit From Parent field indicates
whether the item inherits security from parent. The table section enumerates the role assign-
ments for that item. For each role assignment, the report shows the principal name and the
role definition that is assigned to that principal.

Figure 11.25 The Get Poli-
cies report lets you review
the security policies defined
for any catalog item.

 Implementing the report
Thanks to the Reporting Services XML data provider, implementing the Get Policies report is
easy. Recall that the XML data provider lets you query XML documents that are returned from
URL-based sources, such as a Web service. The report has two datasets that reference the same
report-level data source. The data source uses the XML data provider to connect to the Re-
portService2005 service, as follows:
http://localhost/reportserver/ReportService2005.asmx

Both datasets have an Item query-level parameter that obtains its value from the report-level
Item parameter. The first dataset (Main) has the following query:
<Query>
<Method Namespace="http://schemas.microsoft.com/sqlserver/2005/06/30/reporting/reportingservices"
Name="GetPolicies"/>
</Query>

This query invokes the GetPolicies web method to retrieve the role assignments. Here is a
sample XML payload that GetPolices returns.
<GetPoliciesResponse xmlns=". . .">
 <Policies>
 <Policy>
 <GroupUserName>BUILTIN\Administrators</GroupUserName>
 <Roles>
 <Role>
 <Name>Content Manager</Name>
 </Role>
 </Roles>
 </Policy>
 <Policy>
 . . .
 </Policy>
 </Policies>
 <InheritParent>false</InheritParent>
</GetPoliciesResponse>

CHAPTER 11 430

The Main dataset query returns the principal name from the GroupUserName node and role
name from the Name node. Getting the InheritParent node text is a somewhat trickier. The
returned XML payload includes the InheritParent element, which is at the same level as the
Policies element because it applies to the item itself. However, the XML data provider cannot
navigate parallel nodes. That's why I defined a second dataset which uses the following query:
<Query>
 <Method Namespace=". . ." Name="GetPolicies"/>
 <ElementPath IgnoreNamespaces="true">GetPoliciesResponse/InheritParent</ElementPath>
</Query>

The ElementPath statement asks specifically for the value of the GetPoliciesRes-
ponse/InheritParent node that gets displayed in the Inherit From Parent field on the report.

11.4 Summary
In this chapter you have learned how to manage the report server environment. You can use
SQL Server Management Studio to manage server properties, features, and roles. Most of the
time, you will rely on Report Manager to perform routine content management tasks. Report-
ing Services supports folders, reports, data sources, resources, and report models as content
types. You can use Report Manager to upload content and organize content items in a hierar-
chical folder namespace.

Out of the box, the report server is configured for Windows security and only local Win-
dows administrators have access to the report server. As an administrator, you can set up sys-
tem and item-level role assignments to grant end users selective rights to perform report server
operations. Simplify security management by configuring catalog items to inherit security po-
lices from their parent.

11.5 Resources
RSExplorer Sample Application

(http://tinyurl.com/24avoe)—The RSExplorer sample application demonstrates how
you can write a custom .NET application for report viewing and management.

Add a logo to the Report Manager blog by Jon Gallaway
(http://tinyurl.com/y3776w)—Demonstrates how to add a custom logo to the Re-
port Manager Web interface using client-side JavaSript.

The Microsoft MSDN Security Center
(http://msdn.microsoft.com/security)—Tons of excellent information, including en-
tire books to help you secure your applications.

431

CChhaapptteerr 1122

Managing Report Execution and
Subscriptions

12.1 Managing Report Execution 431
12.2 Managing Subscriptions 443

12.3 Summary 457
12.4 Resources 457

Reporting Services can deliver reports on demand and via subscriptions. With on-demand
delivery, the report server immediately processes the request and streams the rendered report
to the client. With subscription delivery, a predefined subscription specifies when the report is
run, where it is delivered, and in what format. Individual users or report administrators can
create subscriptions that determine report delivery.

As a report administrator, you can configure how an on-demand report is executed. Typi-
cally, end users would prefer to see the latest data on the report. However, if some data laten-
cy is acceptable, you can optimize report performance by configuring the report for caching.
You can also save permanent report snapshots for auditing and archiving purposes.

I will start this chapter by explaining the report execution options. Then, I will show you
how to use Report Manager to configure those options. Next, I will introduce you to subscrip-
tion-based report delivery and walk you through the steps to set up a standard subscription.
Finally, you will learn how to work with data-driven subscriptions that retrieve dynamic sub-
scription data from an external database.

12.1 Managing Report Execution
Before you set report execution properties, it helps to know how reports are generated. The
report server generates a report in three phases. First, the report server retrieves data for all
datasets defined in the report. Second, the report server processes the report by combining the
report data and report layout into an internal report object (raw report) and expression code,
and saves the report object in the report catalog. Finally, the report server renders the report
in the requested export format and streams the report to the user. The report execution op-
tions let you control the lifetime of the cached report execution so new report requests can
reuse the raw report instead of generating the report anew.

12.1.1 Understanding Report Execution Options
The report server supports three mutually exclusive execution options to help you achieve a
reasonable compromise between data latency, data consistency, and performance. Table 12.1
summarizes these options, their scope, duration, and purpose.

CHAPTER 12 432

Table 12.1 Reporting Services supports several execution options

Execution Option Scope Duration Purpose

Execution session Single user 10 min by default Ensures data consistency with interactive report features and report
paging

Cache snapshot Multiple users Absolute expiration or
schedule

Caches a report instance for each parameter combination

Execution Snapshot Multiple users Potentially indefinite Saves a single instance of a processed report for auditing or archiv-
ing purposes

Before we go any further, I want to quickly point out that all report execution options store a
cached copy of the report in the report server database. Contrary to what you may imagine
when you hear the term "cache", report execution caching is not a memory-based cache. Stor-
ing the raw report in the report server database instead of in memory leaves more system re-
sources available for report processing.

12.1.2 Managing Execution Sessions
A report server creates and retains an execution session for every instance of a report that is
processed. The sessions are created because the client may benefit from it later on. For exam-
ple, as the user pages through a report in Report Manager, the HTML Viewer submits a re-
quest to the server each time the user moves to a new page. User interaction with the report,
such as drilldown and interactive sorting, also require round trips to the server.

If the report is not cached, the report server has no other choice but to re-process the re-
port again. Not only will this be detrimental to report performance but may also lead to incon-
sistent data. For example, suppose that the end user looks at the report grand total and then
navigates to another page. If the server queries the data source again, and the data changed
since the user last looked at it, the user will see different results. Another scenario that pro-
duces an unhappy outcome is when you export a report and realize that the exported version
has different data.

Figure 12.1 The report server uses
execution sessions to correlate users
with cached report instances.

 Understanding execution sessions
The report server uses execution sessions mainly for data consistency between server round
trips. An execution session is a cached per-client instance of a report. In this respect, execu-
tion sessions are somewhat similar to ASP.NET user sessions that you may be familiar with. As
Figure 12.1 shows, when a new report request arrives, the report server caches a new copy of
the raw report in the report server temporary database (ReportServerTempDB). Next, the re-
port server sends a session identifier back to the client to correlate the execution session with

MANAGING REPORT EXECUTION AND SUBSCRIPTIONS 433

that client. Note that I said client not user. That's because the user may open several instances
of the client application, such as Internet Explorer. If the client doesn't pass back the session
identifier, the report server considers this a new report execution even through it belongs to
the same user.

An execution session maintains information about the details of the requested report, such
as the interaction state, parameter state, and so on. The report server always creates execution
sessions for new report executions. Although you cannot turn off execution session caching
completely, you can, as an administrator, control the session expiration interval and how the
session identifier is transmitted between the client and the server.

Figure 12.2 As an
administrator, you can
manage the execution
session timeout and how
the session identifier will
be transmitted.

 Managing session timeout
You can configure how long an execution session is retained before it times out. To view and
change the execution session timeout, use SQL Server Management Studio (SSMS) as follows:

1. Open SSMS and connect to the report server.
2. Right-click the server node in Object Explorer and select Properties.
3. In the Server Properties dialog box, select the Advanced page, as shown in Figure 12.2.

The default session timeout is 600 seconds and it applies to all report executions. The report
server uses a sliding expiration policy to renew the session timeout. In other words, if the
same client requests the session before it times out, the report server extends the session time-
out. If no new requests reference the execution session, the session eventually times out. The
report server periodically polls the report server database and purges expired sessions.

TIP You can call the GetExecutionInfo API to keep the session from expiring and reset its expiration clock. However,
you don't have to do this with custom applications that use the ReportViewer controls because they call GetExecutionIn-
fo to ping the server periodically in order to keep sessions alive.

If you want the report server to expire execution sessions faster, decrease the SessionTimeout
property value. However, don't set it too low because the user will get an rsExecutionNot-
Found exception if the session expires before the next report interaction occurs. The mini-
mum session timeout duration is 10 seconds. While SSMS will let you set a session timeout
less than 10 seconds, the report server will revert to 600 seconds.

CHAPTER 12 434

 Managing session identifier
By default, the report server issues a web cookie to correlate the client with the execution ses-
sion. If security or other policies prevent using cookies, you can configure the report server to
use cookieless execution sessions by setting the UseSessionCookies server property (Advanced
tab) to False. In this case, instead of sending a cookie, the report server adds the session iden-
tifier to the report URL address. This is known as URL munging.

NOTE Instead of working with cookies, Reporting Services clients can use other mechanisms to store the session
identifier between requests. For example, the ReportViewer Web server control (discussed in chapter 15) saves the
session identifier in the page view state and never uses cookies.

In general, only report actions that result in a round trip, such as interactive actions, image
requests, and page navigation, can reuse the same execution session. Certain user actions can
cause the report server to restart an existing session and regenerate the report even if the ses-
sion identifier is the same. For example, the report server will create a new session when the
user refreshes the report either by pressing the browser Refresh button or by clicking the Re-
fresh button on the report toolbar.

A new session is also created when the user clicks the View Report button on the Report
Viewer toolbar. When the report server restarts the session, it generates the report from
scratch and replaces the existing cached copy with the new report execution, but keeps the
same session identifier.

URL access supports session management. If you know the session identifier, which you
can obtain from the session cookie, you can associate a report to reuse an existing session by
using the SessionID command, such as:
http://<servername>/ReportServer?/AdventureWorks Sample Reports/Company Sales
&rs:SessionID=52v13e55bfox0zisan0rsqjy

You can clear the existing session to force a report run on a new session by appending the
ClearSession command to the report URL. For example, the following link forces the Compa-
ny Sales report to execute on a new session:
http://<servername>/ReportServer?/AdventureWorks Sample Reports/Company Sales&rs:ClearSession=True

The Report Server Web service also supports managing execution sessions programmatically
by calling the Report Server Web service APIs, as I'll demonstrate in chapter 14.

12.1.3 Managing Cache Snapshots
The report server creates a report execution session for each user requesting that report. How-
ever, you could let users share a report execution. For example, suppose that the report query
is very slow. If certain data latency is acceptable, you can configure the report as a cache snap-
shot to share it among multiple users when they request the report on demand.

 Understanding cache snapshots
A cache snapshot is a saved report execution that can be shared among users. You can use
cache snapshots to optimize report server performance and reduce the number of times a re-
port is generated. Figure 12.3 shows what happens when users request a report that is confi-
gured as a cache snapshot. In this scenario, the report takes two parameters. When the first
user requests the report, the report server generates the report. Similar to execution session
caching, the report server saves the raw report in the ReportServerTempDB database.

MANAGING REPORT EXECUTION AND SUBSCRIPTIONS 435

Figure 12.3 Users share the
cache snapshots if they pass
the same parameters.

Unlike execution session caching, however, the report server creates a new cache snapshot for
each parameter combination and maintains a cache index based on the parameter values. As-
suming that the first user passes parameter values a and b, the first snapshot will be associated
with these parameters. If the second user requests the report with the same parameter values,
the report server satisfies the request from the existing cache snapshot. However, if the para-
meter values are not same, the report server generates a new snapshot instance.

As a part of configuring a cache snapshot, you specify how the report server will invalidate
and purge the snapshot. You have two options. One option is to specify an explicit time inter-
val after which the cache snapshot is deleted. With this option, the report server does not ex-
tend the expiration period when new requests are received for the same report. The second
option is to clear the snapshot on a report specific or a shared schedule.

TIP The first report request for a given parameter combination will take longer to process because the report server
must generate the report. To eliminate the wait time, you can use the NULL delivery provider to warm up the snapshot
cache. The NULL delivery provider generates cached reports but doesn't send them to any destination. To pre-populate
the snapshot cache, use Report Manager to set up a schedule-based data-driven subscription for each parameter com-
bination and configure the subscription to use the NULL delivery provider. When the schedule is up, the report server
will generate and cache the report executions.

You can also clear the cache snapshot programmatically by calling the FlushCache API. A
cache snapshot is dependent on the report definition. If you change and deploy the report
definition, the report server will invalidate the snapshot.

 Understanding cache snapshot limitations
Suppose that you need to implement row-level security in the report. To do this, you decide
to pass the user identity (User!UserID) to the data source to get only those records associated
with that user. Will this work if the report is cached? The answer is no. If you use User!UserID
in the query, a less privileged user might get access to data that he is not authorized to see.
Therefore, while you can use User!UserID to display the user identity on the report, the report
server will not allow you to cache a report that passes User!UserID to a query parameter. For
the same security reasons, the report data source cannot use Windows Integrated security.
Instead, the data source must use stored credentials.

If you need to filter data per user, you can set up a dataset filter to filter the report data
while the report is generated. For example, suppose that the query returns a dataset that con-
tains the sales for all employees based on the employee's Windows login. You can set up a da-
taset filter to show only the records where the employee matches User!UserID. In this

CHAPTER 12 436

scenario, the cache snapshot will contain all data. The report server will apply the dataset filter
at run time.

 Working with cache snapshots
Let's use the Cache Demo report to demonstrate how cache snapshots work. You can find the
Cache Demo report in the source code for this chapter. Figure 12.4 shows what the report
looks like when previewed in the Report Designer. The chart region shows the Adventure
Works sales by product category. It accepts a Year report parameter to filter the report data by
year. The report displays the parameter value, execution time (Globals!ExecutionTime), and
the identity of the interactive user (User!UserID) in the rectangle above the chart.

Configuring the Cache Snapshot
Follow these steps to configure the Cache Demo report as a cache snapshot.

1. Deploy the report to the report server. The following steps assume that you have deployed the
report to the AMRS folder.

2. Open Report Manager and go to the report properties page. Click the Execution link to access
the report execution properties.

To configure the Cache Demo report as a cache snapshot, select one of the two Cache a Tem-
porary Copy of the Report options in the Always Run This Report in the Most Recent Data
section. To invalidate the report after a fixed time period, select the Expire Copy of Report
after a Number of Minutes option. By default, the report server will invalidate the snapshot in
30 minutes. Or, to invalidate the report on a set schedule, select the Expire Copy of Report on
the Following Schedule option.

3. Select the Expire Copy of the Report after a Number of Minutes option and enter 5 minutes.
Click Apply.

Figure 12.4 Use the Cache
Demo report to understand how
cache snapshots work.

MANAGING REPORT EXECUTION AND SUBSCRIPTIONS 437

Observe that the Report Manager displays the following error message (see Figure 12.5):
Credentials used to run this report are not stored

That's because the report's data source uses Windows Integrated security but cache snapshots
don't support this option.

4. Click the Data Sources link and select the Credentials Stored Securely in the Report Server
option. Enter credentials (user name and password) of a SQL Server login that has read per-
missions to the AdventureWorks2008 database and click Apply.

5. Back on the Execution page, click Apply to configure the report for a cache snapshot execu-
tion.

Configuring the SQL Server Profiler
You can use the SQL Server Profiler to see when the report server generates the report by trac-
ing the queries Server sends to the AdventureWorks2008 database.

6. Start the SQL Server Profiler which you can find in the SQL Server 2008 Performance Tools
program group.

7. Click the New Trace toolbar button and connect to SQL Server.
8. When using the SQL Server Profiler, it is useful to filter out the trace events you don't want to

see by setting up a column filter. In the Events Selection page of the Trace Properties dialog
box, select the Show All Columns checkbox and click the Column Filters button.

9. In the Edit Filter dialog box, select DatabaseName.
10. Expand the Like node in the right pane and enter AdventureWorks2008 to see the trace events

for the AdventureWorks2008 database only, as shown in Figure 12.6.
11. Select the Exclude Rows That Do Not Contain Values checkbox and click OK to return to the

Trace Properties dialog.
12. Click the Run button to run the trace.

Figure 12.5 Select the Cache a Temporary Copy of the Report options to configure a report as a
cache snapshot.

CHAPTER 12 438

Figure 12.6 Use a DatabaseName
column filter to see only the trace events
for the AdventureWorks database.

Testing the Cache Snapshot
Let's use the Bob and Alice Windows accounts that you set up in chapter 10 to test the cache
snapshot.

13. Log in as Bob and use Report Manager to run the report for year 2001.
14. Switch to the SQL Server Profiler and notice that the report server executes the report dataset

query. This means that the report server has generated the report from scratch.
15. Log in as Alice and run the report for year 2001 again. This time, you shouldn't see a query

statement in the SQL Server Profiler. This is because the report server has detected that the
report request uses the same parameter value. Consequently, the report server satisfied the
request from the cache snapshot.

16. Using either Bob's or Alice's browser instance, run the report for year 2002. The SQL Profiler
should show a new query statement. This is because the report server was unable to find a
cache snapshot for the new parameter value and has generated a new report.

17. Wait for five minutes and run the report for year 2001 or 2002. Note that the SQL Profiler
shows a query statement. The report server has invalidated the snapshot because you set it to
expire in five minutes. Consequently, the report server generated the report and cached the
report.

Optionally, configure the report to expire on a report-specific or shared schedule by using the
Expire Copy of Report on the Following Schedule option.

12.1.4 Managing Execution Snapshots
Recall that cache snapshots are generated and managed internally by the report server. They
are cached temporarily and then deleted, which means they cannot be saved in history or refe-
renced by the user. For example, a user cannot request a cache snapshot that was generated a
week ago. At the same time, you may need to keep a report execution for auditing and archiv-
ing purposes. This is where execution snapshots could help.

MANAGING REPORT EXECUTION AND SUBSCRIPTIONS 439

 Understanding execution snapshots
An execution snapshot is a single instance of a report execution that is saved in the report serv-
er database. Similar to cache snapshots, execution snapshots improve report performance be-
cause all report requests are served from a cached report copy as shown in Figure 12.7. Unlike
cache snapshots, however, the report server keeps a single cached report for the default values
of the report parameters. When users request a report that is configured as an execution snap-
shot, they get the same data because they cannot vary the report parameters.

Figure 12.7 When a report is
cached as an execution snapshot, all
requests use the same cached copy.

Execution snapshots can be created on a schedule. For example, the administrator can sche-
dule a monthly performance report to be generated every month. You can also explicitly gen-
erate an execution snapshot in Report Manager or programmatically by calling the
UpdateReportExecutionSnapshot API. The report server stores the execution snapshot in table
SnapshotData in the ReportServer database and replaces it when the execution snapshot is
refreshed. Once created, the execution snapshot doesn't depend on the report definition. Con-
sequently, the report author can publish a new version of the report definition without affect-
ing the execution snapshot.

 Understanding execution snapshot limitations
Similar to cache snapshots, the report query cannot be user-specific; that is, a query parameter
cannot reference user-specific information, such as User!UserID. The report data source must
be configured for stored credentials. Unlike cache snapshots, where the user can pass parame-
ters at run time, all report parameters must have default values before the execution snapshot
is generated.

If you generate execution snapshots programmatically, setting the default values prior to
snapshot generation requires a somewhat awkward two-step approach. First, you need to up-
date the parameter default values by invoking the SetReportParameters API. Second, you need
to follow up with a call to the UpdateReportExecutionSnapshot API to generate the actual
snapshot by passing the report path. Hopefully, a future release will enhance the UpdateRe-
portExecutionSnapshot API to let developers pass the report parameters and generate the
snapshot in one step.

REAL LIFE Execution snapshots proved very useful in one of my projects where we report-enabled a Windows Forms
application. Since the reports could take a substantial time to execute, we didn't want to block the user while waiting for
the report. Instead, when the user requested a report, the application would forward the report to a custom job service
that would generate an execution snapshot asynchronously and save it in the report history. Then, the job service
would send a notification to the user that would include the history identifier. The end user could click on the notification
link to display the execution snapshot at the user's convenience.

CHAPTER 12 440

When the report is rendered, all report parameters and disabled and the end user cannot
change the report parameters. Again, that is because the execution snapshot is generated once,
and all requests use the same cached instance. To use new parameter values, use Report Man-
ager to change the default values of the report parameters and regenerate the snapshot.

 Working with execution snapshots
Follow these steps to configure the Cache Demo report for execution snapshot caching.

1. In the Execution report properties, select the Render This Report from a Report Execution
Snapshot option.

As noted, you can let the report server process the execution snapshot in unattended mode.
To do so, check the Use the Following Schedule to Create Report Execution Snapshots check-
box to schedule the snapshot generation on a report-specific or shared schedule. You can also
generate the snapshot immediately.

2. To generate the snapshot immediately, select the Create a Report Snapshot when You Click
the Apply Button checkbox and press the Apply button.

Report Manager fails the snapshot generation and displays the following error message (see
Figure 12.8):
Default report parameter values are missing.

This is because the Year report parameter doesn’t have a default value.
3. Click the Parameters link to access the report parameters. Check the Has Default checkbox of

the Year parameter and sets its default value to 2001.

TIP You may have report parameters that are not linked to query parameters and exist solely for controlling the report
appearance. For example, the parameter may be used in conditional sorting or visibility expressions. By default, all pa-
rameters are disabled when the report is configured for execution snapshot caching. However, you can tell Reporting
Services to enable a parameter if it is used in expressions only. To do so, open the report in Report Designer and double-
click the report parameter. In the Report Parameter Properties dialog box (Advanced tab), click Never Refresh, and re-
deploy the report.

Figure 12.8 You must
provide default report para-
meters before generating a
report execution snapshot.

MANAGING REPORT EXECUTION AND SUBSCRIPTIONS 441

4. Return to the Execution properties page and configure the report for execution snapshot cach-
ing, as shown in Figure 12.8, and then click the Apply button. This time, Report Manager
should be able to generate the execution snapshot successfully.

5. Select the View tab to view the report.

If use the SQL Server Profiler, you shouldn’t see the report query. The report server satisfies
the report request from the cached copy. Note the Year parameter is disabled in the report
toolbar of the HTML Viewer. This is because the user cannot pass parameter values at run
time with execution snapshots.

 Managing history snapshots
By default, the report server keeps only one execution snapshot per report and replaces it each
time you refresh the snapshot. However, if needed, you can keep multiple snapshot execu-
tions by enabling snapshot history. Snapshot history is useful for archiving and auditing pur-
poses.

1. In the Properties page of the Cache Demo report, select the History page.

The Allow Report History to be Created Manually option is selected by default. As a result, the
Report Manager displays a New Snapshot button in the History tab to let you manually save
an execution snapshot in the history. You can also automate the process of archiving snap-
shots. For example, if you want the report server to keep the latest execution snapshot at
month end, you can create a report-specific or shared schedule that tells the report server to
add snapshot to report history on the last day of every month.

You can also specify a snapshot retention policy. The Use Default Setting option uses the
value that is set on the Site Settings page. By default, the server retains an unlimited number of
snapshots in report history. Or, you can limit the number of snapshots and let the server inva-
lidate and delete old snapshots when that number is exceeded.

Figure 12.9 Use the report
History page to enable the ex-
ecution snapshot history.

2. Select the Store All Report Execution Snapshot in History checkbox, as shown in Figure 12.9.
When this option is enabled, the report server will copy the snapshot to history each time the
execution snapshot is refreshed. Click the Apply button to save your changes.

3. Select the Execution link to access the report execution properties.
4. Select the Create a Report Snapshot When You Click the Apply Button on This Page checkbox

and then click Apply to create a new execution snapshot.

CHAPTER 12 442

Figure 12.10 Use the His-
tory tab to view and delete
the history snapshots.

5. Select the History tab (not the History page), as shown in Figure 12.10.

Observe that the report server has added the new execution snapshot in the history. The His-
tory tab shows the snapshot creation date and its size in kilobytes.

6. To view history snapshot, click the snapshot hyperlink.

The report server associates a history snapshot with a history identifier, which has a YYYY-
MM-DDTHH:MM:SS format. This format is based on the International Organization for Stan-
dardization (ISO) 8601 standard. You can obtain this identifier by viewing the hyperlink
properties. The client can request the snapshot later by passing the history identifier to the
report server. For example, the following URL requests the history snapshot of the Cache
Demo report shown in Figure 12.10:
http://<servername>/ReportServer?/AMRS/Cache Demo&rs:Snapshot=2008-06-24T22:34:16

History snapshots are preserved when you change report execution options. For example, you
can configure the report for live execution without affecting the snapshot history. As with
execution snapshots, any changes you make to the report defintion have no effect on existing
history snapshots.

12.1.5 Managing Report Execution Timeouts
The Execution page lets you specify a report execution timeout for processing the report (see
again Figure 12.8). Notice that the Use Default Setting option is pre-selected. This means that
the report will use the system-wide execution timeout setting which the administrator can set
in the Report Manager Site Settings page or in SQL Server Management Studio. By default, the
report server times out after processing the report in 1,800 seconds (30 minutes). You can
override the report execution timeout on a per report basis. For example, if you have a long
running report, select the Do Not Timeout Report Execution option.

A report can time out for various reasons. First, the report author can specify a query
timeout property for the report dataset. The default query timeout setting is 0, which means
that the report query will not timeout. Second, the entire report may be set to time out. As
noted, if you accept the default settings, the report server will time out the report in 30 mi-
nutes. When the report timeout is up, the report server simply terminates the process.

The ASP.NET runtime has an executionTimeout property that indicates the maximum
number of seconds a request is allowed to execute before being automatically shut down by
ASP.NET. Reporting Services overwrites this setting in the report server web.config file and
sets it to 9,000 seconds.
<httpRuntime executionTimeout="9000"/>

MANAGING REPORT EXECUTION AND SUBSCRIPTIONS 443

Finally, if you use a custom application to view reports, the web service call may time out. The
default Timeout property of a Web service proxy is -1, which means that .NET will not time
out the call. However, the developer may have overwritten the property. This may cause the
Web service to time out when the application requests the report.

12.2 Managing Subscriptions
Besides on-demand report delivery where the user actively requests the report, the report
server can deliver reports via subscriptions. Subscriptions let you automate the process of ge-
nerating and distributing reports. For example, suppose that the Sales department wants to
receive an updated sales report every month. To meet this requirement, you can set up an e-
mail subscription that sends the report via e-mail on a schedule.

Reporting Services subscriptions let you meet various requirements for automating report
distribution. For example, a bank can let its customers subscribe to a statement report and
receive it on a regular basis. An e-commerce organization can automatically send a notification
report to a customer when the order status has changed. A report administrator can schedule
the report server to process a large report overnight and save it on a file share. I am sure you
can expand on this list and add more scenarios that address your specific needs for subscrip-
tion delivery.

12.2.1 Understanding Subscriptions
A Reporting Services subscription is a standing request to the report server to process a report
in an unattended mode, such as on a schedule, and then deliver it to one or more subscribers.
We can break down the subscription delivery process into two phases. During the definition
phase, the client creates the subscription and saves it to the report catalog. The subscription
specifies how, when, and where the report will be delivered. The processing phase starts when
the subscription event fires. When the report server receives the event, it generates and deliv-
ers the report.

Figure 12.11 With subscription-based report delivery, the report server generates the report in an unattended
mode and sends it to the delivery target.

CHAPTER 12 444

 Understanding subscription events
Figure 12.11 shows the subscription process. In step 1, the user creates the subscription for a
given report. The easiest way to accomplish this is to use Report Manager. Alternatively, a cus-
tom application can invoke the Report Server Web service to create the subscription pro-
grammatically. As part of setting up the subscription, the user chooses a delivery method,
such as e-mail delivery. Out of the box, Reporting Services supports e-mail delivery, shared
folders delivery, and delivery to SharePoint document libraries (if the report server is confi-
gured for SharePoint integration mode). Note that developers can extend the report server
delivery architecture by plugging in custom delivery extensions, as I will demonstrate in chap-
ter 20.

In addition, the user specifies the event that will trigger subscription processing. By de-
fault, the report server supports two event types: time events and snapshot refreshes. When
the standard events are not enough, developers can generate events programmatically to trig-
ger subscriptions by calling the FireEvent API. For example, a custom application can post an
event when the orders status has changed to trigger a subscription that sends a report to users
who subscribed to the report. I will show you how to use the FireEvent API in chapter 13.

The report server triggers a time event based on the schedule information provided in the
subscription. A user can specify a report-specific schedule or a shared schedule. If the sub-
scribed report is configured as an execution snapshot, the user can configure the subscription
to execute when the snapshot is refreshed. In step 2, the report server saves the subscription
definition in the report server database (in the Subscriptions table) and creates a job that SQL
Server Agent service will use to create the event. This concludes the subscription definition
phase.

Step 3 marks the beginning of subscription processing. In step 3, the SQL Server Agent
service runs the job that was created for the schedule event. The report server posts a notifica-
tion record in the Event table in the report server database. Recall that the Background Proces-
sor is one of the three applications hosted in the Reporting Services service and it is
responsible for executing tasks in an unattended mode. The Background Processor polls the
Event table on a regular basis to check for new events. By default, the report server polls the
Event table every 10 seconds. You can customize the polling interval by changing the Pollin-
gInterval setting in the report server configuration file (rsreportserver.config).

When the Background Processor discovers a new event, it retrieves the event information
and handles the event. For example, with time-based subscriptions, the Background Processor
inserts a notification record in the Notifications table. The Background Processor has another
management thread that polls the Notifications table periodically. When it discovers a new
notification, the Background Processor creates a notification object and sends it to the delivery
extension associated with the delivery method (as shown in step 4). Finally, in step 5, the de-
livery extension renders the report and sends it to the delivery target.

NOTE A delivery extension is a .NET module that receives server notifications and distributes reports to the delivery
target that it is designed to support. Out of the box, Reporting Services includes E-Mail, Windows File Share, and
SharePoint Document Library delivery extensions for distributing reports to e-mail recipients, shared folders, and
SharePoint document libraries respectively. As noted in section 12.1.3, there is also a NULL Delivery Provider exten-
sion that does not actually deliver reports, but is instead used to warm up the snapshot cache.

 Understanding subscription types
Reporting Services supports two subscription types: standard subscriptions and data-driven
subscriptions. Standard subscriptions are created and managed by individual users. For ex-

MANAGING REPORT EXECUTION AND SUBSCRIPTIONS 445

ample, an end user can set up a standard subscription to deliver reports in a specific output
format to his or her mailbox. To set up a standard subscription, the user must have Manage
Individual Subscriptions rights. Standard subscriptions are available in the Standard and En-
terprise editions of SQL Server.

The data-driven subscriptions are a very powerful feature of Reporting Services. You can
use them to deliver a report to a dynamic list of recipients to destinations with customized
content for each delivery. You can specify data-driven subscriptions in Report Manager, a
SharePoint site, or create a custom application used to collect information used in a data-
driven subscription. For example, imagine a web application that lets end users personalize
report delivery by specifying a delivery method, output format, report parameters, and so on.
The application could collect user preferences and save them in the user profile table. Then,
the administrator can set up a data-driven subscription that applies the user preferences when
the subscription is processed.

When the report server executes a data-driven subscription, it queries an external database
to retrieve a list of recipients and other subscription settings. The report server generates a
report for each recipient based on the user preferences and delivers the report to the target
destination. To set up a data-driven subscription, the user must have Manage All Subscription
rights, which the Content Manager role includes by default. Data-driven subscriptions are
available in the Enterprise edition of SQL Server only.

 Understanding subscription limitations
Since the report server runs subscriptions in unattended mode, the reports have the same li-
mitations as execution snapshots. If the report is parameterized, you must assign default val-
ues to all parameters when you set up a standard subscription. A data-driven subscription can
have static parameter values or dynamic parameters whose values are retrieved from the data-
base and passed to the report at run time. Reports that you subscribe to cannot use Windows
Integrated security to connect to the data source. Instead, the report data source must use
stored credentials.

Again, similar to execution snapshots, standard subscriptions can display user-specific infor-
mation by referencing the User collection, such as the user identity (User!UserID) and the user
language identifier (User!Language). When used with standard subscriptions, the User collec-
tion returns information about the subscription owner; that is, the user who set up the stan-
dard subscription. Furthermore, standard subscriptions can also pass the user-specific
information to the report query, such as to return only the sales orders associated with the
subscription owner. Data-driven subscriptions cannot reference the User collection at all.

Now that you have a good understanding of how subscriptions work, let's set a few of them
up.

12.2.2 Managing Standard Subscriptions
Suppose that you are a sales manager at Adventure Works and you want yourself and your
team to receive a sales report at the beginning of each month via e-mail. In the first exercise,

TIP If the live report must use Windows Integrated security, such as when connecting to an Analysis Services cube,
consider creating a separate copy of the report for subscription purposes. The data source of the second report can
store the credentials of a trusted Windows account.

CHAPTER 12 446

you will set up a standard e-mail subscription that sends the Cache Demo report to selected
recipients.

 Configuring the report server for e-mail delivery
By default, the report server is not configured for e-mail delivery. Consequently, the E-Mail
delivery extension won't show up when you set up a subscription in Report Manager. As a
prerequisite for configuring e-mail subscriptions, you need to set up the report server for e-
mail delivery. This may require some cooperation from your mail server administrator. To
start with, you can use the Reporting Services Configuration Manager to specify the sender
address and SMTP server.

Figure 12.12 Use the
Reporting Services Con-
figuration Manager to
configure the sender
address and SMTP serv-
er for e-mail delivery.

Configuring basic e-mail settings
Follow these steps to configure Reporting Services for e-mail delivery:

1. Open the Reporting Services Configuration Manager from Microsoft SQL Server 2008 Con-
figuration Tools program group and connect to the report server.

2. Select the E-mail Settings page, as shown in Figure 12.12.
3. In the Sender Address field, enter the e-mail address of an account that has permissions to

send e-mail from the SMTP server.

The Reporting Services Configuration Manager supports only e-mail delivery through an
SMTP server. If you don't have network access to the SMTP server, you can edit the report
server configuration file (RSReportServer.config) to specify a pickup directory for the outgoing
e-mail by changing the SMTPServerPickupDirectory setting.

4. In the SMTP Server field, type the name of the SMTP server and click Apply.

The report server configuration file has additional e-mail settings that you may need to change
to finalize e-mail delivery configuration based on your specific setup. This may require confi-
guring default host settings and allowing other recipients to receive reports by e-mail.

MANAGING REPORT EXECUTION AND SUBSCRIPTIONS 447

TIP If you use an Exchange Server for e-mail delivery, you can find its SMTP server name from the account settings in
Microsoft Outlook. In Outlook 2007, go to the Tools Account Settings menu, select the Microsoft Exchange account in
the E-mail Accounts dialog box, and click the Change button to get to the Microsoft Exchange Settings page. If you use
the Windows SMTP service, clicking the Change button will open the Internet E-Mail Settings page and the SMTP server
name can be found in the Outgoing Mail Server (SMTP) field. Alternatively, you can right-click on a message in your
Outlook Inbox and choose Message Options to see the Internet Headers of the message. Typically, the SMTP server
name is the host name found in the first Received From line.

Configuring default host settings
If the user doesn't have Manage All Subscriptions rights, the user can only set up a self-
addressed e-mail subscription. Consequently, the To field in the Report Delivery Options page
is read-only and will be set to the Windows login of the interactive user. Note that if you have
an SMTP server that is part of a different domain from the domain the user belongs to, the
report delivery will fail when the SMTP server tries to deliver the report to that user.

To verify how the user is set up, look up the user account in the Outlook address book,
go to the account properties, and select the E-mail Addresses tab. If the domain name doesn't
match the user's domain, add the user’s domain name in the DefaultHostName setting. For
example, if the SMTP server sends email to users in mail.com instead of prologika.com,
change the DefaultHostSetting as follows:
<DefaultHostName>mail.com</DefaultHostName>

At run time, the report server will append the default host name to the user domain account.
So, if the user Windows login is t_lachev, the resulting e-mail address will be
t_lachev@mail.com. If you want to allow a user who has only Manage Individual Subscrip-
tions rights to enter other recipient addresses in the subscriptions that he or she owns, change
the SendEmailToUserAlias setting to False.

Sending to other recipients
If the user has Manage All Subscriptions rights (or Manage Individual Subscriptions rights and
SendEmailToUserAlias setting is set to True), the user can enter a semi-colon separated list of
e-mail addresses to send the report to multiple recipients. By default, the report server will
send e-mail to any external domain. You can use the PermittedHosts setting to restrict the
domains the report server will send e-mails to.

E-mail delivery to external domains will fail if the report server doesn't have relay rights to
the SMTP server. To avoid this, the network administrator needs to add the report server
TCP/IP address to the computers that are permitted to relay. For example, to let the report
server relay a request to a Windows 2003 SMTP server, open the SMTP service properties,
select the Access tab, and click the Relay button in the Relay Restrictions section. In the Relay
Restrictions dialog box, click the Add button to add the report server TCP/IP address to the
list of the allowed computers to relay through the SMTP server.

For more information about the rest of the e-mail delivery settings, read the Configuring a
report server for E-Mail Delivery topic in the SQL Server 2008 Books Online (see Resources).

 Creating a shared schedule
Similar to cache snapshots, you can schedule the subscription to run on a report-specific or
shared schedule. A shared schedule is preferred because you can manage it independently of
the items that use it, such as subscriptions and snapshots. Similar to shared data sources,
shared schedules let you reduce the management effort required to schedule multiple activi-
ties. Once you change a shared schedule, all dependent items will pick up the new shared

CHAPTER 12 448

schedule properties. You can also pause and resume shared schedules, as well as expire them
on a fixed date. You can create a shared schedule in the Report Manager Site Settings page or
in SQL Server Management Studio. Both settings require that the SQL Server Agent service is
running.

Figure 12.13 You can use Report
Manager to create a shared schedule
for running multiple processes at the
same time.

Let's use Report Manager to create a shared schedule that will run the e-mail subscription on
the first day of every month.

1. In Report Manager, click the Site Settings menu link and then click the Schedules link.
2. Click the New Schedule button to open the Scheduling page, as shown in Figure 12.13.
3. Enter Monthly Schedule as a schedule name.
4. Since we want the schedule to run every month, select the Month interval.
5. In the Monthly Schedule section, select the On Calendar Day(s) option and enter 1 to start the

schedule on the first day every month.
6. Set the schedule to start at midnight by setting the Start Time to 12:00 A.M.
7. Click the OK button to create the schedule.

Back on the Schedule tab, note that Report Manager has added the Monthly Schedule and has
set the next run date to the first day of the next month. Also, note that you can select the
schedule to delete, pause, or resume it.

 Setting up a standard e-mail subscription
Now that you have completed all prerequisites, let's use Report Manager to set up the Cache
Demo report for subscription delivery via e-mail. Start by configuring the Cache Demo report
to execute with the most recent data. Later, we will re-configure the report for execution snap-
shot caching to see how this affects the subscription options.

MANAGING REPORT EXECUTION AND SUBSCRIPTIONS 449

1. In Report Manager, open the Execution properties of the Cache Demo report and select the
Always Run This Report with the Most Recent Data execution option. Make sure that the Do
Not Cache Temporary Copies of This Report option is preselected.

2. Select the Subscriptions tab and click the New Subscription button to open the Subscription
page, as shown in Figure 12.14.

Figure 12.14 The E-Mail deli-
very extension lets you send a
report to one or more recipient
on a schedule that you define.

The E-Mail delivery extension should be preselected in the Delivered By drop-down list. If it
doesn't show up, the report server is not configured for e-mail delivery. Figure 12.14 shows
the subscription page you will see if you have Manage All Subscriptions rights, which the
Content Manager role includes by default. If you have only Manage Individual Subscriptions
rights, the Cc, Bcc and Reply to fields will not be shown. As noted, if SendEmailToUserAlias is
False (default setting), the To field will default to your Windows login and it will be read-only.

3. Enter your e-mail address in the To field. Optionally, if your account has rights to relay to the
mail server, add additional e-mail addresses separated by semi-colons.

You can use the subject field to define the e-mail subject. Reporting Services supports two
predefined variables which you can use in the e-mail subject. The report server replaces their
values at run time. The @ReportName variable returns the name of the report. The
@ExecutionTime variable returns the execution time of the report. Unfortunately, you cannot
define additional variables.

4. Suppose that you want to deliver the report in Adobe Acrobat PDF format. Expand the Render
Format drop-down list and select Acrobat (PDF) File.

If the Include Report checkbox is selected, the report server will include a report copy in the
e-mail. The render format determines if the report will be sent as an attachment or embedded
in the e-mail body. For example, if you select the MHTML render format, the report will be
embedded in the e-mail body. All other render formats will send the report as an attachment.

CHAPTER 12 450

This is because the EmbeddedRenderFormats setting in the report server configuration file
includes only the MHTML render format.

Including a large report in the e-mail message may be impractical. In this case, you can
consider disabling the Include Report setting. If the Include Link checkbox is selected, the
report server will add a URL link to the server report. The report link is also useful if you want
the user to render the report with the most recent data.

NOTE The report link will not work if you deliver reports to external recipients and the report server is not Internet-
facing. The UrlRoot setting in the report server configuration file defines the server name in the report link.

The Priority drop-down list lets you specify the e-mail priority status. For example, if you
choose high priority, Microsoft Outlook will show an exclamation sign in the Importance
field.

5. In the Subscription Processing Options section, select the On a Shared Schedule option and
select the Monthly Schedule.

Alternatively, if you want to test the subscription quickly, select the When the Scheduled Re-
port Run Is Complete option, click the Select Schedule button, and set up a report-specific
schedule to run the subscription a few minutes later from the current time.

6. As I explained earlier, when a report is parameterized, you need to specify default values for
all parameters. Expand the Year drop-down list and choose 2004 to filter the report data for
year 2004.

7. Click the OK button to create the subscription and return to the Subscriptions tab, as shown
in Figure 12.15.

Figure 12.15 Use the Sub-
scriptions tab to monitor the
subscription status.

Observe that Report Manager has added a new TimedSubscription e-mail subscription. When
the schedule is up, the report server will process the subscription and deliver the report to the
e-mail recipient(s) you specify. If the e-mail delivery fails, the Status column in the Subscrip-
tions page will show the error message. However, note that the report server doesn’t verify the
status of the e-mail delivery in any way. As far as the report server is concerned, the execution
of the subscription and delivery task is successful as long as the e-mail is relayed successfully
to the mail server. Therefore, you need to work together with the mail server administrator to
make sure that the report has indeed been delivered successfully to all recipients. You can see
all subscriptions that you own by clicking the My Subscriptions menu link.

 Triggering a subscription on snapshot refresh
If the report is configured as an execution snapshot, you can trigger the subscription to ex-
ecute when the snapshot is refreshed.

1. Open the Execution page of the Cache Demo report and configure the report to run as an
execution snapshot.

2. Select the Subscriptions tab and click the Edit link to go to the subscription properties.

MANAGING REPORT EXECUTION AND SUBSCRIPTIONS 451

Figure 12.16 You can trigger a sub-
scription when the execution snap-
shot is refreshed.

Notice that the Subscription Processing Options section now includes a new When the Report
Content Is Refreshed option, as shown in Figure 12.16.

3. Select this option and click OK to update the subscription and return to the Subscription tab.

Note that the Trigger column in the Subscriptions tab now shows SnapshotUpdated to indi-
cate that the subscription will be initiated when the report snapshot is refreshed.

4. Go back to the Execution page of the Cache Demo report, select the Create a Report Snapshot
When You Click the Apply Button checkbox, and click Apply.

The report server will refresh the snapshot and execute the subscription.

 Configuring the Windows file share extension
Configuring the Windows File Share extension is very similar to the E-Mail delivery extension
so I will just point out the differences. Figure 12.17 shows the Report Delivery Options sec-
tion when you select the Windows File Share delivery method. In the File Name, enter the
name of the output file. By default, the file will have same name as the report. When the Add a
File Extension When the File Is Created option is selected, the report server will add a file ex-
tension based on the render format chosen, such as Cache Demo.pdf if you select the Acrobat
(PDF) format.

Figure 12.17 The Windows File Share
delivery extension lets you distribute a sub-
scribed report to a Windows folder.

Use the Path field to enter the folder path in the Uniform Naming Convention (UNC) format,
such as \\ComputerName\FileShareName. Use the credentials fields to specify the user name
and password of a Windows account that has write permissions to the folder. The Overwrite
options are self-explanatory.

 Configuring the SharePoint document library extension
When the report server is configured for SharePoint integration, the subscribed report can be
delivered to a SharePoint document library, as follows:

CHAPTER 12 452

1. In SharePoint, navigate to the report and expand the report drop-down list.
2. Click Manage Subscriptions.
3. In the Manage Subscriptions page, click the Add Subscription button.
4. In the Subscription Properties page, expand the Delivery Extension drop-down list and select

SharePoint Document Library, as shown in Figure 12.18.

5. In the Document Library field, enter the document library URL where the subscribed report
will be delivered to, such as http://millennia/reportsite/Shared Documents, or click the … but-
ton to navigate the SharePoint namespace.

12.2.3 Managing Data-Driven Subscriptions
Sometimes you need more flexibility than a standard subscription can offer. For example,
suppose that you want to build a web page that lets an Adventure Works customer subscribe
to a Customer Order History report that shows all orders that the customer has placed to date.
As part of the subscription process, the customer can personalize the subscription settings by
specifying which render format, e-mail subject line, and other options to use. You can meet
such requirements by setting up a data-driven subscription.

Figure 12.18 Use the
SharePoint Document
Library extension to de-
liver a report to a Share-
Point document library.

Figure 12.19 The Cus-
tomer Order History re-
port shows all orders for
a given customer.

MANAGING REPORT EXECUTION AND SUBSCRIPTIONS 453

 Understanding the Customer Order History report
The data-driven subscription that you will create in this exercise uses the Customer Order
History report which is shown in Figure 12.19. The report accepts a CustomerID hidden pa-
rameter to let the data-driven subscription pass the customer identifier at run time. The report
retrieves all sales orders for that customer and displays them in the table region. The user can
toggle the order header band to see the order details. The Customer Order History report is
included in the source code that accompanies this chapter.

1. Deploy the report to the AMRS folder on the server.
2. Open Report Manager and go to the Properties page of the Customer Order History report.
3. Since subscriptions cannot use Windows Integrated security to connect to the data source,

configure the report data source for stored credentials.
4. Select the Subscriptions tab and click the New Data-driven Subscription button.

If all is well, Report Manager will start the Data-driven Subscription Wizard.

 Configuring the subscription basic settings
In step 1 of the wizard, you specify basic settings of the data-driven subscription, including its
description, delivery method, and whether it will use a report-specific or a shared data source.

1. In the Description field, enter Customer Order History.
2. Expand the Specify How Recipients are Notified drop-down list and select E-mail.
3. Similar to reports, data-driven subscriptions can use private or shared data sources to connect

to the recipient store. Assuming you have deployed a shared data source that connects to the
AdventureWorks2008 database, select the Specify a Shared Data Source option, as shown in
Figure 12.20, and click Next.

 Configuring the data source
In step 2 of the wizard, you need to configure the subscription data source. If you chose the
Specify for This Subscription Only option in step 1, this step lets configure the data source
details, including the connection string and credentials. Since you chose the Specify a Shared

NOTE If you don't see the New Data-driven Subscription button, you either don't have Manage All Subscription rights
or you are not running a Developer or Enterprise edition of SQL Server 2008. If there is an exclamation icon next to the
button, click the button to see the error message. Reasons for error conditions with data-driven subscriptions include
referencing the User collection on the report or using a data source configured for Windows Integrated security.

Figure 12.20 The Customer Order History
subscription delivers reports via e-mail.

CHAPTER 12 454

Data Source option in the first step, you need to select an existing shared data source in the
report catalog.

Figure 12.21 The Customer
Order History uses the Adventu-
reWorks shared data source.

1. Expand the Data Sources folder.
2. Select the AdventureWorks2008 data source, as shown in Figure 12.21, and click Next. If you

don't see the AdventureWorks 2008 data source, deploy any of the Report Server projects in-
cluded in the book source code that include it, such as the Reports project in chapter 4. Alter-
natively, in Report Manager navigate to the Data Sources folder, click New Data Source
button, and set up a data source that connects to the AdventureWorks2008 database.

Figure 12.22 Enter a command
that returns the list of recipients
from the data source.

MANAGING REPORT EXECUTION AND SUBSCRIPTIONS 455

 Configuring the recipient query
In step 3, you need to enter a command that the report server will execute at run time to re-
trieve the recipient list from the data source. The command must adhere to the syntax of the
underlying data source. The command could be a SQL SELECT statement or a stored proce-
dure call, such as:
EXEC uspGetRecipients parameter1, parameter2, … parameterN

1. For the purposes of this demo, enter the following SQL SELECT statement (Figure 12.22),
which you can find in the Customer Order History.sql file in the source code.
SELECT TOP 3 [BusinessEntityID]
 , 'Customer Order History for ' + [FirstName] + ' ' + [LastName] as Subject
 ,[EmailAddress]
 ,CASE EmailPromotion WHEN 0 THEN 'MHTML' WHEN 1 THEN 'EXCEL' ELSE 'PDF' END as Format
FROM [AdventureWorks2008].[Sales].[vIndividualCustomer]
ORDER BY BusinessEntityID

This statement returns the results shown in Figure 12.23.

Figure 12.23 The recipient
list for the Customer Order
History subscription.

When the subscription is triggered, the report server executes the statement and obtains the
recipient list. Then, the report server loops through the list and generates a report for each
recipient. Report Manager shows you which settings and report parameters can be data-
driven. In the next step, you will bind some of these settings to columns of the recipient row-
set. We will pass the business entity identifier to the CustomerID parameter of the Customer
Order History report. We will use the Subject column for the e-mail subject. The E-Mail deli-
very extension will use the EmailAddress column to send the report to the recipient e-mail
address.

Instead of changing the AdventureWorks2008 database schema to accommodate a cus-
tomer-specific Format setting, I used the EmailPromotion column in the vIndividualCustomer
view and I "translated" it to an export format. Again, for demo purposes, the query returns
only the first three Adventure Works customers. In real life, a custom application will most
likely be used to collect the user preferences and store them in the database. The Step 3 page
lets you specify a command timeout. By default, the command will time out in 30 seconds.
You can also validate the command for syntax errors.

2. Click the Validate button to validate the command syntax. If Report Manager validates the
command successfully, it will display a Query Validated Successfully message (see again Fig-
ure 12.22).

The validation logic checks whether the query is syntactically correct by parsing and sending
the query to the data source. It doesn’t validate the recipient list in any way.

 Configuring the extension settings
Unlike standard subscriptions, which can have only static settings, data-driven subscriptions
are more flexible because they support static and data-driven settings. Step 4 of the Data-
driven Subscription Wizard lets you configure settings of the e-mail delivery extension. Report
Manager retrieves the schema of the recipient query and lets you bind settings to the rowset
columns.

CHAPTER 12 456

1. Select the Get the Value from the Database option for the To field and bind it to the EmailAd-
dress column, as shown in Figure 12.24.

2. Bind the Render Format to the Format column and the Subject field to the Subject column.

Figure 12.24 You can specify static
and data-driven extension settings.

Leave the rest of the settings to their default values.

 Configuring the report parameters
If the report is parameterized, you can use step 5 to assign a static parameter value or bind the
parameters to columns in the recipient dataset. We need to use the latter option for the Cus-
tomerID report parameter.

1. Select the Get the Value from the Dataset option.
2. Expand the drop-down list and select the BusinessEntityID column, as shown in Figure 12.25.

Figure 12.25 Configuring a report
parameter as a data-driven parameter.

 Configuring the subscription processing
Use the last step of the wizard to configure the subscription trigger. As Figure 12.26 shows,
you have three options. If the report is configured for execution snapshot caching, you can
select the When the Report Data is Updated on the report server option to run the subscrip-
tion when the report snapshot is refreshed.

Choose the On a Schedule Created for this Subscription option to trigger the subscription
execution on a subscription-specific schedule. You can use this option to test the subscription
quickly by scheduling it to execute a few minutes ahead of the current time. Selecting this op-
tion introduces a new step in the wizard's flow that lets you configure the schedule details.
Finally, if you have a shared schedule, you can configure the subscription to use it, by follow-
ing these steps.

1. Select the On a Shared Schedule option.
2. Expand the drop-down list and select the Monthly Schedule item.

MANAGING REPORT EXECUTION AND SUBSCRIPTIONS 457

As a result, the Customer Order History subscription will be run at 12 A.M. on the first day of
each month.

Figure 12.26 You can configure the sub-
scription to run on a schedule or when the
execution snapshot is refreshed.

3. Click the Finish button. Report Manager saves the subscription definition and adds it to the
My Subscriptions page, as Figure 12.27 shows.

Figure 12.27 Use the My Subscriptions page to view and manage your subscriptions.

You can determine the subscription type from its icon. Data-driven subscriptions have a data-
base symbol next to the envelope icon. Similar to standard subscriptions, Report Manager will
update the subscription status to reflect the status of the last subscription execution.

12.3 Summary
In this chapter, you've learned how to manage report and subscription processing. Reporting
Services supports three execution options. First, you configure the report to execute with the
most recent data where the report server creates a user-specific execution session for each re-
quest. Second, cache snapshots let users share a single report execution within a predefined
period of time. Third, execution snapshots store a permanent copy of the report in the report
server database for report archiving or auditing purposes.

Besides on-demand delivery, Reporting Services supports subscription and delivery. Out
of the box, Reporting Services can deliver reports to e-mail recipients, network folders, and
SharePoint document libraries. Users can create standard subscriptions to distribute reports to
static e-mail addresses or Windows folders. Data-driven subscriptions let you personalize sub-
scribed delivery by using dynamic delivery settings and report parameters.

12.4 Resources
Configuring a Report Server for E-Mail Delivery

(http://tinyurl.com/26g9cw)—Explains the Report Server e-mail settings.

458

CChhaapptteerr 1133

Advanced Report Management

13.1 Programming Report Management 458
13.2 Monitoring Reporting Services 472
13.3 Configuring Memory Utilization 480

13.4 Managing the Report Server Database 482
13.5 Summary 485
13.6 Resources 486

By now, you should have a solid grasp of how to manage the report server environment. As
you've seen, Report Manager is a great tool for carrying out day-to-day management activities.
Occasionally, Report Manager may not be up to the task. When Report Manager does not
meet your needs, you can write custom applications that pick up from where Report Manager
leaves off.

This chapter starts by introducing you to the report server management API. I will show
you how to use these API to create custom applications to manage the report server program-
matically. You will also learn how to script and automate management tasks. Finally, this
chapter teaches you how to monitor report execution and server performance, and how to
manage the report server database.

13.1 Programming Report Management
As I noted in chapter 11, Report Manager is just a presentation layer on top of the report serv-
er management interface. As you interact with Report Manager, the application calls down to
the Report Server Web service to handle all management actions. For example, when you use
Report Manager to create a new folder, Report Manager calls the CreateFolder method on the
Report Server Web service. If Report Manager does not support a management action that you
require, you can write your own administration utilities that call the same APIs to manage the
report server programmatically.

13.1.1 Understanding the Management API
Recall from chapter 1 that the report server provides four Web service endpoints: ReportEx-
ecution2005.asmx, ReportService2005.asmx, ReportService2006.asmx, and ReportServiceAu-
thentication.asmx (internally used in SharePoint integration mode only). The
ReportExecution2005 Web service endpoint handles report rendering and viewing.

The ReportService2005.asmx and ReportService2006.asmx represent the management
API. Note that these are the same endpoints found in Reporting Services 2005. Reporting Ser-
vices 2008 doesn't introduce new endpoints. It only adds a few new Web methods to support
new features, such as estimated pages versus actual pagination modes. The Microsoft SQL
Server 2000 Reporting Services endpoint (ReportService.asmx) is no longer supported.

ADVANCED REPORT MANAGEMENT 459

 Understanding the management endpoints
The ReportService2005 endpoint provides the management API for a report server that is run-
ning in native mode. If the report server is configured for SharePoint integration mode, use
the ReportService2006 endpoint instead. Make sure to target the ReportService2006 endpoint
that is located in the _vti_bin folder of the SharePoint site (for example,
http://<ServerName>/<SiteName>/_vti_bin/ReportServer/ReportService2006.asmx?wsdl).
Avoid the ReportService2006 endpoint in the report server bin folder because the SharePoint
site may have more recent versions of report content.

Choosing the right management endpoint is important because the ReportService2005
and ReportService2006 endpoints are mutually exclusive. If the report server is configured for
SharePoint integration mode, calling the ReportService2005 API will return an rsOperation-
NotSupportedNativeMode error. Vice versa, if the report server is configured for native mode,
the ReportService2006 APIs will return an rsOperationNotSupportedNativeMode error. This
chapter assumes that the report server is running in native mode and that you are using the
ReportService2005 endpoint. The ReportService2006 endpoint provides almost identical fea-
tures. If you are using the ReportService2006 endpoint, you should still be able to benefit
from the information presented in this chapter.

 Understanding the management methods
The ReportService2005 management endpoint includes more than one hundred Web me-
thods. To see all of them, request the ReportService2005 WSDL contract by typing the follow-
ing URL in Internet Explorer:
http://<ServerName>/ReportServer/ReportService2005.asmx?wsdl

Table 13.1 organizes the management APIs in categories, describes each category, and lists
some of the most common methods in each one.

Table 13.1 The report server supports many management APIs

Category Purpose Method examples

Content Manage the report catalog CreateFolder, GetReportDefinition, MoveItem, CreateReport

Data Sources Manage data source connections and credentials CreateDataSource, EnableDataSource

Linked reports Manage linked reports CreateLinkedReport, GetReportLink

Report parameters Set and retrieve report parameters GetReportParameters, SetReportParameters

Report History Create and manage CreateReportHistorySnapshot, SetReportHistoryOptions

Scheduling Create and manage shared schedules CreateSchedule, SetScheduleProperties

Security Handles report server security CreateRole, GetPolicies, GetPermissions

Subscriptions Manages subscribed delivery CreateSubscription, CreateDataDrivenSubscription

For a full list of the report server management APIs, please see the Report Server Web Service
Methods topic in SQL Server 2008 Books Online.

CHAPTER 13 460

13.1.2 Tracing Web Methods
Given the sheer number of Web methods available, you might find yourself asking which web
method should I choose for the management task at hand and how should I call it? In fact,
this is one of the most frequently asked questions on the Reporting Services public forum. At
the same time, it is likely that Report Manager or Management Studio already supports some
aspect of the management feature you want to implement.

Wouldn't it be nice to be able to peek under the hood and see what APIs Report Manager
calls? This is exactly what my RsRequestViewer sample was designed to handle. RsRequest-
Viewer intercepts the server calls and outputs them to a trace listener. It helps you see the
APIs that Report Manager invokes and what arguments it passes to each interface. Armed with
this information, you can easily reproduce the same feature in your custom management ap-
plication.

 Understanding RsRequestViewer
I implemented the RSRequestViewer sample as an ASP.NET HTTP module. An HTTP module
is a .NET assembly that is called on every request to an ASP.NET application. Once installed,
RSRequestViewer intercepts the incoming traffic to the report server and outputs it to a trace
listener, such as the SysInternal DebugView tool.
public class RsHttpModule : IHttpModule
{
 public delegate void MyEventHandler(Object s, EventArgs e);

 public void Init(HttpApplication app) {
 app.BeginRequest += new EventHandler(this.OnBeginRequest);
 }
 public void Dispose() { }
 public void OnBeginRequest(object obj, EventArgs ea) {
 bool soapRequest = false;
 Stream stream = null;
 HttpApplication app = (HttpApplication)obj;
 HttpContext ctx = app.Context;
 soapRequest = (ctx.Request.Headers["SOAPAction"] != null);
 if (!soapRequest)
 { // URL request
 Trace.WriteLine(String.Format("RsHttpModule - URL request: {0}",
 ctx.Request.Url));
 }
 else
 { // SOAP request
 stream = ctx.Request.InputStream;
 byte[] requestBody = new byte[stream.Length];
 stream.Read(requestBody, 0, requestBody.Length);
 ctx.Request.InputStream.Position = 0;
 string request = System.Text.ASCIIEncoding.ASCII.GetString(requestBody);
 Trace.WriteLine(String.Format("RsHttpModule - SOAP request: {0} from {1}",
 ctx.Request.Headers["SOAPAction"], ctx.Request.Url));
 Trace.WriteLine("RsHttpModule - SOAP payload: " + request);
 }
 }
}

Quickly walking through the code, the RsHttpModule registers a BeginRequest callback in the
Init method. ASP.NET invokes the OnBeginRequest callback each time a new URL or SOAP
request is submitted to the report server. First, OnBeginRequest inspects the request headers
to determine the request type. If this is a URL request, the code outputs the URL. Otherwise,
in the case of a SOAP call, OnBeginRequest gets the name of the web method from the SOA-
PAction header. Next, OnBeginRequest outputs the request payload so you can see what pa-

ADVANCED REPORT MANAGEMENT 461

rameters are passed to the method. All RSRequestViewer trace messages are prefixed with
RsHttpModule so you can easily tell them apart when you watch the trace output.

 Installing RSRequestViewer
Installing RsRequestViewer is a simple three-step process.

1. Copy the RsRequestViewer.dll and RsRequestViewer.pdb files to the report server binary fold-
er. The default report server binary folder is Program Files\Microsoft SQL Server\MSRS10.-
MSSQLSERVER\Reporting Services\ReportServer\bin.

2. Open the report server web.config file in your favorite editor and add RsRequestViewer to the
list of the registered HTTP modules, as follows.
<httpModules>
 <clear />
 <add name="RsHttpModule" type="RsRequestViewer.RsHttpModule, RsRequestViewer"/>
 <add name="OutputCache" type="System.Web.Caching.OutputCacheModule"/>
 . . .
</httpModules>

3. Open the report server policy file (rssrvpolicy.config) and register the RsHttpModule module
by adding the following XML fragment after the last CodeGroup element.
<CodeGroup class="UnionCodeGroup" version="1" Name="SecurityExtensionCodeGroup"
 Description="Code group for the RsRequestViewer HTTP Module"
 PermissionSetName="FullTrust">
 <IMembershipCondition class="UrlMembershipCondition" version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\
 Reporting Services\ReportServer\bin\RsRequestViewer.dll"/>
</CodeGroup>

At this point, RsRequestViewer is registered with the report server and you can start using it.

 Using RSRequestViewer
Suppose you want to write a management utility to programmatically generate an execution
snapshot, add it to the report history, and obtain the history identifier. As you've seen in the
previous chapter, execution snapshot caching requires that all report parameters have default
values. Therefore, if you want to generate an execution snapshot with new parameter values,
you need to set the default values before generating the snapshot. Suppose you don't know
which management API updates parameter default values, but you do know that Report Man-
ager lets you manage report parameters. Let's see if RsRequestViewer can help.

1. Download and install the Microsoft DebugView utility. See the Resources section for a down-
load link.

2. Run DebugView. To see only the RsRequestViewer trace, click the Filter toolbar button and set
up a filter that includes only the RsRequestViewer messages. For example, enter RsHttpMo-
dule* to watch only trace messages that start with RsHttpModule.

3. Open Report Manager and go to the parameter properties page of the Cache Demo report.

As you interact with Report Manager, you should see many calls to the report server. You can
click the Clear toolbar button to clear the trace or toggle the Capture button to pause and
resume the trace.

4. Click the Clear toolbar button (or press Ctrl-X) to clear the trace.
5. Go back to the parameter properties page in Report Manager. If the Has Default checkbox of

the Year parameter is not checked, check it and set the parameter default value to 2001. Click
the Apply button.

CHAPTER 13 462

At this point, DebugView should intercept a few method calls, such as ListSecureMethods,
GetPermissions, and so on, as shown in Figure 13.1. Because you are updating the report con-
tent, you deduce that you need a Set method. Further down the list you see a SetReportPara-
meters method that looks promising. If you hover on the line below it, you will see the
method arguments.

6. Select the line below the SetReportParameters call and press Ctrl-C to copy its content to the
clipboard.

7. Open Notepad and press Ctrl-V to paste the content.

You should see the following trace message.
[1744] RsHttpModule - SOAP payload: <?xml version="1.0" encoding="utf-8"?><soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><soap:Body><SetReportParameters
xmlns="http://schemas.microsoft.com/sqlserver/2005/06/30/reporting/reportingservices"><Report>/AMRS/Cache
Demo</Report><Parameters /></SetReportParameters></soap:Body></soap:Envelope>

You can see the arguments passed to the call toward the end of the trace message. Notice that
SetReportParameters takes two arguments. The Report argument takes the report path (in this
case, the path is /AMRS/Cache Demo). However, the Parameters argument is a complex struc-
ture and its content doesn't show up in DebugView. So how will you find out how to set it?

8. Open SQL Server 2008 Books Online, switch to the Index tab, and enter SetReportParameters.
You should see the SetReportParameters method in the list.

9. Double-click on the SetReportParameters method to see its signature and definition of the
Parameters argument.

The Parameters argument takes an array of ReportParameters objects. Oftentimes, the docu-
mentation also includes a code sample in both C# and Visual Basic.NET that demonstrates
how to call the method. Follow similar steps to understand the APIs that Report Manager in-
vokes when generating an execution snapshot and a history snapshot.

13.1.3 Programming Management Tasks
Empowered by what you have learned from the RsRequestViewer sample, you are well posi-
tioned to tackle writing custom code to manage the report server. Included in the chapter's

Figure 13.1 Use the Microsoft DebugView to watch the RsRequestView output.

ADVANCED REPORT MANAGEMENT 463

source code, you'll find a GenerateExecutionSnapshot C# console application that provides an
example for generating a report execution snapshot programmatically.

The 2.0 version of the GenerateExecutionSnapshot sample is based on the .NET Frame-
work 2.0 and uses a web reference technique to generate a web proxy. The 3.5 version is
based on the .NET Framework 3.5 and uses the Windows Communication Foundation
(WCF) to integrate with the Report Server Web service. First, I will walk you through the im-
plementation steps of the 2.0 version. Then, I'll point out the differences when WCF is used.

 Generating a Web service proxy
A Web service proxy lifts some of the complexity of communicating with a Web service. Fol-
low these steps to use Visual Studio 2008 to create a C# Console Application project and gen-
erate a proxy for the ReportService2005 endpoint.

1. Open Visual Studio 2008 and select the File New Project menu to create a new project.
2. In the New Project dialog box that follows, expand the .NET Framework drop-down in the

upper right corner and select .NET Framework 2.0 to target this version.
3. In the Project Types pane, select the Visual C# project type and choose the Console Applica-

tion template in the Templates pane.
4. Name the project GenerateExecutionSnapshot. Choose a location for the project and click OK

to generate the project.

5. In the Solution Explorer pane, right-click on the GenerateExecutionSnapshot project node
and select the Add Web Reference context menu.

6. In the Add Web Reference dialog box that follows (see Figure 13.2), enter the URL address of
the ReportService2005 endpoint, such as
http://localhost/ReportServer/ReportService2005.asmx if Reporting Services is installed locally.
Click the Go button to retrieve the Web service description.

7. In the Web Reference Name field, enter ReportService2005 and click the Add Reference button
to generate the Web service proxy.

Figure 13.2 Add a web
reference to the ReportSer-
vice2005 endpoint to gener-
ate a Web service proxy.

CHAPTER 13 464

Visual Studio creates a new Web References folder and adds to it the ReportService2005 web
reference, as shown in Figure 13.3. You can click the Show All Files toolbar button in the So-
lution Explorer pane to see all source files that Visual Studio has generated. The Reference.cs
source file contains the actual proxy definition.

 Generating the execution snapshot
Now, let me walk you through the code to generate a report execution snapshot and save it in
the snapshot history.
using System;
using System.Collections.Generic;
using System.Text;
using GenerateExecutionSnapshot.ReportService2005;
namespace GenerateExecutionSnapshot {
 class Program {
 static void Main(string[] args)
 {
 bool forRendering = false;
 string historyID = null;
 ParameterValue[] values = null;
 DataSourceCredentials[] credentials = null;
 Warning[] warnings = null;
 bool keepExecutionShapshots = false;
 ScheduleDefinitionOrReference schedule = null;
 string reportPath = "/AMRS/Cache Demo";

 ReportingService2005 rs = new ReportingService2005();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 // Check the execution options of the report (live or snapshot)
 ExecutionSettingEnum executionOption = rs.GetExecutionOptions(reportPath,out schedule);
 if (executionOption == ExecutionSettingEnum.Live) throw new ApplicationException
 (The report is not configured for snapshot execution", reportPath));

 ReportParameter[] parameters = rs.GetReportParameters(reportPath, historyID,
 forRendering, values, credentials);
 parameters[0].DefaultValues[0] = "2002";

 // All parameters have to be assigned default values before snapshot is generated
 rs.SetReportParameters(reportPath, parameters);
 // Create the report snapshot
 rs.UpdateReportExecutionSnapshot(reportPath);
 // Check if the report is configured to keep snapshots in history
 bool result = rs.GetReportHistoryOptions(reportPath, out keepExecutionShapshots, out schedule);

 if (keepExecutionShapshots)
 {
 // history is automatically created, get the list of history runs
 ReportHistorySnapshot[] history = rs.ListReportHistory(reportPath);
 // Need to sort by date since history runs may not be chronologically sorted

Figure 13.3 The ReportSer-
vice2005 web reference is added
to the Web References folder.

ADVANCED REPORT MANAGEMENT 465

 Array.Sort(history, CompareReportHistoryByDate);
 historyID = history[history.Length - 1].HistoryID; //get the last history run
 }
 else
 {
 // explicitly create history snapshot
 historyID = rs.CreateReportHistorySnapshot(reportPath, out warnings);
 }
 }
 private static int CompareReportHistoryByDate(ReportHistorySnapshot x, ReportHistorySnapshot y)
 {
 return x.CreationDate < y.CreationDate ? -1 : 1;
 }
 }

To start with, note that the code adds a reference to the web reference namespace (Genera-
teExecutionSnapshot.ReportService2005) to bring it in scope. The code instantiates an in-
stance of the ReportService2005 proxy and sets its Credentials property to System.Net.-
CredentialCache.DefaultCredentials. As a result, all calls to the Web service will execute under
the identity of the interactive user (this is you). This is important because by default, .NET will
not impersonate the call. If you don't overwrite the Credentials property, the calls will go un-
der a Windows NULL session and will be rejected by IIS with a 401 Unauthorized error.

Next, the code calls the GetExecutionOptions API to check the report execution settings
of the Cache Demo report. If the report is configured as a live report (that is, it runs with the
most recent data), an execution snapshot cannot be generated and the code throws an excep-
tion. Otherwise, the code calls the GetReportParameters API to obtain the definition of the
report parameters. As noted, all parameters must have default values before the snapshot is
generated. Assuming that we want the snapshot to show the 2002 sales data, we set the value
of the first (and only) parameter to 2002 and call SetReportParameters to update the Year re-
port parameter.

Next, we generate the actual snapshot by calling the UpdateReportExecutionSnapshot API.
This is equivalent to selecting the Create a Report Snapshot When You Click the Apply Button
on This Page option in the Execution page in Report Manager. At this point, the snapshot is
generated and all requests to the Cache Demo report will be served by the cached instance. If
we want to add the snapshot to report history and get the history identifier, we have a bit
more work to do. First, the code determines how the report history is configured by invoking
the GetReportHistoryOptions API.

If the Cache Demo report is configured to automatically add new snapshot instance to the
report history each time the execution snapshot is refreshed (this is the Store All Report Ex-
ecution Snapshots in History option on the History Page), the code retrieves the history list by
calling the ListReportHistory API. Since the list is not sorted in chronological order, the code
sorts the list and obtains the history identifier of the last history snapshot.

If report history for the Cache Demo report is not configured to automatically store new
versions of the snapshot as they are generated, the code adds a one-time execution snapshot to
report history by calling the CreateReportHistorySnapshot API. This is the same as manually
adding a snapshot to report history. In Report Manager, this is done by clicking the New
Snapshot button on the History page.

 Using Windows Communication Foundation
Let’s now move on to the world of the Windows Communication Foundation (WCF). Pre-
viously codenamed Indigo, WCF debuted in .NET Framework 3.0. It is a communication sub-
system that enables applications to communicate with each other in flexible ways. If you tell
Visual Studio to target the 3.5 version of the .NET Framework when you create a new project,

CHAPTER 13 466

it will default to using WCF for communicating with Web services. Be prepared for some sur-
prises. The WCF programming model is considerably different than the web reference ap-
proach that you may already be familiar with.

The first difference is that the Add Web Reference dialog box is now called Add Service
Reference to denote the fact that WCF supports more than just Web services. You will use the
Add Service Reference dialog box to establish a reference to the ReportService2005 endpoint
and generate a proxy.

TIP If your project already targets the .NET Framework 3.5, you can still create 2.0-style proxies. To do so, in the Add
Service Reference dialog box, click the Advanced button. In the Service Reference Settings dialog box that follows, click
the Add Web Service Reference button to open the familiar Add Web Reference dialog box.

What's more interesting is that WCF generates somewhat different method signatures. For
example, you will find that all methods return a ServerInfoHeader object (although Books On-
line states otherwise). In WCF, the documented return values become out parameters that you
need to pass on the call.
ExecutionSettingEnum executionOption;
ReportingService2005SoapClient rs = new ReportingService2005SoapClient();
rs.ClientCredentials.Windows.AllowedImpersonationLevel =
System.Security.Principal.TokenImpersonationLevel.Impersonation;
ServerInfoHeader header = rs.GetExecutionOptions(reportPath, out executionOption, out schedule);

For example, Books Online tells you that the GetExecutionOptions API should return an Ex-
ecutionSettingEnum value that indicates how the report is configured for execution. This is
what you will get in the .NET 2.0 world. However, the WCF programming model makes the
return value an out parameter.

Another difference is in how WCF impersonates the call and passes the user credentials to
the service. In 2.0, you can simply set the proxy's Credentials property to Sys-
tem.Net.CredentialCache.DefaultCredentials. With WCF, the easiest way I've found to accom-
plish the same thing is to change the service declaration in the application configuration file
(yes, we now have a declarative model), as follows:
<security mode="TransportCredentialOnly">
 <transport clientCredentialType="Ntlm" proxyCredentialType="None" realm="" />
 <message clientCredentialType="UserName" algorithmSuite="Default" />
</security>

In addition, WCF will not let the client impersonate the user unless you make your intention
explicit. This is why the code sets the AllowedImpersonationLevel of the proxy's ClientCre-
dentials property to TokenImpersonationLevel.Impersonation.

In summary, unless you absolutely need WCF, I'd suggest you stick to the .NET 2.0 pro-
gramming style for invoking the Report Server Web service because it's simpler and well do-
cumented. For this reason, all my Web service demos target .NET 2.0 excluding the Generate-
ExecutionSnapshot demo in this chapter and the SilverlightReporter demo in chapter 15.

 Batching methods
Sometimes, you may need to perform several update commands to the report catalog in a sin-
gle atomic operation. That is, the entire operation should succeed only if all commands ex-
ecute successfully. If any of the commands fail, the operation must roll back. Similar to
database transactions that you may already be familiar with, Reporting Services lets you group
multiple Web method calls in a single batch. For example, suppose you want to execute the
tasks of updating the report parameters and generating a report execution snapshot in the Ge-
nerateExecutionSnapshot demo as an atomic transaction.

ADVANCED REPORT MANAGEMENT 467

BatchHeader batchHeader = new BatchHeader();
batchHeader.BatchID = rs.CreateBatch(); // start a new batch
rs.BatchHeaderValue = batchHeader;
rs.SetReportParameters(reportPath, parameters);
rs.UpdateReportExecutionSnapshot(reportPath); // create the report snapshot
rs.ExecuteBatch(); // commit the batch
rs.BatchHeaderValue = null;

Creating a batch requires several steps. First, you create a BatchHeader object. Next, you call
the CreateBatch API to obtain a batch identifier. Then, you invoke the management APIs that
write to the report catalog. In our case, the code calls SetReportParameters to update the re-
port parameters, followed by UpdateReportExecutionSnapshot to refresh the report snapshot.
Finally, you commit the changes by invoking the ExecuteBatch API.

Again, similar to database transactions, you can nest batches. Although resembling data-
base transactions, Reporting Services batches are implemented differently. First, the report
server doesn't lock any objects when CreateBatch is called. This is because SOAP is a stateless
protocol. Instead, the report server simply accumulates the method calls in the report catalog
(table Batch) for later execution. Therefore, the catalog changes are not immediately made as
you call the management APIs.

When you invoke the ExecuteBatch API, the report server starts a database transaction
and performs the updates inside the transaction. If all methods succeed, the report server
commits the database transaction. If ExecuteBatch is not called within a certain period, the
report server expires and deletes the batch. This is equivalent to cancelling the batch with the
CancelBatch API.

A batch is cancelled automatically in case of an error. If you decide that you want to dis-
card the batch programmatically, you can call the CancelBatch API. After you execute or can-
cel the batch, you need to clear out the batch header by setting proxy's BatchHeaderValue to
null. Otherwise the proxy will continue to send the header and you will still be operating un-
der a batch.

Because of the way they are implemented, batches have several limitations. First, batches
only support write operations. For example, you cannot call GetReportParameter API within a
batch. If read operations were allowed, they would return results for the original state of the
catalog and the changes made by the write commands would not be reflected. Second, write
methods that return results are permitted but their results are discarded. For example, you can
call the CreateReportHistorySnapshot API within a batch but you won't be able to get back the
history identifier. Finally, batches are not supported in SharePoint integration mode.

13.1.4 Scripting Management Tasks
Administrators love scripts! As a report server administrator, you can write scripts to automate
mundane management tasks. For example, you can write a script to automate the process of
publishing reports to a report server instance. A Reporting Services script is a file written in
Visual Basic.NET and that has an .rss file extension. You can execute scripts from the com-
mand line or schedule them for an unattended execution.

 Understanding the Script Host
Reporting Services include a Script Host utility (rs.exe) which can run script files. The Script
Host (rs.exe) is a command line utility that supports various switches. Table 13.2 shows the
three most popular switches.

CHAPTER 13 468

Table 13.2 Script Host command line switches

Category Purpose Example

-i (required) Specifies the script file to execute -i FireEvent.rss

-s (required) Specifies the report server URL -s http://localhost/ReportServer

-v Defines a global variable -v reportPath="/AMRS/Cache Demo"

The Script Host includes a predefined global variable called rs to let you communicate with
the Report Server Web service without having to create a Web service proxy. Unfortunately,
the Script Host doesn't support SharePoint integration mode and custom security. These inte-
gration scenarios require custom management utilities. Chapter 17 includes such a utility for
uploading report definitions to a report server configured in SharePoint integration mode.

 Implementing the script code
The Reporting Services samples include several scripts for automating common management
tasks, such as publishing reports, changing system properties, cancelling jobs, and setting up
security policies. Let's add to these by creating a FireEvent.rss script that lets you trigger a
subscription on demand. This could be useful to test a subscription quickly because you don't
have to run the subscription on a schedule.

TIP Another quick way to test subscriptions is to manually run the scheduled job in SSMS. It fires the event right away,
irrespective of the schedule.

The Script Host can run script files but it doesn't let you debug them. Therefore, the easiest
way to implement a Reporting Services script is to create a Visual Studio VB.NET project.
Once you test the code, you can easily convert it to a script file. The FireEvent VB.NET con-
sole application lets you step through the code in Visual Studio.
Module Module1
 Dim rs = New ReportingService2005()
 Sub Main()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials
 FireEvent("/AMRS/Cache Demo")
 End Sub
 Private Sub FireEvent(ByVal reportPath As String)
 Try
 Console.WriteLine("Getting subscriptions...")
 Dim subs As Subscription() = rs.ListSubscriptions(reportPath, Nothing)
 If subs IsNot Nothing Then
 ' Fire the first subscription in the list
 Console.WriteLine("Firing event...")
 rs.FireEvent("TimedSubscription", subs(0).SubscriptionID)
 Console.WriteLine("Event fired successfully")
 End If
 Catch ex As Exception
 Console.WriteLine(ex.ToString())
 End Try

 End Sub
End Module

NOTE The user must have Generate Events system rights to invoke the FireEvent API successfully. However the
System User and System Administrator roles don't include these rights by default. If you are a System Administrator,
you can grant yourself permissions to call FireEvent by going to the SQL Server Management Studio, double-clicking
the System Administrator role to open its properties, and selecting the Generate Events task.

ADVANCED REPORT MANAGEMENT 469

The Main function is the entry point of the application. It sets the proxy credentials to De-
faultCredentials to pass the user credentials to the server with each call. Next, it calls the Fire-
Event helper method and passes the report path. Excluding the error handling and tracing
code, the FireEvent method calls the ListSubscriptions API to obtain the subscriptions asso-
ciated with the Cache Demo reports. Next, it calls the FireEvent API to trigger the first sub-
scription by passing the subscription identifier. In the previous chapter, I explained that the
report server supports TimedSubscription and SnapshotUpdated event types. However, be-
cause the SnapshotUpdated event is an internal event type, the FireEvent can only raise Time-
dSubscription events.

Once the report server picks up the event, it will trigger the first subscription associated
with the Cache Demo report. To make sure that the FireEvent call has succeeded, open the
Subscription tab of the Cache Demo report in Report Manager. The Last Run column should
show the time the FireEvent was called.

 Working with script files
Converting the FireEvent sample to a script file requires only a couple of changes. First, as
mentioned earlier, there is no need to instantiate the proxy because the rs global variable ful-
fills exactly this purpose. Second, instead of using a static folder path, the code gets the path
from a reportPath global variable that you pass to the script. I provided a FireEvent.bat file
that demonstrates how to invoke the FireEvent.rss script file. It includes the following com-
mand line:
rs -i FireEvent.rss -s http://localhost/reportserver -v reportPath="/AMRS/Cache Demo"

This command invokes the RS Script Host and passes the FireEvent.rss script file to it. The -s
switch tells the Script Host to target the local report server. The -v switch passes the path to
the Cache Demo report to the reportPath global variable.

TIP If you need to migrate the report content from one server to another, consider the excellent Report Scripter utility
by Jasper Smith (see Resources). The Report Scripter automatically generates scripts to load reports, data sources
definitions, resources, linked reports and folders with all their associated properties.

13.1.5 Using the WMI Provider
As useful as it is, Report Manager is limited in that it only lets you manage a single report serv-
er instance at a time. Chances are that in real life you may need to manage several report serv-
ers. For example, you may have a testing server for QA testing and a production server that
hosts the production reports. As you know by now, you can use SQL Server Management
Studio and the Reporting Services Configuration Manager to manage any report server on your
network.

Behind the scenes, these management tools use the Reporting Services Windows Man-
agement Instrumentation (WMI) provider. You can use the WMI provider to write your own
management utilities too. For example, you could write a custom management application
based on the WMI provider to discover which machines in the network are running the Re-
port Server Web service.

 Understanding the Reporting Services WMI provider
The Reporting Services WMI provider is essentially an API layer on top of the report server
configuration data. Consequently, the WMI provider works even if the Reporting Services ser-

CHAPTER 13 470

vice is not running. This is because the WMI provider doesn't communicate with the report
server. Instead, it directly accesses configuration data for your report server installation.

The Reporting Services WMI provider gets installed by the SQL Server 2008 setup pro-
gram. Developers can write custom code that uses the WMI provider to programmatically
access the configuration settings of local and remote installations. Since Reporting Services
2008 now keeps both Report Manager and report server configuration settings in a single re-
port server configuration file, programming the WMI provider got easier in this release. The
Reporting Services 2005 WMI provider includes two configuration classes:
 MSReportServer_Instance—This class provides instance discovery features and basic in-

formation required for a client to connect to an installed report server, such as obtaining
the report server URLs.

 MSReportServer_ConfigurationSetting—This class abstracts the configuration settings
stored in the report server configuration file (rsreportserver.config).

.NET developers can use the classes in the System.Management assembly to access the WMI
provider. One cautionary note is that WMI relies on the Windows DCOM infrastructure.
Therefore, if you don't have administrator access to the remote server, the WMI provider may
fail with remote configuration tasks. Review the Configuring a Report Server for Remote Ad-
ministration topic in Books Online (see Resources) for instructions on how to configure the
WMI provider for remote access.

 Working with the WMI provider
My RSWMI console utility demonstrates how you can integrate .NET applications with the
WMI provider to manage report server instances. You can start RSWMI from the command
line using the following syntax:
rswmi <servername> <instancename>

Both arguments are optional. If they are omitted, RSWMI assumes that you are targeting the
local server (localhost) using the default SQL Server instance name (MSSQLSERVER). The
RSWMI reads and displays report server configuration properties in the Windows command
prompt. A partial output obtained by running RSWMI on my laptop follows:
C:\>rswmi localhost
Instance Info ...
EditionID: 1804890536
EditionName: ENTERPRISE EDITION
InstanceID: MSRS10.MSSQLSERVER
InstanceName: MSSQLSERVER
IsSharePointIntegrated: False
Version: 10.0.1442.32
ReportServerWebService: http://NW8000:80/ReportServer
ReportManager: http://NW8000:80/Reports
Admin settings ...
Instance MSSQLSERVER
Property Name: ConnectionPoolSize Value: 100
Property Name: DatabaseLogonTimeout Value: -1
. . .

First, RSWMI generates an Instance Info section that outputs information obtained from the
MSReportServer_Instance class. Next, it outputs the properties of the MSReportServ-
er_ConfigurationSetting class (Admin Settings section). The most interesting properties in the
first section are the SQL Server 2008 edition, the instance name, and whether the server is
configured for SharePoint integration mode. In addition, RSWMI displays the report server

ADVANCED REPORT MANAGEMENT 471

and Report Manager URLs. The GetReportServerUrl method is responsible for generating the
Instance Info section.
internal static void GetReportServerUrl(string machineName, string instanceName) {
 string reportServerVirtualDirectory = String.Empty;
 string fullWmiNamespace = string.Format(_wmiNamespace, machineName, instanceName);
 ManagementScope scope = null;
 ConnectionOptions connOptions = new ConnectionOptions();
 //Get management scope
 scope = new ManagementScope(fullWmiNamespace, connOptions);
 scope.Connect();
 //Get WMI class
 ManagementPath path = new ManagementPath("MSReportServer_Instance");
 ObjectGetOptions options = new ObjectGetOptions();
 ManagementClass serverClass = new ManagementClass(scope, path, options);

 serverClass.Get();
 if (serverClass == null)
 throw new Exception(string.Format(CultureInfo.InvariantCulture, "No WMI class found."));
 //Get instances
 ManagementObjectCollection instances = serverClass.GetInstances();

 foreach (ManagementObject instance in instances)
 {
 instance.Get();
 foreach(PropertyData p in instance.Properties) Console.WriteLine(p.Name + ": " + p.Value);
 ManagementBaseObject outParams =
 (ManagementBaseObject)instance.InvokeMethod("GetReportServerUrls", null, null);

 string[] appNames = (string[])outParams["ApplicationName"];
 string[] urls = (string[])outParams["URLs"];
 for (int i = 0; i < appNames.Length; i++) Console.WriteLine(appNames[i] + ": " + urls[i]);
 }
}

First, RSWMI creates a management scope based on the WMI namespace (such as
\\localhost\root\Microsoft\SqlServer\RS_ReportServer\MSSQLSERVER\v10) and connects that
scope to the WMI namespace.

TIP The WMI namespace path has changed in this release to include the RS_ prefix. When working with WMI, I found
the Microsoft Scriptomatic 2.0 utility (see Resources) very useful to obtain the WMI namespace paths and class names.

Second, RSWMI creates a WMI management path that points to the MSReportServer_Instance
class and creates a management object that uses the path. Third, RSWMI calls the Get method
to bind to the management object that represents the report server instance. Fourth, the code
calls the GetInstances method of the management object to obtain all instances (there should
be only one management object for a single report server instance) and displays the instance
properties.

Finally, RSWMI gets the URLs for the report server and Report Manager and outputs the
URLs to the console. The WMI provider provides a new GetReportServerUrls method that re-
turns the full URL addresses of both Report Server Web service and Report Manager. RSWMI
calls this method to output the URL addresses to the console. When testing the RSWMI utility,
try stopping the target report server by shutting down the Reporting Services service and run-
ning the utility. Although the report server is stopped, the utility should run successfully be-
cause it doesn't communicate with the server or any Web service APIs.

CHAPTER 13 472

13.2 Monitoring Reporting Services
It is unrealistic to expect that your management responsibilities will come to an end once the
reports are deployed to the production server. In real life, end users may occasionally report
errors or degradation of server performance over time. By monitoring the report server, you
can ensure that it functions correctly at an acceptable performance level.

13.2.1 Understanding the Reporting Services Log Files
Reporting Services provides various log files to help you track the health and performance of
the server. Table 13.3 shows the log files and their purpose.

Table 13.3 Reporting Services Log Files

Log File Purpose

Execution Log Logs report execution data, such as the report export format, parameters, performance data, and so on.

Trace Log Logs trace output from the report server, including exception information.

HTTP Log Logs HTTP requests handled by the report server and Report Manager.

Windows Event Log Logs the report server events, such as error conditions.

Setup log

Contains trace output from the SQL Server 2008 setup program that could help you troubleshoot setup issues.
The default location is \Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log.

Let's explore the first three log files in more detail.

13.2.2 Working with the Execution Log
Why is my report so slow? This is another common question on the public discussion list. The
execution log should be your first stop for troubleshooting report performance problems. It
tracks detailed information about report execution, including who requested the report, the
report parameter values, report size, source of the report execution (live, cache, snapshot, or
history), and so on. If you have a web farm of report servers, the execution log is shared
among all servers.

 Configuring the Execution Log
The Execution Log is enabled by default. Follow these steps to manage its settings.

1. In SQL Server Management Studio, connect to the report server instance.
2. In Object Explorer, right-click on the server and choose Properties.

Figure 13.4 Use the
Logging property page
to manage the Execu-
tion Log settings.

ADVANCED REPORT MANAGEMENT 473

3. In the Server Properties dialog box, select the Logging page, as shown in Figure 13.4.

To disable execution logging, clear the Enable Report Execution Logging checkbox. Use the
Remove Log Entries Older Than This Number of Days setting to specify a retention policy. By
default, the report server will keep the log entries for 60 days. Clear the checkbox if you don't
want the report server to expire the execution log.

 Viewing the Execution Log
The report server stores the execution log in the ExecutionLogStorage table in the report serv-
er database. You can view this table directly, as show in Figure 13.5. Alternatively, you can
use the Microsoft-provided ExecutionLog and ExecutionLog2 SQL views that facilitate analyz-
ing the data in the ExecutionLogStorage table, such as converting the report identifier to the
report path. From a performance standpoint, the most interesting columns are TimeDataRe-
trieval, TimeProcessing, and TimeRendering. These columns indicate how much time (in mil-
liseconds) the report server has spent in retrieving the report data, processing the report, and
rendering it in the requested export format.

For example, in my case, the report server has spent almost 15 seconds to retrieve the data for
the third report shown in Figure 13.5. Therefore, it may be beneficial to optimize the report
query to make this report run faster. If the report server was under pressure when working on
the report, it may log additional information in the AdditionalInfo column, which is described
in XML. For example, it may log how much time was spent paginating the report.

 Analyzing the Execution Log
While you can query the ExecutionLogStorage table directly, you may need to join it to other
tables to understand its content. This is because the report server database is highly norma-
lized. For example, to see the report path, you need to join the ExecutionLogStorage table to
the Catalog table on the ReportID column. In addition, you need to write queries to analyze
the execution log, for example, to find the top ten most executed reports. Finally, you should
avoid querying the report server database directly as its schema is not guaranteed to be the
same from one release to the next and this may degrade the server performance.

To help you analyze the execution log, Microsoft has provided a sample Integration Ser-
vices package that extracts the raw log data from the ExecutionLogStorage table and loads it
into a separate database that is optimized for reporting purposes. Microsoft has also provided
a few useful reports that you can run right away or customize to fit your specific needs.

Assuming you have downloaded and installed the Reporting Services samples, you can
find the execution log samples in the \Program Files\Microsoft SQL Server\100\Samples\-
Reporting Services\Report Samples\Server Management Sample Reports. Follow the instruc-
tions in the readme file to configure the package and load the database. Once the database is

Figure 13.5 The report server execution log contains a wealth of information about the report execution.

CHAPTER 13 474

populated, open the Execution Log Sample Reports project and run the Execution Summary
report, which is shown in Figure 13.6.

Figure 13.6 The Execution
Summary report gives a high-
level understanding of the re-
port activity.

The Execution Summary report summarizes the report activity for a given time period. For
example, glancing at the Report Execution per Day of Month chart, you can get a high-level
understanding about the report loads within the given month. Below the chart reports, you
will find sections for the top 10 most executed reports, top 10 longest running reports, top 10
largest reports, and top 10 most active users. Clicking on a report name opens a summary re-
port that shows you detail information about the report, such as number of successful and
failed executions and parameter values that were passed to the report.

13.2.3 Working with the Trace Log
As a general best practice for troubleshooting performance problems, I recommend you start
with the execution log to find out which reports are failing and when they failed. Then, use
the timestamp to find detailed error information in the trace log that indicates the exact cause
of the failure. The trace log is a system-wide log that contains detailed information about re-
port server operations, including system information (operating system, version, number of
processors, and memory), Reporting Services component and version information, errors, low
resource warnings, inbound and outbound SOAP messages, HTTP header, stack trace and
debug trace information, report delivery status, recipient, and number of delivery attempts for
subscribed delivery.

 Configuring the Trace Log file
The trace log supports several configuration settings which you can find in the Reporting Ser-
vices service configuration file (ReportingServicesService.exe.config). The default location of
the Report Server service configuration file is the Program Files\Microsoft SQL Serv-
er\MSRS10.MSSQLSERVER\Reporting Services\ReportServer\bin folder.

ADVANCED REPORT MANAGEMENT 475

<system.diagnostics>
 <switches>
 <!-- 1 = error, 2 = warning, 3 = info, 4 = verbose -->
 <add name="DefaultTraceSwitch" value="3" />
 </switches>
</system.diagnostics>
<RStrace>
 <add name="FileName" value="ReportServerService_" />
 <add name="FileSizeLimitMb" value="32" />
 <add name="KeepFilesForDays" value="14" />
 <add name="Prefix" value="tid, time" />
 <add name="TraceListeners" value="file" />
 <add name="TraceFileMode" value="unique" />
 <add name="Components" value="all:3" />
</RStrace>

The DefaultTraceSwitch setting controls the level of information that is reported to the Re-
portServerService trace log. The default setting of 3 logs exceptions, restarts, warnings, and
status messages. The maximum level for logging verbose output is 4. Reporting Services
creates a new trace log file daily, when the Reporting Services service is restarted, and when
the log file exceeds the maximum size (FileSizeLimitMb setting). The KeepFilesForDays setting
defines the retention policy of the old trace log files. The FileName and Prefix settings control
the name of the log file. You need to restart the Reporting Services service if you have changed
any setting.

 Viewing the Trace Log file
The report server stores the trace information in ASCII format so you can use any text editor
to view its content, such as Notepad.

1. Use Windows Explorer to navigate to the report server LogFiles folder. The default location is
\Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Services\LogFiles.

Each time, you restart the Reporting Services service, the report server creates a new log file.
The default name of the file is ReportServerService__<timestamp>.log.

NOTE The report server may not immediately log messages to the file so you may need to wait for the report server
to flush the output buffer. Alternatively, restart the Reporting Services service to force the server to flush the trace.

2. Sort the files by date, and open the most recent log file.

At the top the file, you will find a header section that displays useful report server installation
details, such as SQL Server edition, version, and locale. Assuming you are troubleshooting the
server, search for "error" to locate the error messages.
ReportingServicesService!ui!f98!12/14/2007-21:08:24:: e ERROR: HTTP status code --> 200
-------Details--------
System.Web.Services.Protocols.SoapException: System.Web.Services.Protocols.SoapException: The SQL Agent service is not
running. This operation requires the SQL Agent service. --->
Microsoft.ReportingServices.Diagnostics.Utilities.SchedulerNotRespondingException: The SQL Agent service is not running.
This operation requires the SQL Agent service.

If the report server has logged an error, you will find the error message and the full exception
stack. You can help the Microsoft Product Support investigate server issues by sending them
the error information from the trace log. If the report server has generated a Dr. Watson mini-
dump file (*.mdmp) in the \Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\-
Reporting Services\LogFiles folder, you should include this file as well. A Dr. Watson
minidump captures stack traces of the server process and could assist Microsoft Product Sup-
port to debug the internal state of the server before the crash.

CHAPTER 13 476

 Watching report server trace real time
If you're like me, you'd prefer a faster way to monitor the report server trace file then sifting
through large log files. Fortunately, the report server outputs trace messages. This lets you
watch the server trace real time by attaching a trace listener, such as the SysInternals Debug-
View, that I've just demonstrated. For security reasons, the report server doesn't output trace
messages. Follow these steps to enable and monitor the trace output.

1. Open the Reporting Services service configuration file (ReportingServicesService.config) whose
default location is the \Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER-
\Reporting Services\ReportServer\bin folder.

2. In the RStrace section, locate the TraceListeners element and add a debugwindow setting, as
follows:
<RStrace>
 <add name="TraceListeners" value="debugwindow, file" />
</RStrace>

3. Restart the Reporting Services service.
4. Start DebugView. Click the Capture menu and make sure that the all capture options are

enabled.
5. Initiate a Reporting Services action of interest, such as viewing a report in the Report Manager.

Figure 13.7 Use DebugView to watch the trace log in real time.

The same output that is generated in the trace log file is outputted in DebugView, as shown in
Figure 13.7. DebugView lets you search the trace. For example, to find an error condition,
search for "error". In this case, the report server has thrown an exception because it wasn't
able to open a connection to the data source. You can click the Clear toolbar button (Ctrl+X)
to clear the trace output to remove non-significant trace messages before you initiate the ac-
tion of interest. The Capture button (Ctrl+E) lets you freeze the trace. The Autoscroll buton
(Ctrl+A) lets you toggle auto scrolling to the latest message on and off.

ADVANCED REPORT MANAGEMENT 477

13.2.4 Working with the HTTP Log
Now that Reporting Services is no longer dependent on IIS, you cannot use the IIS web log to
capture and analyze the HTTP requests to the server. However, Reporting Services supports its
own HTTP log file that fulfills the same purpose and has the same format. Among other
things, it logs all HTTP requests to the report server, client IP address, and HTTP status.

 Enabling the HTTP log
The HTTP log file is not enabled by default. Follow these steps to enable it.

1. Open the ReportingServicesService.exe.config configuration file and add the http:4 setting to
the RSTrace section, as follows:
<RStrace>
 <add name="FileName" value="ReportServerService_" />
 <add name="FileSizeLimitMb" value="32" />
 <add name="KeepFilesForDays" value="14" />
 <add name="Prefix" value="tid, time" />
 <add name="TraceListeners" value="debugwindow, file" />
 <add name="TraceFileMode" value="unique" />
 <add name="HTTPLogFileName" value="ReportServerService_HTTP_" />
 <add name="HttpTraceSwitches" value="date,time,activityid,sourceadtivityid,clientip,username,
 serverip,serverport,host,method,uristem,uriquery,protocolstatus,bytessent,bytesreceived,
 timetaken,protocolversion,useragent,cookiereceived,cookiesent,referrer" />
 <add name="Components" value="all:3,http:4" />
</RStrace>

2. Optionally, add the HTTPLogFileName and HttpTraceSwitches settings to specify the file
name format and the request fields that will be logged. For more information about the sup-
ported fields and other HTTP log settings, read the Report Server HTTP Log topic in Books
Online.

3. Save the configuration file and restart the Reporting Services service.
4. Issue an HTTP request to the report server (for example, open a report).
5. The log file is created after the first HTTP request is received. If you don't see the latest re-

quests in the file, you may need to restart the Reporting Services service to flush the log writer.

Each time you restart the service, a new HTTP log file will be created.

 Viewing the HTTP log
The report server creates the HTTP log file in the LogFiles folder and logs the HTTP requests
as users submit report requests and navigate the report server pages. Here is an extract from
my local HTTP log file.
#Fields: date time s-activityid c-ip cs-username s-ip s-port s-host cs-method cs-uri-stem cs-uri-query sc-status sc-
bytes cs-bytes time-taken cs-version cs(User-Agent) cs(Cookie) sc(Cookie) cs(Referrer)
12/16/2007 19:08:07 ::1 - ::1 20480 localhost GET /Reports/Reserved.ReportViewerWebControl.axd
?ReportSession=zoayft55j1i2xy451adnfm45&ControlID=182612d5b5ca49afa544c6826066b944&Culture=1033&UICultur
e=9&ReportStack=1&OpType=ReportArea&Controller=ctl139&PageCountMode=Estimate&LinkTarget=_top&&ZoomMode
=Percent&ZoomPct=100&ActionType=Toggle&ActionParam=27iT0R0x0&PageNumber=1 401 - 2669 0 1.1
12/16/2007 19:08:09 ::1 - ::1 20480 localhost GET /ReportServer 401 - 629 10 1.1 localhost - - -
12/16/2007 19:08:10 ::1 - ::1 20480 localhost POST /ReportServer/ReportExecution2005.asmx 401 - 1064 0

The report server HTTP log file has the same format as the W3C extended log file in IIS.
Therefore, you can use third-party IIS log file viewers to read the report server HTTP log file
and analyze the HTTP activity.

CHAPTER 13 478

13.2.5 Monitoring Server Performance
An important management task is monitoring server utilization of system resources. As an
administrator, you can watch resource utilization in real time by monitoring the Reporting
Services performance counters. As a part of the setup process, Reporting Services installs vari-
ous performance counters that cover essential server statistics, including caching, memory
utilization, processing, and more.

 Understanding Reporting Services performance objects
The SQL Server 2008 setup program installs the following Reporting Services performance
objects:
 MSRS 2008 Web Service—This performance objects tracks the utilization and perfor-

mance of the Report Server Web service application. Recall from chapter 1 that the Report
Server Web service application handles interactive report viewing operations.

 MSRS 2008 Windows Service— This performance object tracks the utilization and per-
formance of the Background Processor application, which is responsible for handling all
tasks that run in an unattended mode. This performance object includes a collection of
counters to track these tasks, including snapshot generation and subscriptions.

 ReportServer:Service—This performance object is new in Reporting Services 2008. It
monitors HTTP-related events and memory management. It also provides counters that
were included with Internet Information Services (IIS), such as number of active connec-
tions, bytes sent and received, total requests, and so on.

Figure 13.8 Use the Vista
Reliability and Performance
Monitor to watch the report
server utilization in real time.

 Configuring performance counters
In Windows Vista, you can use the Reliability and Performance Monitor to monitor the utiliza-
tion of local or remote servers. In Windows XP and Windows Server 2003, use the Perfor-
mance tool found in the Administrative Tools program group. The following steps assume
Windows Vista operating system.

ADVANCED REPORT MANAGEMENT 479

1. Open Windows Reliability and Performance Monitor from the Administrative Tools program
group.

2. Select the Performance Monitor item under the Monitoring Tools section (see Figure 13.8).
3. By default, the Performance Monitor includes only the %Processor Time counter to track the

CPU utilization on the local machine. Right-click the graph area and choose Add Counters.
4. In the Add Counters dialog box, enter the server name in the Select Counters from Computer

field or leave the default <Local computer> item select to use local performance counters.
5. Scroll down the performance objects list until you find the MSRS 2008 Web Service object, as

shown in Figure 13.9.

Figure 13.9 Reporting Services
includes performance counters to
monitor the utilization of the Web
service and Windows service.

The Reporting Services performance counters are well explained in the Performance Counters
for MSRS Web Service and the Performance Counters for MSRS Windows Service topics in the
product documentation, so check Books Online for more information. Suppose you want to
watch the total number of on-demand report requests submitted to the server. The following
steps will show you how:

6. Click on the down arrow of the MSRS 2008 Web Service performance object to see its collec-
tion of counters.

7. Select the Report Requests performance counter.
8. Select the Show Description checkbox at the bottom of the dialog box to see the description of

the counter. Note that the Report Requests counter shows the number of active report re-
quests.

The Instances of Selected Object pane shows all installed instances of Reporting Services. If
you have multiple instances, you can select a single instance to track its utilization only. Leave
the <All Instances> item selected.

9. Click the Add button to add the counter and press OK to return to the graph.

 Monitoring performance counters
To monitor the Report Requests performance counter:

1. Open Report Manager and view some reports.
2. Switch to the Performance console and watch the graph. You should see spikes as the server

receives the report requests and processes them.

CHAPTER 13 480

Performance counters are typically used in stress tests that measure the server throughput and
to plan hardware resources that address scalability requirements. This section won't be com-
plete without mentioning two excellent whitepapers (see Resources). Although originally writ-
ten for Reporting Services 2005, these resources are not outdated. The Planning for Scalability
and Performance with Reporting Services whitepaper by John Miller, Anne Janzer, and Brian
Welcker shows you how to scale up and out the report server.

The Using Visual Studio 2005 to Perform Load Testing on a SQL Server 2005 Reporting
Services Report Server whitepaper by Runying Mao and Heidi Steen teaches you how to use
the Visual Studio testing capabilities to stress-test the report server and determine its through-
put. In addition, Lukasz Pawlowski, who oversees the Reporting Services management fea-
tures, provides excellent tips for diagnosing report server issues in his blog (see Resources).

13.3 Configuring Memory Utilization
As a result of monitoring the server, you may find that it consumes too much memory. Or,
you may be getting OutOfMemoryException errors with large reports and many users. As I
mentioned in chapter 1, one motivation for changing the Reporting Services hosting model is
better resource management. Recall also that the primary goal for moving to an on-demand
processing model as opposed to an instance-based model is to reduce the memory consump-
tion with large reports. Let's now see what management changes took place in this release to
help you manage the server memory.

13.3.1 Understanding Memory Zones
As in the past, by default Reporting Services will use all memory that is available to it as re-
porting loads increase. However, as a part of configuring a new Reporting Services installation,
you can throttle its memory utilization. This is especially important if you run other memory-
intensive services on the same box, such as Analysis Services and SQL Server. When you con-
figure the Reporting Services memory utilization, you do so for all Reporting Services applica-
tions (Report Manager, Report Server Web service, and Background Processor) as a whole. In
other words, you cannot specify memory settings per application.

Table 13.4 The report server memory zones

Memory Zone Description

Low Memory Pressure Current requests continue. New requests are accepted. Background processes are given low priority.

Medium Memory Pressure Current requests continue. New requests might be accepted. Memory allocations are reduced for all of the
three Reporting Services applications with relatively larger reductions to background processing.

High Memory Pressure Current requests are slowed down. New requests are denied (the report server may return HTTP 503 Server
Unavailable error). The report server swaps in-memory data to disk.

When there is no memory pressure, each server application requests memory as needed to
deliver optimum performance. As the memory pressure builds up, the report server adjusts its
memory utilization as described in Table 13.4.

ADVANCED REPORT MANAGEMENT 481

13.3.2 Understanding Memory Configuration Settings
There are four configuration settings that you can specify in the Report Server configuration
file (rsreportserver.config) to configure the thresholds for the memory zones. These settings
determine how Reporting Services reacts to memory pressure, as shown in Figure 13.10.

Figure 13.10 Four configuration set-
tings determine how Reporting Servic-
es reacts on memory pressure.

Table 13.5 explains the memory settings. The WorkingSetMaximum and WorkingSetMini-
mum settings are not included by default in the rsreportserver.config but you can add them
manually if needed.

Table 13.5 The memory configuration settings

Setting Description

WorkingSetMaximum
(kilobytes)

Specifies the maximum amount of memory that is allocated to Reporting Services in kilobytes. The default value is
all available memory. When Reporting Services reaches the WorkingSetMaximum value, it rejects new requests. If
existing requests continue to consume additional memory, Reporting Services recycles the application domains.

MemoryThreshold
(percentage)

Expressed as a percentage of the WorkingSetMaximum value, MemoryThreshold defines the low boundary of the
High Memory Pressure zone. When this value is reached, Reporting Services slows down report processing and re-
assigns memory among the three applications. The default value is 90.

MemorySafetyMargin
(percentage)

Expressed as a percentage of the WorkingSetMaximum value, MemoryThreshold defines the low boundary of the
Medium Memory Pressure zone. It specifies the amount of memory that it is reserved for the rest of the system and
cannot be used for reporting operations. The default value is 80.

WorkingSetMinumum
(kilobytes)

Specifies the minimum amount of memory which is reserved for Reporting Services. Reporting Services will not
release memory below the WorkingSetMinumum threshold. The default value is 60% of WorkingSetMaximum.

Here is a sample section that uses the above settings to configure the Reporting Services mem-
ory utilization.
<WorkingSetMaximum>2097152</WorkingSetMaximum>
<MemoryThreshold>90</MemoryThreshold>
<MemorySafetyMargin>80</MemorySafetyMargin>
<WorkingSetMinimum>524288</WorkingSetMinimum>

This configuration throttles Reporting Services memory utilization to a maximum of 2 GB
(WorkingSetMaximum) and minimum of 500 MB (WorkingSetMinimum). The MemoryThre-
shold and MemorySafetyMargin settings are left to their default values. If you would like to
learn more about how Reporting Services allocates memory, read John Gallardo's Memory
Management in Reporting Services 2008 blog (see Resources).

TIP If you run SQL Server Database Engine or Analysis Services on the same server as Reporting Services, consider
throttling their memory as well. You can configure the SQL Server Database Engine and Analysis Services memory utili-
zation from the server properties (in SSMS, right-click the server and choose Properties). There aren't any memory confi-
guration guidelines because deployment and load scenarios may vary greatly. I recommend you use the Windows Task
Manager or Profiler to monitor the server utilization under heavy load and adjust the memory settings as needed.

CHAPTER 13 482

13.4 Managing the Report Server Database
Recall that the report server stores all report content and metadata in the report server data-
base which consists of the ReportServer and ReportServerTempDB SQL Server databases.
Since the report server database is very important, plan to back it up on a regular basis. Some-
times, you may need to replace the report server database.

For example, you may need to install the report server database from another machine to
troubleshoot an issue. One way to do so is to replicate the report catalog, such as by using the
Report Scripter utility I mentioned in section 13.1.4. A faster approach is to configure the re-
port server to temporarily use a different report catalog. The Reporting Services Configuration
Manager includes handy options for quickly connecting to different report catalogs that you
want to work with.

13.4.1 Installing the Source Database
Suppose that you have an application that uses Reporting Services 2000 and you need to de-
velop a migration plan for moving a Report Services 2000 installation to the 2008 version. Or,
a customer has reported a failed report execution and you need to troubleshoot the issue lo-
cally on your development machine. Let's use the Reporting Services Configuration Manager
to configure the report server to use the customer's report catalog.

 Backing up content
Start by backing up the report server encryption keys and databases.

1. Back up the encryption key on the source server. Since Reporting Services 2000 doesn't have a
graphical utility for key management, you need to use the rskeymgmt command-line utility, as
follows:
rskeymgmt -e -fc:\rskey.snk –p<password>

This command will extract the encryption key from the report server database, save it to an
rskey.snk file in the root C drive, and protect it with a password that you specify. If the source
server is running Reporting Services 2005 or 2008, you can use the Reporting Services Confi-
guration Manager to back up the key. If you don't have access to the source server or you can-
not obtain the backup key for security reasons, you can skip this step. However, to activate
the server, you will have no other choice but to delete the encrypted content, including con-
nection and subscription credentials.

2. Back up the ReportServer and ReportServerTempDB databases (or detach them) from the
source SQL Server.

 Creating new databases
Next, create the new report server databases by following these steps:

1. Use the SQL Server Management Studio to create two new databases on the target server and
name them ReportServer1 and ReportServer1TempDB.

Note that we leave the original ReportServer and ReportServerTempDB databases intact so we
can revert to the original catalog once we are done testing. Also, note that the new ReportSer-
verTempDB database must follow the <ReportServerDatabaseName>TempDB naming conven-
tion. Thus, if you name the new report server database ReportServer1, the temporary database

ADVANCED REPORT MANAGEMENT 483

must be named ReportServer1TempDB. This is because the stored procedures in the report
catalog use this naming convention to reference the temporary database.

2. Restore the source databases on the target server. Assuming that you want test locally, restore
the source databases on your local SQL Server. At this point, you have two ReportServer data-
bases (ReportServer and ReportServer1) and two temporary databases (ReportServerTempDB
and ReportServer1TempDB).

In the next section, you will re-configure the report server to use the ReportServer1 and Re-
portServer1TempDB databases.

13.4.2 Changing the Report Server Catalog
Each version of Reporting Services has a corresponding version of the report server database.
The version is defined as a static number in the report catalog. If you connect to a legacy re-
port server database, the Reporting Services Configuration Manager will automatically upgrade
the database. You cannot downgrade a report server database. For example, you cannot confi-
gure Reporting Services 2005 to use a 2008 catalog.

Figure 13.11 Use the
Reporting Services
Configuration Manager
to manage the report
server database.

 Using the Report Server Database Configuration wizard
The Reporting Services Configuration Manager certainly makes it easier to manage the report
server database. The following steps show you how simple it is to select a different database to
use with the current report server instance.

1. Open the Reporting Services Configuration Manager and select the Database page, as shown in
Figure 13.11.This page lets you change the database or change the credentials to connect to
the database.

CHAPTER 13 484

2. Click the Change Database button to start the Report Server Database Configuration Wizard.
3. The Action step lets you create a new report server database or use an existing one. Choose

the Existing Report Server Database option.
4. In the Database Server database, specify the server name that hosts the existing database, such

as localhost if this is your computer, and the credentials to connect to the server.
5. In the Database step, expand the Report Server Database drop-down list and select the Re-

portServer1 database, as shown in Figure 13.12.

6. In the Credential step, specify the credentials to connect to the new database. Leave the Ser-
vice Credentials option selected to connect under the identity of the report server service ac-
count. The Report Server Database Configuration Wizard will grant the necessary rights to the
service account to connect to the database.

7. In the Summary page, review the configuration information and click Next.

In the Progress and Finish page, watch the Reporting Services Configuration Manager confi-
guring the database in several steps. In the Progress and Finish step, the Reporting Services
Configuration Manager verifies the database version number and upgrades if needed. It also
grants the service account read rights to the database. If all is well, the database will be confi-
gured successfully. In case of an error, the Reporting Services Configuration Manager will
show the error message next to the configuration step.

 Activating the server
You are halfway done. As a last step, you need to activate the server to use the new database.
This is because the report server database stores encrypted content. The report server can de-
crypt this content only if it has the same encryption key as the source server. If you don’t have
a backup key, you have no other choice but to delete the encrypted content by clicking the
Delete button in the Encryption Keys page or executing the following command-line com-
mand:
RsKeyMgmt.exe –d

This will remove any encrypted content, including connection strings, stored credentials, and
subscription owner information. Consequently, use the Report Manager to re-configure the

Figure 13.12 In the Data-
base step, choose an exist-
ing report server database.

ADVANCED REPORT MANAGEMENT 485

data sources and subscriptions to make the reports operational. Assuming you have the en-
cryption key, follow these steps to initialize the server.

1. In Internet Explorer, navigate to http://localhost/ReportServer. You will get the following er-
ror:
The report server installation is not initialized. (rsReportServerNotActivated)

You will get this error also with other conditions, such as when changing the service account
in the Windows Services applet instead of in the Reporting Services Configuration Manager.

2. In the Reporting Services Configuration Manager, select the Encryption Keys page.
3. Click the Restore button and restore the encryption key from the source server.
4. At this point, the report server should be initialized and ready to go.
5. In the Reporting Services Configuration Manager, click the Scale-out Deployment tab. It

should list one server only.

If you see duplicated servers, Reporting Services should still work but you may want to delete
the "orphan" instance by selecting the second server and clicking the Remove Server button. If
this doesn't work, open the report server configuration file (rsreportserver.config), locate the
InstanceID element toward the top of the file, and note its identifier. This is the instance iden-
tifier of the initialized instance. Open the Keys table in the report server database and delete
the row that has a different installation identifier (InstallationID column).

13.5 Summary
As an administrator, you need to ensure that the server functions correctly and performs op-
timally. In this chapter, we covered advanced management techniques that will help you meet
this goal. When the Microsoft-provided management tools are not enough, you can write your
own management application that integrates with the report server management endpoint. I
provided a RsRequestViewer utility which will help you to understand which management
APIs to call and how to call them.

Consider automating mundane management tasks by creating Reporting Services scripts
and execute them with the Reporting Services Script Host. The Reporting Services WMI pro-
vider lets you manage the configuration settings of any Reporting Services 2008 installation on
the network. Reporting Services provides various options for monitoring the server. Analyze
the Execution Log as a first step to troubleshoot performance issues. Inspect the trace log to
troubleshoot error conditions. Finally, use the Performance Console to watch the server utili-
zation. Establish a maintenance plan to back up the report server database on a regular basis.
Use the Reporting Services Configuration Manager to manage the report server database.

Now that we covered the first two phases of the report lifecycle, report authoring and
management, let's see how we can deliver reports to users and custom applications.

CHAPTER 13 486

13.6 Resources
Microsoft DebugView for Windows

(http://tinyurl.com/yngv5c)—Microsoft DebugView is an application that lets you
monitor debug output on your local system.

Reporting Services Scripter
(http://www.sqldbatips.com/showarticle.asp?ID=62)—Reporting Services Scripter is
a free tool that lets you script all Microsoft SQL Server Reporting Services catalog
items to aid in transferring them from one server to another.

Planning for Scalability and Performance with Reporting Services
(http://tinyurl.com/34fh67)—This paper provides information about the scalability
characteristics of different Reporting Services implementation architectures. It also
offers guidelines, suggestions, and tips for running your own performance tests with
Microsoft SQL Server Reporting Services.

Using Visual Studio 2005 to Perform Load Testing on a SQL Server 2005 Reporting
Services Report Server

(http://tinyurl.com/2l5k3q)—This technical article shows you how to use the Mi-
crosoft Visual Studio 2005 Team System to stress-test a Microsoft SQL Server 2005
Reporting Services deployment.

How to diagnose issues when running reports in the Report Server?
(http://tinyurl.com/268vr3)— Lukasz Pawlowski provides excellent tips for diagnos-
ing Report Server issues.

How to: Configure a Report Server for Remote Administration
(http://tinyurl.com/4c23rc)— Learn how to enable a remote server for WMI access.

How to: Configure a Report Server for Remote Administration
(http://tinyurl.com/5rwqsq)—Learn how to configure the RSExecRole database role.

Scriptomatic 2.0 Utility
(http://tinyurl.com/3rw63l)—Helps you write WMI scripts.

Memory Management in Reporting Services 2008 by John Gallardo
(http://tinyurl.com/5abcbb)—Explains how memory allocation works.

487

 Integration
One of my favorite Reporting Services features is its open and extensible architecture which
supports a wide range of integration scenarios. Consequently, developers can report-enable
any custom application, irrespective of the programming language used to code the applica-
tion or the targeted platform on which the application runs.

Reporting Services provides URL access and Web service access options for integrating re-
port clients with the report server. With URL access, report clients request a report by sending
its URL address to the server. The Report Server Web service goes beyond report viewing only
and provides full-featured programming access to the report server.

If you are a developer tasked with embedding reports in a .NET application, your first
stop should be the ReportViewer controls that are bundled with Visual Studio 2008. The Re-
portViewer Windows Forms control is used to embed reports in .NET Windows Forms appli-
cation projects. The ReportViewer Web server control is for hosting reports in ASP.NET
projects. Both controls support remote and local processing modes that control where the re-
port is processed.

An organization that only occasionally reviews its data through spreadsheets or canned
reports is probably missing the strategic value of SQL Server 2008. Once you’ve successfully
mastered the basics of reporting, you may find that it is time to “graduate” to OLAP and Anal-
ysis Services. You can integrate Reporting Services with Analysis Services to implement report-
ing solutions that leverage the best features of these two technologies. Reports can draw data
from Analysis Services cubes or data mining models. Reports can also leverage the Analysis
Services end-user features, including report actions and translations.

Chances are your company is already using SharePoint to manage documents and collabo-
rate online. Reporting Services supports a deep integration with SharePoint that lets you view
and manage reports from a SharePoint site. Microsoft has provided the necessary tools to con-
struct report web parts and implement dashboard pages in Windows SharePoint Services and
Microsoft Office SharePoint Server.

PP AA RR TT

489

CChhaapptteerr 1144

Integration Fundamentals

14.1 Understanding Reporting Services Integration 489
14.2 Working with URL Access 493
14.3 Working with the Report Server Web Service 501

14.4 Putting It All Together 507
14.5 Summary 512
14.6 Resources 512

Reporting is an essential part of every complete software solution. However, report-enabling a
custom application can be challenging if your reporting tool has limited integration capabili-
ties and a proprietary architecture. Fortunately, Reporting Services provides open program-
ming interfaces that support a wide range of integration scenarios.

Recall that deployed reports can be delivered on demand or via subscriptions. I covered
subscribed report delivery in chapter 12. This chapter discusses how report clients can inte-
grate with Reporting Services to request reports on demand. It starts with a side-by-side com-
parison of the two integration methods: URL access and Web service. Each approach is
explored in detail so that you can learn essential syntax, steps, and when to use each one. Fi-
nally, the chapter concludes by walking you through the implementation details of a sample
application that demonstrates programming techniques for requesting reports on demand via
URL access and the Web service.

14.1 Understanding Reporting Services Integration
Recall from chapter 1 that Reporting Services is a server-based platform for deploying and
centrally managing reports on a server. In addition to the report server engine, Reporting Ser-
vices includes Report Manager—a web-based application for managing and viewing reports.
Although Report Manager is adequate for many on-demand reporting scenarios, you may at
times find that you need more flexibility than what Report Manager can offer. For example,
you may want to let end users export a report to a given format as a one-step operation by
clicking a report link. Or, a distributed application may need to generate reports in the middle
tier.

Reporting Services was designed from the ground up as a developer platform and can
meet a wide range of integration scenarios. However, with flexibility comes the need to make
some up-front decisions about report navigation and functionality that the reporting solution
must support. Before you can make these decisions, you will need in depth knowledge about
the Reporting Services integration options, which I'll discuss next.

CHAPTER 14 490

14.1.1 Understanding Integration Options
There are two ways to integrate report clients with Reporting Services: URL access and Web
service. Figure 14.1 shows how these options fit into the Reporting Services architecture.

Figure 14.1 Reporting Services
supports URL access and Web
service integration options.

Regardless of the integration option used, requests are received by the Service Network Inter-
face (SNI) from HTTP.SYS and forwarded to the authentication module to obtain the identity
of the user or application that makes the request. The call is then forwarded to the Report
Server Web service to process the request.

 Introducing URL access
With URL access, report clients (which could be end users or custom applications) request a
report by sending its URL address to the server. This is not much different than requesting a
web page. The report client can submit the report request via the HTTP GET or HTTP POST
protocols. For example, here is how you would request the Product Sales by Category report
that you authored in chapter 3 by URL via HTTP GET:
http://<servername>/reportserver?/AMRS/Product Sales by Category&Month=1&Year=2004

The part of the URL address before the question mark specifies a valid report server Web Ser-
vice URL, followed by the catalog path of the report and the report parameters.

NOTE Replace <servername> in all URL link examples in this chapter with the machine name of the computer that
Reporting Services is installed on, such as localhost if Reporting Services is installed locally.

When you submit the above request, the report server redirects you to the HTML Viewer (Re-
portViewer.aspx page) whose unescaped URL looks like this:
http://<servername>/ReportServer/Pages/ReportViewer.aspx?/AMRS/Product Sales by Category&Month=1&Year=2004

The server redirects to HTML Viewer when the following conditions are true:
 The specified catalog item is a report or a linked report.
 The report is requested by URL.
 The requested export format is HTML4.0 or unspecified.
 The rc:Toolbar device information setting is True or unspecified.

INTEGRATION FUNDAMENTALS 491

Behind the scenes, HTML Viewer leverages the ReportViewer Web server control to render the
report on the server side. The control includes the standard report toolbar that lets the user
perform common report actions, such as printing the report. I'll cover the ReportViewer Web
server control in detail in chapter 15. The main advantage of the URL access integration op-
tion is its simplicity. However, URL access is limited to report viewing only and doesn't pro-
vide management features. This is where the Report Server Web service comes in.

 Introducing Web service
Reporting Services provides four Web service endpoints for full-featured programming access
to the report server, which are listed in Table 14.1.

Table 14.1 The Report Server Web service endpoints

Endpoint Default contract address Purpose

ReportService2005 http://<servername>/reportserver/
ReportService2005.asmx?wsdl

Management API for a report server in native mode

ReportService2006 http://<servername>/<Site Name>/
_vti_bin/ReportServer/ReportService2006.asmx?wsdl

Management API for a report server in SharePoint
integration mode

ReportExecution2005 http://<servername>/ReportServer/
ReportExecution2005.asmx?wsdl

Execution API for report rendering and execution

ReportServiceAuthen-
tication

http://<servername>/<Site Name>/_vti_bin/ReportServer-
/ReportServiceAuthentication.asmx?wsdl

Authenticating users in SharePoint integration mode

You are already familiar with the management endpoints, as you used them in chapter 13 to
program management tasks. The ReportExecution2005 endpoint provides a slew of methods
for rendering live reports and handling report interactive features. The ReportServiceAuthenti-
cation endpoint applies only to SharePoint integration mode when SharePoint is configured
for Forms Authentication. Reporting Services 2008 doesn't introduce version 2008-specific
endpoints. It only extends the ReportExecution2005 endpoint with new versions of some me-
thods (e.g.; Render2) to support new report rendering features, such as page estimation versus
actual pagination modes. You should use version 2 methods as they are more efficient.

As with any other Web service, the Report Server Web service uses the Simple Object
Access Protocol (SOAP) protocol, which is layered on top of HTTP. For example, here is what
the raw SOAP request may look like when you invoke the Reporting Services Render API:
POST /ReportServer/ReportExecution2005.asmx HTTP/1.1
SOAPAction: "http://schemas.microsoft.com/sqlserver/2005/06/30/reporting/reportingservices/Render"
Host: localhost
Content-Length: 670
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<soap:Header>
<ExecutionHeader xmlns="http://schemas.microsoft.com/sqlserver/2005/06/30/reporting/reportingservices">
 <ExecutionID>ak0ed2iw1pl5jjvoyieap455</ExecutionID>
</ExecutionHeader>
</soap:Header>
 <soap:Body>
 <Render2 xmlns="http://schemas.microsoft.com/sqlserver/2005/06/30/reporting/reportingservices">
 <Format>HTML4.0</Format>
 <DeviceInfo><DeviceInfo>
 <Toolbar>False</Toolbar>
 </Render>
 </soap:Body>
</soap:Envelope>

CHAPTER 14 492

Fortunately, the .NET Framework abstracts the SOAP technicalities so you don't have to know
much about SOAP to program Reporting Services. Thanks to the .NET Web service support,
invoking a web method is not much different than invoking a local object.

14.1.2 Choosing an Integration Approach
Choosing between URL access and Web service integration options depend on your functional
and operational requirements. In the following section, I'll discuss the pros and cons of each
integration option and provide recommendations for when to use each one.

 Integration options at a glance
Table 14.2 provides a high-level feature comparison between URL access and the Web service.
I'll be quick to point out that.NET developers have a third option (not shown in Table 14.2)
for report-enabling .NET custom applications, which is to use the Visual Studio ReportViewer
controls (discussed in detail in chapter 15). If you are a .NET developer, you should definitely
consider these controls when you need to embed reports in custom applications.

Table 14.2 URL access vs. Web service integration options

Feature URL Access Web Service

Features Report viewing only Full-featured access

Integration effort Low High

Report toolbar Yes No

Interactive Features Yes No

Object-oriented access No Yes

Request generation Typically client side Both client and server

Performance Faster Slower

In general, deciding between URL access and the Web service is straightforward. If all you
need is an easy way to view reports, consider URL access as it requires minimum integration
effort. Choose Web service integration when your application requires full-featured access to
the report server or when you need to generate reports programmatically.

TIP The URL access and Web service options are not mutually exclusive. For example, a custom application can use
the Web service for report navigation and management and URL access for report viewing. The Integration Options
demo, which I will discuss in section 14.4.2, demonstrates this integration scenario.

Let's see how integration options stack against each other in more detail.

 Evaluating integration options
Examining Table 14.2, we can see that URL access is easier to implement. In the simplest case,
the end user can add a report link to the browser favorites list and click the link to request the
report on demand. The Web service integration option requires more programming effort to
invoke web methods and present the report to the end user.

When you request a report by URL, the report server navigates to the ReportViewer.aspx
page. This page generates a handy report toolbar that lets you initiate common reporting ac-

INTEGRATION FUNDAMENTALS 493

tions and set report parameters. By contrast, the report toolbar is not available when you inte-
grate with the Web service. URL access and HTML support all interactive features, such as
drilldown, document maps, and navigation links. In comparison, interactive features are not
available when programming the Report Server Web service.

Sometimes, you may need more programming control over how the report request is generat-
ed. This is where the Web service scores better. As its name suggests, SOAP lets developers
interact with the report server in an object-oriented way. In addition, the report server exposes
exceptions as SOAP faults, so developers can handle errors in code. By contrast, URL access
embeds the error message in the report.

When the user clicks a report link, the report request originates on the client side of the
application and assumes direct access to the report server. This could be an issue in cases
where an additional layer, such as a business logic layer, exists between the consumer and the
report server. The Web service is more flexible in this case as the custom application can sub-
mit both on the client and on the server.

URL access fares better in terms of performance. Rendering a report by calling the Render
method of the Web service increases the report payload by 20-30% because the report server
serializes the report content as a byte array. Moreover, the client application must hold the
entire report payload in memory, which may lead to memory constraints with large reports.

14.2 Working with URL Access
A report client can request a report by its URL address. This makes the URL address option
useful when you need to view the report directly (outside any application), or when you need
to embed report links inside custom applications. Customizing the report links requires
knowledge of the URL syntax, which I'll discuss next.

14.2.1 Understanding URL Syntax
URL access follows the Uniform Resource Identifier (URI) generic syntax:
ReportServerWebServiceURL?[/pathinfo][&prefix:param=value]...n]

The ReportServerWebServiceURL is a registered Web Service URL address, such as
http://localhost/ReportServer. You can obtain it from the Web Service URL tab in the Report-
ing Services Configuration Manager. Note that you must append a question mark (?) after the
Web Service URL. Pathinfo specifies the path to the catalog item. The following URL requests
the Product Sales by Category report that is deployed to the AMRS folder on the server:
http://<servername>/reportserver?/AMRS/Product Sales by Category

With the exception of parameter names, the URL syntax is not case-sensitive. You can use all
lower case, all upper case, or any combination in between. The parameter names must be spe-
cified exactly as they are declared. For example, the following link generates an rsUnknow-
nReportParameter error because it references a month parameter instead of Month:

NOTE The ReportExecution2005 endpoint does provide methods for report interactivity, such as Sort, ToggleItem,
and so on, which were introduced to support the ReportViewer controls. However, these methods require item identifi-
ers which are not available at design time and cannot be obtained programmatically. This makes the interactive me-
thods not very useful to developers who target the Web service for report rendering.

CHAPTER 14 494

http://<servername>/reportserver?/AMRS/Product Sales by Category&month=1&Year=2004

 Understanding URL parameter syntax
URL access supports various parameters you can use to control report generation, including
passing report parameter values or exporting a report in a given format. Similar to handling
URL queries, each parameter is prefixed with an ampersand (&) and is specified as a name-
value pair. If the parameter prefix is omitted, a report parameter is assumed. For example, the
following link passes Month and Year parameters to the Product Sales by Category report:
http://<servername>/ReportServer/Pages/ReportViewer.aspx?/AMRS/Product Sales by Category&Month=1&Year=2004

If specified, the prefix must be one of the following:
 rs—Use the rs prefix to specify a command parameter.
 rc—Use the rc prefix to pass a device information settings.
 dsu—Specifies a user name with reports whose data sources are configured to prompt the

user for credentials.
 dsp—Specifies a password with reports whose data sources are configured to prompt the

user for credentials.

Don’t worry if you don't immediately understand the concepts of command and device infor-
mation settings. I will provide examples in the next sections.

 About URL encoding
As you've probably noticed when testing the above links, the browser automatically encodes
the link according to URL encoding standards. For example, here is what the URL-encoded
link to the Product Sales by Category report looks after the ReportViewer.aspx page redirect:
http://<servername>/ReportServer/Pages/ReportViewer.aspx?/AMRS/Product%20Sales%20by%20Category

Specifically, space characters are replaced with "%20". A space character in the parameter por-
tion of the URL is replaced with a plus character "+". A semicolon in any portion of the string
is replaced with the characters "%3A."

TIP Although both the encoded and decoded links work, sometimes you need a "clean" link, for example when you
want to include a URL in documentation or in an email. I've found the URL Escaper utility (see Resources) useful to
restore the original link from its decoded counterpart. It can perform bi-directional encoding/decoding.

14.2.2 Requesting Catalog Items
Besides reports, URL access lets you request other catalog items, such as folders, resources,
and data sources. The output depends on the type of the catalog item requested. Let's see how
we can use URL access to request different types of catalog items, starting with folders.

 Requesting folders
When a folder is requested, the report server returns the folder content as a list of hyperlinks.
Only catalog items that the interactive user is authorized to browse are included in the list.
Besides exploring the report catalog, requesting a folder can be useful for obtaining the URL
link to a particular resource. For example, the following URL link displays the content of the
AMRS folder, as shown in Figure 14.2:
http://<servername>/reportserver?/AMRS

INTEGRATION FUNDAMENTALS 495

Figure 14.2 When you
request a folder, the report
server shows the folder
content.

Let's say I want to send a user a link to the 3D Column Chart report. I can right-click the re-
port link, click Properties, and copy the URL link from the Properties dialog box. If you don’t
specify a folder (http://<servername>/reportserver), the report server returns the content of the
root (Home) folder. As a first step of troubleshooting a report server, I request this link to
make sure that the server is operational.

For faster performance on a folder request, use the ListChildren command. The ListChild-
ren command returns a list of child items, which only occurs if the item type is a folder. If this
command is not specified, the report has to infer the resource type. For example, the follow-
ing link performs better because you tell the server that the AMRS resource is a folder:
http://<servername>/reportserver?/AMRS&rs:Command=ListChildren

 Requesting resources
Recall that you can upload files such as images, HTML web pages, and XSL Transformation
files to the report catalog. When you request resources by URL, the report server displays the
resource content. The following URL link shows the Confidential.jpg image in the browser:
http://<servername>/reportserver?/AMRS/Confidential.JPG&rs:Command=GetResourceContents

By adding the GetResourceContents command to the URL, you instruct the server to process
the requested item as a resource.

 Requesting data sources
If the URL link requests a data source, the server returns the data source definition. The fol-
lowing link requests the AdventureWorks2008 data source in the Data Sources folder:
http://<servername>/reportserver?/Data Sources/AdventureWork2008s&rs:Command=GetDataSourceContents

The server returns the definition of the AdventureWorks2008 data source:
<DataSourceDefinition>
 <Extension>SQL</Extension>
 <ConnectString>Data Source="(local)";Initial Catalog=AdventureWorks2008;</ConnectString>
 <UseOriginalConnectString>False</UseOriginalConnectString>
 <OriginalConnectStringExpressionBased>False</OriginalConnectStringExpressionBased>
 <CredentialRetrieval>Store</CredentialRetrieval>
 <WindowsCredentials>False</WindowsCredentials>
 <ImpersonateUser>False</ImpersonateUser>
 <UserName>reader</UserName>
 <Enabled>True</Enabled>
</DataSourceDefinition>

CHAPTER 14 496

In this case, the AdventureWorks2008 data source is configured for standard security (Cre-
dentials Stored Securely in the Report Server option). Recall that you can verify how the data
source is set up by viewing its properties in Report Manager. When the data source is confi-
gured for standard security, the definition includes the user name but it never includes the
password. However, if the credentials are embedded in the connection string, the data source
definition will show the connection string verbatim. Consequently, a user who has View Data
Sources rights (the standard Browser role doesn't include View Data Sources) will be able to
see the credentials. For this reason, avoid embedding credentials in the connection string.

14.2.3 Requesting Reports
URL access is most commonly used to request reports that are deployed to the server. Report-
ing Services supports various commands you can append to the report link to customize the
report content and presentation.

 Basic report link
The following link requests the Area Chart report without passing report parameters:
http://<servername>/ReportServer?/AMRS/Area Chart&rs:Command=Render

The Render command is optional but recommended for performance reasons because it in-
structs the report server to process the requested item as a report. If the requested report has
parameters, and one or more of those parameters is missing a default value, the HTML Viewer
will present a parameter input area so that the user can enter values. Each parameter must be
specified before the report is displayed in the viewer. What this means is that the end user
must specify the values for all report parameters to view the report. If all parameters have de-
fault values, the HTML Viewer shows the report rendered with those default values.

 Passing report parameters
You can pass parameter values in the URL link by prefixing each parameter name-value pair
with an ampersand (&). The following link requests the Area Chart report for year 2004:
http://<servername>/ReportServer?/AMRS/Area Chart&CalendarYear=2004&rs:Command=Render

Note that you must specify the parameter name (CalendarYear) instead of the parameter
prompt (Calendar Year). Similarly, if the parameter has a value and a label, you must enter the
parameter value after the equal sign. In the case of a multivalued parameter, you can pass mul-
tiple values by repeating the parameter for each value. The following link requests the Area
Chart report for North America and Europe:
http://<servername>/ReportServer?/AMRS/Area Chart&CalendarYear=2004&Territory=1&Territory=7
&rs:Command=Render

You may need to review the report definition of the Area Chart report to understand this link.
The Area Chart report defines the Territory parameter as a multivalued parameter that obtains
the available values from a query. The parameter value is bound to the SalesTerritoryKey data-
set field, while the parameter label is derived from the SalesTerritoryGroup field. Execute the
query of the Territory dataset and verify that the SalesTerritoryKey value for North America is
1 and the SalesTerritoryValue for Europe is 7.

To pass a null value for a parameter that is configured to allow null values, add isnull=true
to the parameter name, such as CalendarYear:isnull=true. Use a value of 1 or 0 for Boolean
parameters. Culture-sensitive report parameters, such as dates, times, and currencies, are in-

INTEGRATION FUNDAMENTALS 497

terpreted using the browser language. However, you can pass the ParameterLanguage com-
mand to force the server to interpret parameters for a given culture. Consider the following
link:
http://<servername>/ReportServer?/AMRS/Sales Orders By Date&Date=7/4/2004&SalesOrderNumber=74253

If the browser language is English (United States) [en-US], the Date parameter will be inter-
preted as July 4th, 2004. However, if the browser language is set to German (Germany) [de-
DE], the server will interpret the date as April 7th, 2004. In the following link, the Parameter-
Language command is used to evaluate the date parameter in the en-US locale independently
of the browser language:
http://<servername>/ReportServer?/AMRS/Sales Orders By Date&Date=7/4/2004&SalesOrderNumber=74253
&rs:ParameterLanguage=en- US

Alternatively, you can specify DateTime parameters in the format YYYY-MM-DDTHH:MM:SS,
which is based on the International Organization for Standardization (ISO) 8601 standard and
it is independent of the browser language:
http://<servername>/ReportServer?/AMRS/Sales Orders By Date&Date=2004- 07- 04&SalesOrderNumber=74253

 Exporting reports
You may need to export a report to one of the supported formats right away, bypassing the
HTML output that is generated by default. You can do so by appending the Format command
to the report URL link. For example, this URL exports the Bubble Chart report to PDF:
http://<servername>/ReportServer?/AMRS/Bubble Chart&Country=Germany&TopCount=5
&rs:Command=Render&rs:Format=PDF

The export format that you enter after the Format command must correspond to a name of a
registered renderer, as specified under the Render element in the rsreportserver.config file. If
the Format command is omitted, the report server assumes HTML4.0. The report server in-
forms the report client about the content type by adding a content-type element to the re-
sponse header. For example, when the report is requested in PDF, the report server adds an
“application/pdf” content type. As a result, the browser will pop up the familiar prompt that
asks the user whether to open or save the report as a file.

14.2.4 Working with Device Information Settings
Recall from chapter 7 that each renderer supports various device information settings that can
be used to customize the exported report. Besides using them in the rsreporserver.config, you
can append one or more device information settings to the report link to tailor the output of a
specific report. Remember to denote each setting with the "rc:" prefix. Incorrect device infor-
mation settings, such as misspelled settings, are ignored by the report server. Renderers ignore
settings they don't understand.

 Customizing the HTML Viewer
When you request a report in HTML, the report server redirects you to the HTML Viewer page
that shows the rendered report. The HTML renderer supports various device information set-
tings that you can use to configure the report toolbar of the HTML Viewer. Suppose you want
to hide the report parameters so that the user cannot change them in the HTML Viewer. The
following URL requests the Redial Gauge report and uses the Parameters device information
setting to hide the parameter prompt area:

CHAPTER 14 498

http://<servername>/reportserver?/AMRS/Radial Gauge&rs:Command=Render&rc:Parameters=False

If you want to collapse only the parameter area, then use the rs:Parameters=Collapse setting. If
you want to hide the entire toolbar, use the Toolbar=False setting:
http://<servername>/reportserver?/AMRS/Radial Gauge&rs:Command=Render&rc:Toolbar=False

It is important to understand what happens when you hide the toolbar (rc:Toolbar=False). In
this case, the report request bypasses the HTML Viewer entirely. Your request will be sent
directly to the HTML renderer. This means you won’t get redirected to the ReportViewer
ASPX page and you will see the entire report in one HTML page. It also means that you will
get errors rather than prompts for unspecified report parameters (the same behavior as when
exporting to other formats). The server will also use cookies (by default) to correlate the client
with the execution session for subsequent requests, such as paging, rather than using the page
ViewState and URL parameters when the ReportViewer Web server control is used.

The DocMap setting lets you hide the document map in a report that supports this inter-
active feature:
http://<servername>/reportserver?/AMRS/Interactive Features&rs:Command=Render&rc:DocMap=False

The Zoom device information setting lets you zoom a report as an integer value or a string
constant, such as Page Width or Whole Page. The following link zooms out the Interactive
Features report to a whole page:
http://<servername>/reportserver?/AMRS/Interactive Features&rs:Command=Render&rc:Zoom=Whole Page

You can also change the appearance of the HTML Viewer with a custom cascading stylesheet
(CSS). Let's say you want to make the parameter drop-down list wider to accommodate long
parameter values.

1. Copy the HtmlViewer.css file located in the \Program Files\Microsoft SQL Server\MSRS10-
.MSSQLSERVER\Reporting Services\ReportServer\Styles folder and save the copy in the same
folder. Let's say the name of the new file is MyStylesheet.css.

2. Add the following style to MyStylesheet.css:
SELECT
{
 font-size : 8pt;
 font-family : Verdana;
 width : 200px
}

To understand what's going on, recall HTML uses a SELECT element to render a drop-down
list. This style essentially says "apply these format settings to any SELECT element on the
page". Consequently, the width of the parameter drop-down (as well as other drop-down lists,
such as Zoom and Format) will be set to 200px.

3. Save MyStylesheet.css.

There are two ways to reference a custom stylesheet. First, you can use the Stylesheet device
setting in the report URL to apply the stylesheet on per report basis, such as:
http://<servername>/reportserver?/AMRS/Interactive Features?rc:Stylesheet=MyStylesheet

NOTE The default styles that the HTML Viewer uses are embedded in resource files. Consequently, changes to the
original HtmlViewer.css have no effect. The HTMLViewer.css file is for your reference only and includes the styles
that the HTML Viewer supports. You must create a new CSS file to apply custom styles.

INTEGRATION FUNDAMENTALS 499

Or, if you want to apply the custom styles to all reports, add a new HTMLViewerStyleSheet
element to the rsreportserver.config file, such as:
<Configuration>
...
 <HTMLViewerStyleSheet>MyStyleSheet</HTMLViewerStyleSheet>
...
</Configuration>

 Exporting to HTML
Of the remaining device information settings for HTML, the most interesting settings are
HTMLFragment and LinkTarget. Use the HTMLFragment setting to strip the HTML and
BODY elements from the report page. This setting is more useful when rendering a report
programmatically with the Report Server Web service than URL access. Let's suppose you gen-
erate a web page on the server side. You want to remove the HTML and BODY elements so
that you can embed the report inside a web page that already has HTML and BODY elements.
To do so, you can pass HTMLFragment=True to the server when you invoke the Render me-
thod. For testing purposes, use the following link to generate the Jump to Bookmark report as
an HTML fragment:
http://<servername>/reportserver?/AMRS/Jump to Bookmark&rs:Command=Render
&rc:HTMLFragment=True&rc:Toolbar=False

Once the report is generated, right-click the report page in Internet Explorer and click View
Source. Notice that the page doesn't have HTML and BODY elements. The HTMLFragment
setting is supported also by the MHTML renderer.The LinkTarget setting displays the report in
a specific frame on a web page or opens the report in a new browser window. For example,
the following hyperlink targets a frame called "main":
<a href="http://server/reportserver?/AMRS/Jump to Bookmark &rs:Command=Render&rc:LinkTarget=main"
target="main">Click here for the Territory Sales Drilldown sample report

Pointing the link target to the name of your own frame could be useful if you want the link to
always open side-by-side with the report. The LinkTarget device setting doesn't support
_parent and _self settings.

 Exporting to Excel
The Excel renderer also has device information settings that you can specify. Perhaps the most
interesting Excel device information setting is SimplePageHeaders. When SimplePageHeaders
is False (default setting), the page headers are rendered in the first row in the Excel worksheet.
If you set SimplePageHeaders toTrue, the report server generates the page headers and footers
as Excel headers and footers. Since the Excel headers and footers are very basic, this may re-
sult in some fidelity loss, such not honoring the textbox padding settings.

1. Export the Product Sales by Category report to Excel using the following link and click the
Open button in the File Download dialog box:
http://<servername>/ReportServer?/AMRS/Product Sales by Category&rs:Command=Render
&rs:Format=Excel&rc:SimplePageHeaders=True

2. In Excel, open the page header and footer settings. The exact steps depend on which version
of Excel you are using. In Excel 2007, click the Page Layout menu. In the Page Setup group,
click the Dialog Box Launcher (the downward arrow) next to Page Setup.

3. In the Page Setup dialog box, click the Header/Footer tab and note that the report footer was
exported as Excel footer.

4. Print the Excel spreadsheet.

CHAPTER 14 500

Notice that each report group prints on a separate page and each page has a footer section.

 Exporting to Word
Recall that the Word renderer doesn't support interactive features. As such, the device infor-
mation settings for Microsoft Word are used to control how interactive features are converted
when the report is exported to Word. One such setting is ExpandToggles, which controls the
toggled state of the drilldown sections. When ExpandToggles is False (default setting), a re-
port with drilldown features will be exported with all sections collapsed and you won't be able
to expand the sections in Microsoft Word. However, setting ExpandToggles to True will ex-
pand the drilldown sections. The following link exports Product Sales Crosstab Drilldown
with expanded sections:
http://<servername>/reportserver?/AMRS/Product Sales Crosstab Drilldown&rs:Command=Render
&rs:Format=WORD&rc:ExpandToggles=True

By default, URL navigation links are not included in an export to Word. If you want URLs in a
report to appear in a Word document, change OmitHyperlinks setting to False. To do the
same for drillthrough links, set OmitDrillthroughs to False.

 Exporting to PDF
The PDF renderer supports device information settings that let you control the page layout
and the range of the pages exported. Let's say you want to export the Range Chart report to
PDF but change the page layout from portrait to landscape. To do so, you can specify the Pa-
geWidth and PageHeight settings in the report link:
http://<servername>/reportserver?/AMRS/Range Chart&rs:Command=Render&rs:Format=PDF
&rc:PageWidth=11in&rc:PageHeight=8.5in

The page size and margin settings must specify the size in inches.

 Exporting to Image
The Image renderer supports several Graphics Device Interface (GDI) output formats, includ-
ing BMP, EMF, GIF, JPEG, PNG, and TIFF. The OutputFormat device information setting lets
you specify the preferred format. If OutputFormat is omitted, TIFF is assumed. The following
link exports the Product Sales Crosstab report as a JPEG image:
http://<servername>/reportserver?/AMRS/Product Sales Crosstab&rs:Command=Render
&rs:Format= IMAGE&rc:OutputFormat= JPEG

 Exporting to CSV
The Comma-Separated Values (CSV) renderer exports only the report data. Note that only
textbox report items export their content to CSV. You cannot export the content of chart and
gauge regions to CSV. Exporting to CSV can be useful when you need to feed report data into
another application. If you export large reports to Excel and you need only the report data,
you may get better performance by exporting the report first to CSV and opening the CSV file
in Excel.

NOTE Opening CSV exported files in Excel was problematic with previous releases of Reporting Services. This was
because the CSV renderer would default to Unicode encoding which Excel didn't handle very well. Consequently, Excel
showed the entire content in a single column. To address this issue, Reporting Services 2008 introduces an ExcelMode
device setting which is enabled by default. In this release, the CSV renderer defaults to UTF-8 encoding. However, it
appears that Excel still has some issues understanding delimited files with formatted values. Instead of opening the file
directly in Excel, use Excel's Text Import Wizard to bring the file into Excel.

INTEGRATION FUNDAMENTALS 501

The CSV renderer supports device information settings that control the output, including the
field delimiter, field qualifier, record delimiter, and header rows. The following link exports
the Product Sales by Category to CSV. The fields will be delimited with a tab character and
format settings will be ignored. Header rows, such as group headers, will not be exported:
http://<servername>/reportserver?/AMRS/Product Sales by Category&rs:Command=Render
&rs:Format=CSV&rc:FieldDelimiter=%09&rc:UseFormattedValues=False&rc:NoHeader=True

The default field delimiter is a comma (,). The FieldDelimiter setting lets you specify a delimi-
ter string, which must be URL-encoded. To encode the delimiter, use a percentage sign fol-
lowed by the ASCII character code, such as %09 for the tab character. The URL Escaper utility
I mentioned will encode the value for you automatically.

 Exporting to XML
The XML renderer is a pure data renderer that exports only the report data in XML format. In
chapter 7, I demonstrated how you can customize the XML output by using XML-specific re-
port item properties and XSL Transformations. The XML renderer supports additional device
information settings that let you further customize the XML output, including the XSLT file,
format settings, indentation, XSD schema reference, encoding, and the file extension. The fol-
lowing link exports the Product Sales by Category report in XML. The resulting XML docu-
ment will be indented and it will not contain XSD schema references:
http://<servername>/reportserver?/AMRS/Product Sales by Category&rs:Command=Render
&rs:Format=XML&rc:Indented=True&rc:OmitSchema=True

14.3 Working with the Report Server Web Service
Another option to report-enable custom applications is to use the Report Server Web service.
Web services let developers use open standards, such as XML, SOAP, WSDL, and UDDI, to
integrate Web applications using Internet protocols and connections. The wide-spread adop-
tion of these standards allows you to integrate Reporting Services with many types of report
clients and platforms. As long as it is SOAP-aware, any client application can invoke the Re-
port Server Web service. For example, a Java-based application running on UNIX can inte-
grate with the Report Server Web service to generate reports.

14.3.1 Getting Started in Report Server Web service
The Report Server Web service provides full-featured access to report server functionality.
Consequently, you can implement complete management and report viewing tools using your
favorite programming language. In this next section, I'll walk you through the basic steps re-
quired to implement a .NET console application that integrates with the Report Server Web
service to generate a report.

BEST PRACTICE In general, you should avoid building additional layers on top of the Web service to simplify inte-
grating custom clients with Reporting Services. The ReportViewer controls, for example, assume direct access to the
report server. This forces you to implement a proxy layer if you want to use the ReportViewer controls when the report
server is not directly accessible. Furthermore, security gets trickier when another layer is introduced between the
client and the report server.

CHAPTER 14 502

 Creating a web reference
While you can work with SOAP messages directly, the .NET Framework can handle the
plumbing infrastructure for you. When you add a Web reference in your project, Visual Stu-
dio creates a Web service proxy from the Web service contract that is described in Web Ser-
vices Description Language (WSDL). The proxy represents the remote Web service as though
it is a local object to your application. It handles mapping parameters to XML elements, send-
ing the SOAP message over the network, and encapsulating the results as objects.

Recall that the ReportExecution2005 endpoint of the Report Server Web service provides
report execution and rendering features. Follow these steps to set up a Web reference to the
ReportExecution2005 endpoint:

1. Use Visual Studio to create a new C# Console Application project. In the New Project dialog
box, select .NET Framework 2.0 and name the project WebServiceDemo. We target .NET
Framework 2.0 to work with "classic" web references instead of the Windows Communication
Foundation (WCF) service references that .NET Framework 3.5 would generate by default.
Chapter 13 explains why web references are preferable.

2. In the Solution Explorer pane, right-click the WebServiceDemo project node and click Add
Web Reference.

3. In the Add Web Reference dialog box, enter the URL of the ReportExecution2005 endpoint in
the URL field and press Enter. For example, use the following URL to reference the ReportEx-
ecution2005 endpoint on a local server configured to listen on port 80 (use localhost:8080
with Windows XP):
http://localhost/reportserver/reportexecution2005.asmx?wsdl

Visual Studio parses the WSDL of the ReportExecution2005 endpoint and lists the web me-
thods it supports, as shown in Figure 14.3.

4. Enter ReportExecution in the Web Reference Name field and click the Add Reference button to
create the reference.

Figure 14.3 Create a Web
reference to the ReportEx-
ecution2005 endpoint.

INTEGRATION FUNDAMENTALS 503

 Examining the web service reference
Let's take a moment to understand what Visual Studio does behind the scenes when it creates
the Web reference. Visual Studio adds references to System.EnterpriseServices, Sys-
tem.Web.Services, and System.Xml assemblies in the References folder and a ReportExecution
Web reference to the Web References folder.

1. Click the Show All Files toolbar button in the Solution Explorer pane.
2. Expand the Web References folder and the ReportExecution folder under it.

Notice that Visual Studio has generated Reference.map and reportexecution2005.wsdl files.
3. Double-click the reportexecution2005.wsdl file and notice that it describes the service defini-

tion of the ReportExecution2005 endpoint in XML.
4. Expand the Reference.map folder and double-click the Reference.cs file.

The Reference.cs file contains the source code of the classes exposed by the ReportExec-
tion2005 endpoint. The ReportExecutionService class represents the proxy for the ReportEx-
ection2005 endpoint. The fully qualified name of the ReportExecutionService class is
WebServiceDemo.ReportExecution.ReportExecutionService.

5. Select the WebServiceDemo.ReportExecution.ReportExecutionService item in the class drop-
down list. Expand the method drop-down list on the right to see the list of methods of the
ReportExecution2005 endpoint.

Now that you've configured the Web service, you are ready to use it to generate reports pro-
grammatically.

14.3.2 Rendering Reports
For the purposes of this demo, you will render programmatically the Interactive Features re-
port you authored in chapter 5. This practice demonstrates the following programming tasks:
 Load a report for execution.
 Inspect the report configuration.
 Set report parameters.
 Render a report.
 Save the report payload to disk.

The WebServiceDemo report represents the complete solution for this practice. You'll need
Visual Studio 2008 to work with the source code. The code sample uses version 2 methods of
the ReportExecution2005 endpoint.

 Loading reports for execution
Hypertext Transfer Protocol (HTTP) is a stateless protocol, which means that the Web server
discards any client state after it has processed the request. Consequently, the Web server
doesn't know whether different requests come from the same client. At the same time, the
client may need to execute tasks in succession, such as setting the report parameters, render-
ing the report, page navigation, and so on. Recall from chapter 12 that the report server main-
tains execution sessions so it can identify report clients and keep the report execution alive
between requests. By default, the server times out the execution session after 10 minutes.

CHAPTER 14 504

As a first step of rendering a report, you need to load the report for execution by calling
the LoadReport2 method. The LoadReport2 method creates an execution session and returns
an ExecutionInfo2 object that contains useful configuration information about the report.

1. Add the following namespaces at the top of the Program.cs source file:
using System.IO;
using System.Web.Services.Protocols;
using WebServiceDemo.ReportExecution;

2. Add the following code to the Main method:
string historyID = null;
string reportPath = "/AMRS/Interactive Features";
ReportExecutionService rs = new ReportExecutionService();
rs.Credentials = System.Net.CredentialCache.DefaultCredentials;
rs.Url = "http://localhost/reportserver/ReportExecution2005.asmx";
ExecutionInfo2 execInfo = rs.LoadReport2(reportPath, historyID);

The code creates an instance of the ReportExecution proxy class. Next, the code sets the
proxy's credentials to System.Net.CredentialCache.DefaultCredentials. Consequently, the call
to the report server will go out under the identity of the interactive user. When you add a
Web reference to your project, Visual Studio configures the proxy to read the URL address of
the endpoint from the application configuration file (app.config). The code demonstrates how
you can overwrite the endpoint address as needed by setting the proxy's Url property.

Next, the code invokes the LoadReport2 method and passes the report path. The report
server creates an execution session and starts the session expiration clock. The report server
returns configuration information about the report, which the code saves in the execInfo ob-
ject.

 Analyzing the report configuration
If you know how the report is configured, you can skip this step and proceed with rendering
the report. Otherwise, you can inspect the ExecutionInfo2 object that was returned by the
LoadReport2 method. Among other things, it can tell you what parameters the report accepts
and give you detailed information for each parameter, such as the parameter name, type, de-
fault values, and so on. The WebServiceDemo application traverses the ExecutionInfo2 object
and displays some of its properties to the screen for testing purposes:
Console.WriteLine("SessionID: {0}", execInfo.ExecutionID);
Console.WriteLine("Credentials Required: {0}", execInfo.CredentialsRequired);
Console.WriteLine("Parameters Required: {0}", execInfo.ParametersRequired);

foreach (ReportParameter p in execInfo.Parameters)
{
 Console.WriteLine("Parameter Name: {0}, Default Value: {1}", p.Name,
 String.Join(",", p.DefaultValues == null ? new string[0] : p.DefaultValues));
}

The code displays the session identifier from execInfo.ExecutionID. Alternatively, you can get
the session identifier from the proxy's ExecutionHeaderValue.ExecutionID.

NOTE You don't need to worry about the session identifier if you use the same proxy instance and you work with one
report at a time. However, executing LoadReport for another report will overwrite ExecutionHeaderValue.ExecutionID
and you will "lose" the session identifier for the first report. Consequently, subsequent Web methods for the first report,
such SetReportParameters and Render, will fail with the message "Execution 'sessionID' cannot be found." If you mix
report executions, you need to save the session identifier and set the proxy's ExecutionHeaderValue.ExecutionID be-
fore you call an execution method.

INTEGRATION FUNDAMENTALS 505

The CredentialsRequired property will be True if the report data source is configured to
prompt the user for credentials. In this case, you need to populate an instance of the Data-
SourceCredentials class and call the SetExecutionCredentials method before invoking the
Render method. If the report data source is configured for Windows Integrated security or
standard security, CredentialsRequired returns False.

The execInfo.ParametersRequired property tells you if you must pass parameter values to
the report. If the report has parameters and a parameter doesn't have a default value, this
property returns True. The code loops through the Parameters collection and displays the
name and default values for each parameter. A multivalued parameter may have several de-
fault values. The code concatenates the parameter default values by using the String.Join func-
tion so it can display them together. Recall that you cannot pass parameters to a report
configured for snapshot caching. The AllowQueryExecution property indicates this state.

 Passing the report parameters
The Interactive Features report takes Month and Year parameters. Both of them have default
values. Suppose that you want to render the report with different parameter values. You can
accomplish this by calling the SetExecutionParameters2 method. This method sets the new
temporary parameter values that are used for the current execution. It doesn't permanently
change the report parameters. You can use the SetReportParameters2 method of the Report-
Service2005 endpoint (or ReportService2006 in SharePoint mode) if you want to update the
definition of the report parameters in the report catalog:
ParameterValue[] parameters = new ParameterValue[2];
parameters[0] = new ParameterValue();
parameters[0].Name = "Month";
parameters[0].Value = "12";
parameters[1] = new ParameterValue();
parameters[1].Name = "Year";
parameters[1].Value = "2003";
rs.SetExecutionParameters2(parameters, null);

Start by defining an array of two ParameterValue objects. Set the Name property to the para-
meter name and Value property to the parameter value.

Once the parameter array is ready, call SetExecutionParameters2 to update the parameters for
the current report execution. Optionally, you can specify the language in which the parame-
ters will be interpreted as the second argument. This works in the same way as the Parameter-
Language URL command I discussed in the section 14.2.3. If the language is null, the server
will evaluate the parameter value using the current thread culture (the Accept-Language head-
er on the web request). In a browser, the current thread culture is determined by the browser
language. A console application or a rich client can overwrite the culture by adding the Ac-
cept-Language header to the HttpWebRequest used by the Web service proxy.

 Rendering the report
Once the parameters are set, you are ready to render the report in the desired format. This
code fragment demonstrates how to render the Interactive Features report in MHTML:

NOTE I wish Reporting Services were more consistent with parameter structures. As you can see, the ExecutionInfo
object returns an array of ReportParameter objects, while the SetExecutionParameters method takes an array of
ParameterValue objects. What's really needed is a single collection of parameter objects that provides helper methods
to facilitate working with parameters, such as getting a parameter by name. Handling multivalued parameters presents
yet another challenge because you need to expand the array to accommodate the multiple values before you call
SetExecutionParameters.

CHAPTER 14 506

string encoding;
string mimeType;
string extension;
Warning[] warnings = null;
string[] streamIDs = null;
string format = "MHTML";
string devInfo = null;
byte[] result = null;
try
{
 result=rs.Render2(format, devInfo, PageCountMode.Estimate, out extension, out encoding,
 out mimeType,out warnings,out streamIDs);
 execInfo = rs.GetExecutionInfo2();
 Console.WriteLine("Execution date and time: {0}", execInfo.ExecutionDateTime);
}
catch (WebException ex)
{
 Console.WriteLine(ex.Message);
}
Using (FileStream stream = File.Create("report.mhtml", result.Length))
{
 Console.WriteLine("File created.");
 stream.Write(result, 0, result.Length);
 Console.WriteLine("Result written to the file.");
 }

The Render2 method takes several arguments. The Format argument specifies the export for-
mat. You can use the DeviceInfo setting to pass one or more device information settings to the
renderer. Use the PageCountMode argument (new with version 2 of the Render method) to
instruct the server to return an estimated or actual page count. As you've probably guessed,
PageCountMode.Estimate is faster because the server guess-estimates the page count instead of
having to paginate the entire report.

Once the Render2 method is executed, it returns the name of the renderer used to process
the report in the Extension argument. The MimeType argument indicates the Multipurpose
Internet Mail Extensions (MIME) type of the report payload, such as multipart\related if the
report is exported in MHTML. The Encoding argument indicates the encoding format that the
server used to generate the report, such as ASCII. The Warnings argument may return an ar-
ray of Warning objects that describe any warnings that occurred during report processing. I'll
explain the purpose of the StreamIDs argument in the next section.

Next, the code invokes the GetExecutionInfo2 method to refresh the ExecutionInfo2 ob-
ject and display the date and time the report was rendered. This step is optional. The Render2
method returns the report payload as a byte array. WebServiceDemo saves the report payload
in the application folder (\bin\debug\). You can browse the file with Internet Explorer. If
WebServiceDemo executes successfully, you should see the following console output when
you run the application (Ctrl+F5):
SessionID: <sessionID>
Credentials Required: False
Parameters Required: False
Parameter Name: Month, Default Value: 1
Parameter Name: Year, Default Value: 2004
Execution date and time: <current date and time>
Estimated number of pages: 5
File created.
Result written to the file.
Press any key to continue . . .

Any exceptions generated by the report server are exposed as SOAP exceptions. Your
try…catch block can catch exceptions of the SoapException type and react accordingly.

INTEGRATION FUNDAMENTALS 507

14.4 Putting It All Together
URL access and Web service are not mutually exclusive. You can leverage both integration
options when you report-enable your custom applications. You can use the Web service SOAP
for report navigation and management tasks, and URL access for viewing reports on demand.

The Integration Options demo, shown in Figure 14.4, demonstrates how you can use both
integration options together. When you click Get Reports, the application retrieves a list of the
reports deployed to the specified folder. Once you pick a report in the Report drop-down list,
the application displays the report parameters and their default values in the Parameters grid.
These tasks use the Web service. You can specify the export format and the integration me-
thod for rending the report. The application supports three programming techniques for ren-
dering reports via URL. The URL Web Browser option uses the Visual Studio WebBrowser
control to request the report by URL. The URL Shell option shells the report request to Inter-
net Explorer. Both URL Web Request and URL Shell options request reports by URL.

To avoid the SOAP overhead and save memory, the URL Stream option streams the report
payload in chunks and save the streams to a file. Finally, the Web service option generates the
report by calling the Render Web method and saves the report payload as a file. Both URL
Stream and Web Service options shell out to whatever application is associated with the file
extension of the saved report, such as Adobe Reader if the report is exported to PDF. More
information about each of these view options is presented later in section 14.4.2.

14.4.1 Programming Report Server Web service
The Integration Options sample uses the Report Server Web service for all management tasks,
including retrieving the available export formats, obtaining a list of all deployed reports in the
specified folder, and getting the report parameters. Before running the sample, right-click the
IntegrationOptions project node in Solution Explorer and click Properties to open the project

Figure 14.4 The Integration Options sample
demonstrates how you can report enable a
custom application by using both URL
access and the Report Server Web service.

CHAPTER 14 508

properties. Click the Settings tab and verify that the URLs of the execution and management
endpoints match your setup.

 Loading the export formats
When the application starts, it calls the LoadFormats method. LoadFormats invokes the Li-
stRenderingExtensions Web method of the ReportExecution2005 endpoint to obtain a list of
the registered renderers on the server.
private void LoadFormats() {
 ReportExecutionService rs = new ReportExecutionService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;
 Extension[] extensions = null;

 cmbFormat.Items.Clear();
 extensions = rs.ListRenderingExtensions();
 if (extensions != null)
 {
 foreach (Extension extension in extensions)
 {
 if (extension.Visible || extension.Name.StartsWith("HTML4.0")) cmbFormat.Items.Add(extension.Name);
 }
 cmbFormat.Text = "HTML4.0";
 }
}

The ListRenderingExtension method returns an array of Extension objects. LoadFormats loops
through the list of renderers. If the renderer's Visible property is True, LoadFormats adds the
renderer to the drop-down list. Although the HTML renderer is not visible by default, it's add-
ed to the list to demonstrate how exporting to HTML affects report images.

 Loading the reports
When the user clicks the Get Reports button, the application calls the LoadReports helper me-
thod, which uses the management endpoint (ReportServices2005). As a prerequisite, I had to
add a project Web reference to the management endpoint.
private void LoadReports() {
 RS.ReportingService2005 rs = new RS.ReportingService2005();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;
 RS.CatalogItem[] items = rs.ListChildren(txtFolder.Text, false);
 foreach (RS.CatalogItem item in items)
 if (item.Type == ReportService.ItemTypeEnum.Report) cmbReports.Items.Add(item.Name);
 if (cmbReports.Items.Count > 0) cmbReports.SelectedIndex = 0;
}

LoadReports calls the ListChidren Web method, which returns a list of all catalog items the
user is authorized to view. LoadReports enumerates through the list and adds the item to the
cmbReports drop-down list if the item is a report.

 Loading the report parameters
When the user selects a report, the application obtains the report parameters by calling the
LoadReportParameters helper method.
private void LoadReportParameters() {
 ReportExecutionService rs = new ReportExecutionService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;
 _execInfo = rs.LoadReport2(this.ReportPath, null);
 EntityParameter.ParametersDataTable userParameters = new EntityParameter.ParametersDataTable();
 foreach (ReportParameter p in _execInfo.Parameters)
 userParameters.AddParametersRow(p.Name, String.Join(",", p.DefaultValues));
 grdParams.DataSource = userParameters;
}

INTEGRATION FUNDAMENTALS 509

You can get the report parameters both from the execution and management endpoints. I
chose the former because I wanted to cache the ExecutionInfo object so I don't have call Loa-
dReport2 again if the user decides to render the report. Once LoadReportParameters calls
LoadReport2, it adds the report parameters to an EntityParameters typed dataset and binds the
parameter dataset to the grid control.

 Generating reports with the Web service
If the Web Service option is selected, the application generates the report by calling the Rend-
er method of the execution endpoint. This is very similar to the WebServiceDemo sample
which I discussed previously, so I'll focus only on the new features.
private void RunByWS() {
string devInfo = String.Format("<DeviceInfo><StreamRoot>{0}</StreamRoot></DeviceInfo>", "img");
rs.ExecutionHeaderValue = new ExecutionHeader();
rs.ExecutionHeaderValue.ExecutionID = _execInfo.ExecutionID;
ParameterValue[] parameters = this.GetSoapParameters;
rs.SetExecutionParameters2 (parameters, null);

result = rs.Render2(format, devInfo, PageCountMode.Estimate, out extension, out mimeType,
 out encoding, out warnings, out streamIDs);

if ("ht" == format.Substring(0, 2).ToLower())
 foreach (string streamID in streamIDs)
 {
 byte[] image = rs.RenderStream(format,streamID,null,out optionalString,out optionalString);
 FileStream stream = File.OpenWrite(String.Format("{0}{1}{2}{3}",
 Application.UserAppDataPath, Path.DirectorySeparatorChar, "img", streamID));
 stream.Write(image, 0, image.Length);
 stream.Close();
 }
string filePath = Util.GetFileForReport(reportPath, cmbFormat.Text);
FileStream stream = File.Create(filePath, result.Length);
stream.Write(result, 0, result.Length);
stream.Close();
Process.Start(filePath);
}

Recall that the execution methods work within the scope of an execution session. The Run-
ByWS method obtains the ExecutionInfo2 object that was cached in the LoadReportParame-
ters method. Next, RunByWS sets the session identifier by setting the
ExecutionHeaderValue.ExecutionID property. Next, the code configures the report parameters
by calling the GetSoapParameters property. GetSoapParameters obtains the new parameters
values from the grid control. If the user has specified multiple values for a multivalued para-
meter, GetSoapParameters resizes the ParameterValue array to accommodate the additional
values. RunByWS invokes the Render method to generate the report and obtain the report
payload as a byte array.

If you are exporting to any format other than HTML, save the report payload to a file and
present the report to the end user. Integration Options creates a new file with the appropriate
extension and writes the resulting byte array to the file. Finally, it shells out to the external
application associated with the file extension.

 Rendering image streams
Exporting to HTML requires an extra step because of the way the browser handles images.
When processing the report, the report server saves the report images in the execution session.
When the rendered report is loaded, the browser spans additional HTTP requests to fetch the
images from the server. This works just fine within the lifetime of the current execution ses-
sion. Once the session expires, however, image URLs won't work anymore and the report

CHAPTER 14 510

won't show the images. This behavior is by design, as rendering to HTML and persisting im-
ages out-of-band beyond the session lifetime is not a supported scenario. Now you understand
why the HTML renderer is configured as hidden in the rsreportserver.config file.

Again, this issue is specific to HTML since more "document-centric" renderers, such as
MHTML, save images inside the exported report. If you must export to HTML, for example to
implement a custom Web-based report viewer control, and you want HTML reports to show
images after the execution session has expired, you need to save the images to disk. This re-
quires passing a special StreamRoot device information setting to the Render method.

When the report server processes the report, it will see the StreamRoot setting and will ad-
just the report image URLs to point to the downloaded image streams. The StreamIDs argu-
ment of the Render method returns the stream identifiers of report image items and graphic
images (charts, gauges, and custom report items). RunByWS loops through the stream iden-
tifiers and calls RenderStream to obtain the image data. Finally, the code saves the image in
the user's application data folder. Consequently, instead of pointing to the server, the image
URL will reference the local image file similar to the following example:
file:///C:/Users/teo/AppData/Roaming/IntegrationOptions/IntegrationOptions/1.0.0.0/imge0333b044e8848e2915e90f6
ec9f89e5

Since the report images are downloaded as files, the report will show images even after the
user session has expired.

14.4.2 Programming URL Access
A custom application can use a variety of techniques to request reports via URL. These tech-
niques range from embedding static URL links in the application presentation layer to stream-
ing reports programmatically. The Integration Options sample demonstrates three ways to
render reports programmatically with URL access.

 Using the WebBrowser control
Visual Studio includes a WebBrowser control for navigating and displaying Web resources in
.NET Windows Forms applications. Thanks to this control, you can easily embed a report in a
form. Because the WebBrowser is designed to display Web resources, the application calls the
RunByURLWebBrowser method only when the report is exported to HTML. If you select
another format, the application shells out to the external application associated with this for-
mat by calling the RunByURLShell method.
private void RunByURLWebBrowser() {
 ReportBrowser reportBrowser = new ReportBrowser();
 reportBrowser.RenderReport(this.ReportURL);
 reportBrowser.Show();
}
public void RenderReport(string url) {
 Object optional = System.Reflection.Missing.Value;
 txtURL.Text = url.Replace("&", "&&");
 webBrowser.Navigate(url);
}

NOTE In previous releases of Reporting Services, HTML reports generated by calling the Render method wouldn't
show external images at all. You either had to use the HTMLFragment device setting or download the image streams.
SQL Server 2008 improves upon this by adding the session identifier to the image URL so that the images show up if
the execution session is still alive.

INTEGRATION FUNDAMENTALS 511

The ReportBrowser form hosts the WebBrowser control. The RunByURLWebBrowser method
instantiates the ReportBrowser form. Next, RunByURLWebBrowser obtains the report URL
address by calling the ReportURL property and passes it to the RenderReport method of the
ReportBrowser form. The ReportBrowser form calls the Navigate method of the WebBrowser
control to navigate to the requested report. Consequently, the form shows the familiar HTML
Viewer.

 Shelling to an external application
Sometimes, you may just need a quick way to show the report programmatically by navigating
to the report URL address. You can do this by shelling out the request to the browser, as the
RunByURLShell method demonstrates:
private void RunByURLShell() { Process.Start("IExplore", this.ReportURL);}

Once the code obtains the report URL, it calls the Process.Start method to start Internet Ex-
plorer and pass the report URL. The net result is the same as opening Internet Explorer inte-
ractively and requesting the report by URL.

 Streaming reports
As noted, SOAP facilitates Reporting Services programming but may add some performance
overhead. In his Transitioning between SOAP and URL Access blog (see Resources), John Gal-
lardo, a software engineer on the Reporting Services team, demonstrated how you can stream
large reports by using the .NET WebRequest and WebResponse objects. The Run-
ByURLStream method builds upon this approach:
private void RunByURLStream() {
 string url = this.ReportURL;
 if (cmbFormat.Text.StartsWith("HTML")) url += "&rc:Toolbar=false";
 WebRequest request = WebRequest.Create(url);
 request.UseDefaultCredentials = true;
 string filePath = Util.GetFileForReport(url, cmbFormat.Text);

 using (WebResponse response = request.GetResponse())
 using (Stream readStream = response.GetResponseStream())
 using (FileStream writeStream = new FileStream(filePath, FileMode.Create))
 {
 byte[] readBuffer = new byte[4096];
 int bytesRead = 0;
 while ((bytesRead = readStream.Read(readBuffer, 0, readBuffer.Length)) != 0)
 writeStream.Write(readBuffer, 0, bytesRead);
 }
 Process.Start(filePath);
}

RunByURLStream uses the WebRequest object to request the report by URL. Next, the We-
bResponse object reads the report payload in streams of 4 KB so the application can write
them to disk. This avoids loading the entire report into memory. In addition, the SOAP over-
head from serializing the report payload into a byte array is eliminated because the report is
requested by URL. The ReportViewer controls, which I will discuss in the next chapter, use a
similar hybrid approach to render reports. They call down to the Report Server Web service to
obtain the report metadata, such the available report parameters. However, the report is ren-
dered by URL.

If you need more programming samples that demonstrate how you can combine URL
access with the Web service to provide integrated reporting, take a look at the Microsoft-
provided RSExplorer sample. This application is distributed with the Reporting Services 2008
samples, which you can download from www.codeplex.com.

CHAPTER 14 512

14.5 Summary
Reporting Services provides two communication options for report-enabling external clients.
URL access is the fastest and easiest way to request reports but it is limited to report viewing
only. The Report Server Web service exposes the entire functionality of the report server but it
requires more programming effort.

End users and custom applications can leverage URL access to requests reports with min-
imum implementation effort. URL access supports various parameters and commands that let
you customize report presentation and functionality. The Report Server Web service includes
management and execution endpoints. You can program the management endpoint to manage
the report catalog. Use the execution endpoint to render reports programmatically.

Having laid out the foundation for integrating custom applications with Reporting Servic-
es, let's move on to the next chapter to learn how you can leverage the ReportViewer controls
to report-enable .NET clients.

14.6 Resources
URL Escaper

(http://tinyurl.com/25sktr)—Encodes/decodes URL links.
Reporting Services Device Information Settings

(http://tinyurl.com/23xery)—Explains the device information settings supported by
the Reporting Services renderers.

Transitioning between SOAP and URL Access
(http://tinyurl.com/33e7wk)—Learn how to stream the report with URL access.

513

CChhaapptteerr 1155

Reporting For .NET Clients

15.1 Understanding Embedded Reporting 513
15.2 Reporting for Windows Forms Clients 518
15.3 Reporting for Web Clients 533

15.4 Reporting for Rich Internet Applications 540
15.5 Summary 551
15.6 Resources 551

Recall from chapter 1 that Reporting Services provides URL access and Web service options
for integrating custom applications with the report server. Wouldn't it be nice to combine the
simplicity of URL access with the power of the Web service to more easily embed reports in
your applications? If you are a .NET developer, you are in luck. Visual Studio 2008 includes a
set of ReportViewer controls and tools that facilitate report-enabling .NET applications.

This is a code-intensive chapter so be prepared to wear your developer's hat. I'll start by
introducing you to the ReportViewer controls. Next, I'll demonstrate how you can leverage the
ReportViewer Windows Forms control to render local and remote reports. Then, I'll show you
how to accomplish the same tasks using the ReportViewer Web server control. Finally, I'll
show you how to report-enable Rich Internet applications that use the Microsoft Silverlight
technology. You will need Visual Studio 2008 to work with the source code for this chapter.

15.1 Understanding Embedded Reporting
Embedded reporting is a common requirement for both desktop and web applications. Typi-
cally, the application presents a list of reports to the user so the user can pick which one to
view. The application then generates the report and displays it in the presentation layer. De-
pending on how involved your requirements are, your application might also call for validat-
ing report parameters, distributing report definitions with the application, and binding reports
to application datasets. The ReportViewer controls are designed to handle these tasks.

15.1.1 Understanding the ReportViewer Controls
The first thing you should know about the ReportViewer controls is that there are two of
them. The ReportViewer Windows Forms control is used to embed reports in .NET Windows
Forms application projects. The ReportViewer Web server control is for hosting reports in
ASP.NET projects. Visual Studio determines which version to use based on the type of the
application project. For example, if you create a Windows Forms Application project, you get
the ReportViewer Windows Forms control automatically.

CHAPTER 15 514

 Understanding the similarities
Although targeting different application types, the ReportViewer controls share the same look
and feel and have similar programming interfaces. They are both written in managed code.
Common features include the following:
 Report toolbar—Similar to the HTML Viewer, which is based on the ReportViewer Web

server control, both controls include a handy report toolbar that provides convenient
access to common report operations, including handling report parameters, paging, zoom-
ing, searching, printing, and exporting. Unlike the HTML Viewer, the ReportViewer tool-
bar is customizable. For example, the developer can hide or replace the toolbar with a
custom toolbar if needed.

 Report processing modes—Both controls supports remote and local processing modes
that control where the report is processed. In remote mode, the ReportViewer controls
submit report requests to a report server and display the rendered report. In local mode,
ReportViewer processes and renders reports.

 Object model—Both controls provide similar object models that let developers configure
the controls through code at run time or by setting the control properties at design time.
The controls raise events at different stages of report processing to give the application a
chance to execute report pre-processing or post-processing tasks.

 Understanding functionality differences
Naturally, there are architectural differences between the two controls that are caused by the
application types that each one targets. Table 15.1 shows these differences.

Table 15.1 Functionality differences between Windows Forms and Web Server ReportViewer controls

Feature ReportViewer Windows Forms Report Viewer Web Server

Default presentation format Graphics Device Interface (GDI) HTML

Deployment On the client On the server

Printing .NET Framework print support Downloadable ActiveX control

Report processing Asynchronous Synchronous or asynchronous

The default presentation format of the ReportViewer Windows Forms control is Graphics De-
vice Interface (GDI). In contrast, the ReportViewer Web server control renders reports to
HTML (see Resources for more information about browser support). Client-side deployment
requirements are fundamentally different. Whereas the ReportViewer Windows Forms control
must be installed on every client that runs the application, the ReportViewer Web server con-
trol doesn't require any client installation because the report is processed on the web applica-
tion server.

Printing through the ReportViewer Windows Forms control is supported through the
.NET Framework, while its web counterpart requires downloading the RSClientPrint ActiveX
control, which I discussed in chapter 11. Finally, the ReportViewer Windows Forms control
always uses a background thread to generate the report, whereas you can configure the Web
Server control to process server reports synchronously or asynchronously.

REPORTING FOR .NET CLIENTS 515

 Upgrading from Visual Studio 2005
Veteran Reporting Services users might recall that Microsoft introduced the ReportViewer con-
trols with Reporting Services 2005 and Visual Studio 2005. Because Reporting Services 2008
is backward compatible with Reporting Services 2005, an application can use the Visual Stu-
dio 2008 controls to connect to both Reporting Services 2005 and 2008. Visual Studio 2008
brings incremental changes to the ReportViewer controls.

Design-time enhancements
A new Reports Application project template has been added to the Reporting section of Visual
Basic and C# projects. This project template gives you a jump start on configuring the Re-
portViewer controls to render local reports.

On the report authoring side, a new Report Wizard guides report authors through the
steps of creating a basic report. After the wizard is finished, you can edit the report by using
the Visual Studio Report Designer. The Expression Editor has been extended to support com-
mon sample expressions.

Run-time enhancements
The ReportViewer controls now compress reports that are exported to the Adobe PDF format.
The ReportViewer Web Server control can now print a report in local processing mode.

 Installing ReportViewer controls
Although they're related to Reporting Services, the ReportViewer controls are not shipped with
either Reporting Services or Business Intelligence Development Studio. Instead, they are bun-
dled with Visual Studio 2008 and documented in the Visual Studio product documentation
(see Resources). Therefore, to work with the controls at design time, you need Visual Studio
2008. The viewers are physically implemented in six .NET assemblies, as shown in Table
15.2.

Table 15.2 ReportViewer controls are implemented in five assemblies

Assembly Description

Microsoft.ReportViewer.WinForms.dll The Windows Forms control implementation.

Microsoft.ReportViewer.WebForms.dll The Web Server control implementation.

Microsoft.ReportViewer.Common.dll Functionality common to both controls.

Microsoft.ReportViewer.ProcessingObjectModel.dll The processing object model for processing reports.

Microsoft.ReportViewer.Design.dll Design-time functionality of ReportViewer Windows Forms. Not required at run-time.

Microsoft.ReportViewer.WebDesign.dll Design-time functionality of ReportViewer Web server. Not required at run-time.

The ReportViewer controls are freely redistributable. To make distribution easier, Microsoft
has provided a Microsoft ReportViewer Redistributable 2008 package (see Resources). Re-
member that the ReportViewer controls have a dependency on .NET Framework 2.0, so prior
to deploying your application you will need to install the .NET Framework 2.0 on the client
machine if your desktop application uses the Windows Forms control. Similarly, you will
need .NET Framework 2.0 on the server if your ASP.NET application uses the Web Server
control.

CHAPTER 15 516

The redistributable package installs the 2008 version of the controls in the Global Assem-
bly Cache (GAC) side-by-side with the 2005 ReportViewer controls. Consequently, applica-
tions targeting the older controls will continue to run unaffected. If you wish to upgrade
legacy applications to use the Visual Studio 2008 controls, you need to change the assembly
references in your project. The version of the Visual Studio 2005 ReportViewer controls is
8.0.0.0, while the version of the Visual Studio 2008 controls is 9.0.0.0.

15.1.2 Understanding Report Processing Modes
Both ReportViewer controls support remote processing mode and local processing mode for
report generation. The processing mode affects the entire report lifecycle so it’s important to
understand how each mode works. Figure 15.1 illustrates the differences.

Figure 15.1 The ReportViewer controls support remote and local processing modes.

Remote processing mode
In remote processing mode, the report server processes and exports a report that is requested
on demand. This lets you use the familiar report lifecycle for report authoring, management,
and delivery. You use the BIDS Report Designer or Report Builder 2.0 to author the report
definition. When the report is ready, you deploy the report to the report catalog to make it
available to report clients. To embed the report in custom applications, you configure the Re-
portViewer in remote processing mode and point it to the server report.

In remote processing mode, ReportViewer essentially acts as a presentation layer to the re-
port server. Working in tandem, the report server does the heavy lifting to process and render
the report, while the ReportViewer control displays the streamed report in your application.
Because the native presentation format of ReportViewer Windows Forms control is GDI, re-
port requests that originate from the control are exported in GDI using the RGDI renderer.

NOTE The SQL Server 2008 setup program doesn't install new versions of the ReportViewer controls for public use.
Consequently, the Visual Studio 2008 ReportViewer controls use the Reporting Services 2005 processing engine and
support only the RDL 2005 format in local processing mode. Microsoft is expected to release upgraded versions of the
controls in the SQL Server 2008 timeframe. Currently, only the HTML Viewer, which Report Manager and URL access
leverage for report viewing, uses the latest version of the ReportViewer Web server control.

REPORTING FOR .NET CLIENTS 517

Behind the scenes, a ReportViewer that is configured for remote processing uses both URL
access and SOAP to integrate with the report server. Specifically, the Report Server Web ser-
vice is used for management and execution tasks, including retrieving report and parameter
metadata, passing parameters, and carrying out user-initiated commands, such as printing and
searching. For performance reasons, ReportViewer uses URL access for previewing and ren-
dering reports.

When should you use remote processing mode? Consider using it when your application
is hosting reports that are deployed on a report server. One of the benefits of this scenario is
that you can centrally manage all of your reports in a single repository—the report catalog.
You can leverage all report server features, including scheduling, security, session and snap-
shot execution, and linked reports.

 Local processing mode
In local processing mode, ReportViewer handles report processing and rendering, not the re-
port server. In fact, in this mode, the report server is not used at all. Instead, the application
supplies the ReportViewer control with parameters and data (such as an application dataset or
a business object). ReportViewer processes the report locally via internal interfaces.

Before you get too excited about not needing a report server (and a SQL Server 2008 li-
cense), evaluate both options carefully. Local mode is limited to report processing and render-
ing. As such, it is hardly a replacement for a full blown report server that provides enterprise
reporting features for centralized management, caching, subscription delivery, security, and so
on. In addition, in local mode, export formats are limited to PDF and Excel only.

You might be curious about how you would author report definitions if you don't have
SQL Server 2008 and the Reporting Services report designers. As it turns out, Microsoft bun-
dled a scaled-down report designer in Visual Studio 2008, which I'll refer to as Visual Studio
Report Designer. It is scaled-down because it doesn't support data sources and report preview
(recall that the application supplies data to the report). As it stands, this designer is capable of
producing RDL 2005 format only, which is the only format supported by ReportViewer in
local mode. The unfortunate side effect is that your local reports cannot include any of the
Reporting Services 2008 design enhancements, such as tablix, charts, and gauges. Essentially,
you are stuck with the Reporting Services 2005 design support until Microsoft updates the
Visual Studio 2008 designer.

When should you use local processing mode? Consider using it when simple processing is
sufficient for the reports that you distribute with your application, and you do not require the
features and components that are part of a SQL Server 2008 installation. You should also con-
sider using it if your report requirements call for implement flexible data binding strategies.
For instance, a custom application can retrieve an ADO.NET dataset from the data access layer
or a web service, and then bind the dataset to the report. As with previous releases, binding
datasets to server reports is not supported and requires a custom data extension, as I demon-
strate in chapter 18.

NOTE As noted in chapter 1, Reporting Services 2008 introduces a new RPL renderer capable of producing an output
format that is an independent representation of the report layout and data. The next generation of the ReportViewer
controls will offload some of the server processing by performing the final stage for converting RPL to their native pres-
entation formats. Currently, only the Reporting Services 2008 ReportViewer Web server control, which is used by the
HTML Viewer, utilizes the new RPL format.

CHAPTER 15 518

15.2 Reporting for Windows Forms Clients
Now, let's start exploring the ReportViewer controls by starting with ReportViewer Windows
Forms. Most of the information presented in this chapter applies to the ReportViewer Web
server control. In section 15.3, I'll explain the differences.

Windows Forms applications are often referred to as rich clients to emphasize the fact that
they enjoy the full feature set of the operating system on which they run. Yet, providing com-
prehensive reporting capabilities in these applications traditionally has been difficult. Let's see
how ReportViewer Windows Forms control can help.

15.2.1 Getting Started with the ReportViewer Windows Forms Control
The ReportViewer Windows Forms control lets you embed reports in Windows Forms custom
applications. It supports a cornucopia of features, including image handling and sessions, re-
port interactive features, printing and print preview, export to multiple formats, integration
with report server security, and snapshots. In the next several pages, we’ll take a closer look at
how to use this control by working through the WinReporter sample shown in Figure 15.2.

Figure 15.2 The WinRepor-
ter sample demonstrates the
remote and local processing
modes of the ReportViewer
Windows Forms control.

 Introducing the WinReporter sample
The WinReporter sample that accompanies this chapter demonstrates various features of the
ReportViewer Windows Forms control. It builds upon the IntegrationOptions sample I dis-
cussed in chapter 14, except that it uses ReportViewer for viewing reports on demand. The
source code of WinReporter is included in the WinReporter Visual Studio project (WinRepor-
ter.csproj). Before running the sample, right-click the WinReporter project node in Solution
Explorer and click Properties to open the project properties. Click the Settings tab and verify

REPORTING FOR .NET CLIENTS 519

that the AdventureWorks 2008ConnnectionString and ReportServerUrl configuration settings
match your setup.

WinReporter demonstrates both the remote and local processing modes of ReportViewer
by letting the user select one of the Report Processing Mode options. In remote mode, WinRe-
porter connects to the report server to retrieve a list of reports deployed to the specified folder.
In local mode, WinReporter loads the list with the names of the report definition files from the
local file system.

When you select a report, the application obtains the report parameters from ReportView-
er and displays them in the Parameters grid. You can change the parameter values if needed.
Click the Run Report button to view the report. In remote mode, ReportViewer passes the pa-
rameters to the server report and delegates report processing to the server. In local mode, Re-
portViewer bypasses the report server. The application supplies the report with both
parameters and data. ReportViewer processes and renders the report.

 Configuring ReportViewer Windows Forms
Follow these steps to add the ReportViewer Windows Forms control to a form:

1. Start Visual Studio 2008 and create a Windows Forms Application project.
2. Open a form in design mode.
3. Expand the Reporting tab of the Visual Studio toolbox. Double-click the MicrosoftReport-

Viewer control to add it to the form.

When you drop the ReportViewer control on the form, Visual Studio adds references to Mi-
crosoft.ReportViewer.Common, Microsoft.ReportViewer.WinForms, System.Web, and Sys-
tem.Web.Services assemblies which are used by the control. To avoid fully qualifying
ReportViewer objects in code, import the Microsoft.Reporting.Winforms assembly, as follows:
using Microsoft.Reporting.WinForms;

As with other Windows Forms controls, you can configure the ReportViewer at design time by
using its smart tag panel. For example, you can use the smart tags panel to configure Report-
Viewer to render a specific server or local report. To open the smart tags panel, click the small
arrow in the upper right corner of the control, as shown in Figure 15.3. Use the Visual Studio
Properties window to access all control properties. For example, you can hide the toolbar by
setting the ShowToolBar property in the Properties window.

Alternatively, you can configure ReportViewer programmatically at run time by working
with its object model. In remote mode, you interact with the ServerReport object, while in

Figure 15.3 You can
use the ReportViewer
Tasks panel to configure
the control at design time.

CHAPTER 15 520

local mode you use the LocalReport object. These objects expose almost identical program-
ming interfaces, so switching from one mode to another is easy.

15.2.2 Working with Remote Processing Mode
Programming for the remote processing mode is simple because the report server performs all
of the complex operations of collecting the report data and processing the report. In the sim-
plest case, you only need to point the control to the remote report. More involved scenarios
may require an additional effort to handle report parameters and configure security.

 Handing report parameters
ReportViewer can handle report parameters for you. When the ShowParameterPrompts prop-
erty is set to True (this is the default setting), ReportViewer displays parameter placeholders in
the toolbar prompt area. This behavior is consistent with rendering reports in Report Manager.
Behind the scenes, the ReportViewer invokes the LoadReport method, which returns an Ex-
ecutionInfo object describing the report and the report parameters. The ReportViewer uses
this information to configure the parameter prompts and display appropriate controls. For
example, it displays a calendar control for DateTime parameters and a multi-select list for mul-
ti-valued parameters.

If you need more control over the report parameters, you can hide the prompt area and
implement your own user interface. WinReporter demonstrates this approach by loading the
report parameters in the Parameter grid so that a user can change their values.
private ReportParameterInfoCollection LoadRemoteReportParameters()
{
 reportViewer.Reset();
 reportViewer.ProcessingMode = ProcessingMode.Remote;
 reportViewer.ServerReport.ReportPath = this.ReportPath;
 return reportViewer.ServerReport.GetParameters();
}

LoadRemoteReportParameters resets ReportViewer to restore the default values and remove
any residual state that is left over from previous report executions. Behind the scenes, the Re-
set method causes the control to create a new execution session even if you request the same
report. Consequently, the report server will re-execute the report. It also means that the re-
port parameter values will be reset to their initial defaults.

The code configures ReportViewer for remote processing mode and sets the ReportPath
property to the report catalog path. LoadRemoteReportParameters calls ServerRe-
port.GetParameters to obtain the parameter configuration. For the sake of simplicity, WinRe-
porter doesn't validate user input for the report parameters. A more realistic implementation
should probably include a custom user interface for presenting parameters and validating
them against specific business rules.

 Generating reports
When you compare the code required for generating reports with the Report Server Web ser-
vice against equivalent code for the same operation using the ReportViewer control, you'll un-
doubtedly appreciate the simplicity that the ReportViewer brings to the table. Requesting a
server report takes only a few lines of code.
internal void RunRemote() {
 reportViewer.Reset();
 reportViewer.ProcessingMode = ProcessingMode.Remote;
 reportViewer.ServerReport.ReportPath = this.ReportPath;

REPORTING FOR .NET CLIENTS 521

 ReportParameter[] parameters = UserParametersToReportParameters();
 reportViewer.ServerReport.SetParameters(parameters);
 reportViewer.RefreshReport();
}

The RunRemote method configures ReportViewer for remote processing mode. It calls the
UserParametersToReportParameters helper method to convert the user parameters dataset to
an array of ReportParameter objects that ReportViewer expects. RunRemote calls ServerRe-
port.SetParameters to configure the report parameters. Behind the scenes, ReportViewer calls
the SetExecutionParameters API to set the parameters for the current report execution. Finally,
RunRemote calls the ReportViewer RefreshReport method to execute and render the report.

TIP Recall that a report may be configured to keep execution snapshots in history. If you need to request a specific
history snapshot, set the ReportViewer.ServerReport.HistoryId property to the history identifier. Recall also that you can-
not pass parameters to a report configured for snapshot caching. The ServerReport.IsQueryExecutionAllowed property,
which wraps ExecutionInfo.AllowQueryExecution), indicates whether you can pass parameters to the report.

By default, exceptions thrown during report processing are embedded in the ReportViewer
report pane. However, you can overwrite this behavior by handling the ReportViewer Repor-
tError event. The Exception property of the ReportErrorEventArgs class provides the error that
occurred. Setting the Handled property to True prevents ReportViewer from displaying an
error message.

By default, ReportViewer will time out the connection to the report server after ten mi-
nutes. If your reports take longer to process, increase the ReportViewer.ServerReport.Timeout
property or set it to System.Threading.Timeout.Infinite (-1) to prevent a timeout.

 Securing ReportViewer
When you work with remote processing mode, you must ensure that you have permission to
access the report catalog. As a prerequisite, use Report Manager to set up role-based policies to
grant users permission to the report catalog. To meet a variety of security requirements, Re-
portViewer support different authentication mechanisms.

Windows Integrated security
Out of the box, the report server is configured for Windows Integrated security. This security
mode is your best bet when you have Windows Active Directory in place and requests to the
report server go under the domain identity (domain\username) of the interactive user.

You don’t have to do anything special to configure the Report Viewer for Windows Inte-
grated security. That’s because the ReportViewer automatically passes the user identity to the
report server by setting the Credentials property of the web service proxy to Credential-
Cache.DefaultCredentials.

You can also impersonate a specific Windows user other than the current thread user by
setting ReportViewer.ServerReport.ReportServerCredentials.ImpersonationUser. This is useful
if you already have the impersonation token. In this case, the call to the server goes under one
user, but the rest of the application still runs as the interactive user.

Basic authentication
Sometimes, Windows Integrated security is not an option. For example, a vendor may not be
able to control the security infrastructure of its customers. In this case, you can configure the
report server to use Basic authentication and authenticate the user with specific credentials to
the report server. For example, if the report server doesn't belong to an Active Directory do-
main, you can create local user accounts for each user on the server and pass the account cre-
dentials (username and password) to the report server. This takes one line of code:

CHAPTER 15 522

private void SetBasicSecurity()
{
 reportViewer.ServerReport.ReportServerCredentials.NetworkCredentials = new NetworkCredential("Bob", "P@ssw0rd");
}

The code assumes that a local Windows account is created on the report server with a user
name of "Bob" and password of "P@ssw0rd ". You must use Report Manager to grant the local
account rights to view reports.

Custom security
When security requirements rule out Windows-based security, you can configure the report
server for custom security. For example, your security requirements may call for supporting
an application-based security model where the end user logs in to the application with creden-
tials kept in a database. I'll explain how custom security works in chapter 19. The simplest
(and less secure) approach to integrate ReportViewer with custom security is to pass the user
credentials explicitly:
private void SetCustomSecurity1()
{
 reportViewer.ServerReport.ReportServerCredentials.SetFormsCredentials (null, "uid", "pwd", null);
}

Behind the scenes, ReportViewer will call the LogonUser method and cache the authentication
ticket for the lifetime of the ReportViewer control instance. ReportViewer also provides a Get-
FormsCredentials method if you want to retrieve the cached user credentials later on. Howev-
er, be aware that GetFormsCredentials doesn’t return the authentication ticket. This means
you will need to keep the user credentials for as long as the application is running. Because
this presents a security risk, I recommend you adopt a slightly more involved approach where
the application calls LogonUser and caches the authentication ticket. The SetCustomSecurity2
method demonstrates this approach:
private void SetCustomSecurity2() {
 ReportServerProxy rs = new ReportServerProxy();
 rs.LogonUser("uid", "pwd", null);
 // Save the authentication ticket and discard user credentials
 reportViewer.ServerReport.ReportServerCredentials.SetFormsCredentials
 (ReportServerProxy.AuthCookie, null, null, null);
}

For example, upon application startup, the application can collect the user login credentials
and authenticate the user for report server access by invoking explicitly the LogonUser me-
thod. Then, the application can save the ticket and discard the user credentials.

 Customizing ReportViewer
Besides parameter handling, the ReportViewer object model exposes several other methods to
meet more advanced integration requirements. Such requirements might include changing the
default rendering format, adding preview, customizing or replacing the toolbar, or localizing
the control into a specific language.

Let’s start by looking at how you might set the output format. Suppose that you need to
export your report to an image format other than TIFF (the default image format). The Re-
portViewer toolbar doesn’t let you pick a specific image format. However, because the Re-
portViewer object model supports rendering a report programmatically, you can set the image
format by calling the ServerReport.Render method which wraps the Render Web service API.
byte[] result=reportViewer.ServerReport.Render("PDF",null,null,out mimeType,out fileExtension);

REPORTING FOR .NET CLIENTS 523

Another interesting pass-through method is LoadReportDefinition. The LoadReportDefinition
method lets you render a server report without requiring the report to be uploaded to the re-
port catalog. This lets you to implement report previewing. Suppose that your application
creates an ad hoc report definition and you don't want to force the user to upload the report
to the server before viewing it. The following code shows you how to let users preview the
report on the fly:
using (System.IO.MemoryStream stream = new System.IO.MemoryStream()) {

byte[] reportPayload = GetReportDefinition() //obtain the report definition from somewhere
stream.Write(reportPayload, 0, reportPayload.Length);
stream.Position = 0;
StreamReader reader = new StreamReader(stream);
reportViewer.ServerReport.LoadReportDefinition(reader);

}

NOTE As a prerequisite for invoking the LoadDefinition method successfully, grant rights to execute the Execute
Report Definitions system task by assigning user accounts to the System User system role. Be aware that the ad hoc
report is processed in the root (Home) folder of the report catalog. Therefore, you must adjust the location of the re-
sources used by the report (images, data sources, etc.) to be relative to the Home folder so that they are rendered
properly.

The GetReportDefinition helper method obtains the report definition, such as by loading it
from disk or by calling the ReportService2005.GetReportDefinition API. Next, the code pre-
pares a memory stream and a StreamReader object to read from the stream. Finally, the code
calls the ReportViewer LoadReportDefinition method to generate the report on the fly.

You aren't limited to the default ReportViewer toolbar, either. You can customize the tool-
bar to suit your needs. For example, the toolbar may not blend with your application's user
interface or you may just want to have more control over the ReportViewer toolbar features.
You can hide the toolbar areas you don’t want (or the entire toolbar) and implement your own
toolbar. If you do that, you'll need to call the appropriate method of the ReportViewer object
model when a user initiates the action. As it stands, ReportViewer controls don't let you cus-
tomize individual buttons on the toolbar.

Suppose you decide to implement a custom toolbar for searching text within reports. To
do so, hide the ReportViewer Find toolbar controls (set ShowFindControls to False) and call
the ReportViewer Find method manually:
reportViewer.Find(searchString, startPage);

The potential for customization goes beyond the control itself to include packaging custom
code with the control. You might have noticed that ReportViewer is a standard Windows
Forms control and is not sealed (NotInheritable in VB.NET). Therefore, there is nothing stop-
ping you from subclassing it whenever it makes sense to do so (for example, to enforce busi-
ness rules, set precedence, or establish a security context before the control is instantiated).

REAL LIFE I once had to implement a proprietary security model to impersonate the user and package through Re-
portViewer. To accomplish this, I created a custom class that inherited from the ReportViewer control and handled the
security requirements. Once the control was ready, I compiled it and distributed its binary to the application developers
to integrate the control with custom applications.

 Localizing ReportViewer
You can also localize the ReportViewer user interface by installing the appropriate Report-
Viewer language pack. The ReportViewer control includes language packs for eight languages:
Chinese-Simplified, Chinese-Traditional, French, German, Italian, Japanese, Korean, and
Spanish. Follow these steps to install a language pack:

CHAPTER 15 524

1. Go to the Microsoft Report Viewer Redistributable 2008 download page (see Resources).
2. Change the Language drop-down list to the desired language.
3. Scroll to the bottom of the page and click the Microsoft Report Viewer Redistributable 2008

Language Pack link to download and install the language pack for the selected language.
4. Run ReportViewerLP.exe.

You can also get the ReportViewer language pack by downloading it from
http://go.microsoft.com/fwlink/?LinkId=98185&clcid=<lcid> where <lcid> is the locale id as a
hexadecimal number, for example http://go.microsoft.com/fwlink/?LinkId=98185&lcid=0x40c
for French. This is how the ClickOnce ReportViewer package obtains the language pack.

ReportViewer uses the UI culture of the current thread to locate the language resource file.
This happens automatically for the Windows Forms version of ReportViewer. However,
ASP.NET does not set automatically the thread culture based on the header information pro-
vided by the client. Instead, you must overwrite the thread culture programmatically, as fol-
lows:
Thread.CurrentThread.CurrentCulture = CultureInfo.CreateSpecificCulture(Request.UserLanguages[0]);
Thread.CurrentThread.CurrentUICulture = CultureInfo.CreateSpecificCulture(Request.UserLanguages[0]);

Finally, if you are building a custom application in a language that is not one of the eight lan-
guages mentioned above or you need more control over the ReportViewer localization, you
can replace the strings in the ReportViewer user interface by implementing the IReportVie-
werMessages or IReportViewerMessages2 interfaces, as follows:

5. Code a custom class that implements IReportViewerMessages and IReportViewerMessages2
interfaces and provides the localized strings for the languages you need to support.
public class ReportViewerCustomMessages : IReportViewerMessages, IReportViewerMessages2
{
 public string BackButtonToolTip {get { return("Add your custom text here."); } }
 public string BackMenuItemText {get { return("Add your custom text here."); }}
. . .

6. Set the ReportViewer Messages property to an instance of this class.
ReportViewerCustomMessages myMessageClass = new ReportViewerCustomMessages();
reportViewer.Messages = myMessageClass;

Due to an unfortunate bug which will be probably fixed in next ReportViewer redistributable,
attempting to add these two lines to the Form.Load event will result in a "The source of the
report definition has not been specified error" exception. This error occurs because Report-
Viewer mistakenly tries to get the parameter metadata when it attempts to recalculate the size
of the parameters area. If you see this error, you can work around it by adding these lines to
the LoadRemoteReportParameters method after setting the report path. For more information
about localizing the ReportViewer controls, see the examples in the IReportViewerMessages
interface in the Visual Studio Books Online (see Resources).

NOTE The languages installed by the SQL Server setup program are not that relevant to the ReportViewer user inter-
face. However, the report server language is relevant for data that comes from the server in server mode. This in-
cludes the localized names of rendering extensions on the server as well as error messages from the server.

REPORTING FOR .NET CLIENTS 525

15.2.3 Working with Local Processing Mode
In local processing mode, the application provides ReportViewer with report parameters and
data. WinReporter comes with two sample reports, Customer Orders and Sales Order Detail,
which I'll use to demonstrate local processing mode. The Customer Orders report shows the
order history for a given customer, as shown in Figure 15.4. You can click the order number
to drill through to the Sales Order Detail report that shows the order details. Because the Sales
Order Detail report is dependent on the Customer Orders report, the application loads only
the Customer Orders report in the Report drop-down list.

Figure 15.4 In local
processing mode, the applica-
tion provides ReportViewer with
report parameters and data.

The customer number is also clickable to demonstrate how the application can handle hyper-
link events, for example to let the user update his or her customer data. Configuring local
processing mode involves three steps. First, you prepare the report data source. Second, you
author the local report definition. The third step involves writing code to program the Re-
portViewer control to process the local report.

 Understanding report data sources
In general, ReportViewer supports two types of data sources in local processing mode: a data-
set that contains an ADO.NET DataTable object or an enumerable collection of business ob-
jects. ReportViewer Windows Forms also supports binding to instances of
System.Windows.Forms.BindingSource and to System.Type. Report Viewer Web server sup-
ports binding to an instance of System.Web.UI.IDataSource. Visual Studio supports several
ways of designing the two data source types (dataset and business objects):
 Data Sources window—Create a new data source using the Visual Studio Data Sources

window.

TIP If you have a server report that you need to convert to a local report, you can skip the data source preparation
step. That’s because your report definition already describes the dataset(s) that will feed the report. The only step
remaining is to bind the local report to an application dataset with an identical schema at run time.

CHAPTER 15 526

 Report Wizard—Click the Design New Report link in the ReportViewer smart tags panel
(see again Figure 15.3). This starts the Report Wizard that walks you through the process
of setting up the report data and layout. Visual Studio also launches the Report Wizard
right away when you create a new Reports Application project.

 Dataset item—Create a typed dataset by adding a Dataset item to your project.

The first two options support setting up a data source from a database, a Web service, or a
business object. Choose the Database data source type to set up a typed dataset from a SQL
query or a stored procedure. Choose the Web Service data source type if you use a Web ser-
vice as a data source. Use the Object data source type if you are planning to bind the local re-
port to a business object. Finally, if you plan to use a typed dataset as a data source for the
local report, you can bypass the Report Wizard and add a Dataset item to your project.

 Configuring the report data sources
Let's use the Visual Studio Data Sources window to set up datasets for the Customer Orders
and Sales Order Details reports.

1. If the Data Sources window is not open, press Shift+Alt+D to display it (or click Data menu
Show Data Sources).

The Data Sources window shows all project data sources. If you have set up a Web reference
to a Web service, the Data Sources window shows the Web service.

2. In the Data Sources window, click the Add New Data Source toolbar button to launch the
Data Source Configuration Wizard, shown in Figure 15.5.

Figure 15.5 Use the
Data Source Configuration
Wizard to set up a data
source for a local report.

As noted, the wizard gives you three choices for configuring the report data based on how the
data will be provided to the dataset.

3. Leave the Database option selected and click Next.
4. In the Choose Your Data Connection step, set a connection to the AdventureWorks2008 data-

base.
5. In the Save the Connection String to the Application Configuration File, check the Yes, Save

the Connection As option and enter AdventureWorksConnectionString in the field below. This

REPORTING FOR .NET CLIENTS 527

simplifies connection management because you can update the connection string in the appli-
cation configuration file (app.config).

6. Unfortunately, the wizard doesn't support free-form SQL statements to define the data source.
Consequently, you need to finalize the data source definition after the wizard is done. In the
Choose Your Database Objects step, don't select a database object. Enter CustomerOrders as a
dataset name and click Finish. When prompted, confirm your choice and move on to the next
step, providing the SQL statement that selects your data.

Using free-form SQL statements
In the previous steps, Visual Studio created an empty CustomerOrders dataset and added an
XSD schema file to the Entities folder in Solution Explorer. You now need to open the dataset
in the Dataset Designer to configure it to use a free-form SQL statement that populates the
dataset with values.

7. In the Data Source window, right-click the CustomerOrders dataset and click Edit DataSet
with Designer.

8. Right-click on the Dataset Designer canvas and choose Add TableAdapter. This launches
the TableAdapter Configuration Wizard.

9. In the Choose Your Data Connection step, select the connection to the AdventureWorks2008
database

10. In the Save the Connection String to the Application Configuration File step, click Next.
11. In the Choose a Command Type step, leave the Use SQL Statements option selected.
12. In the Enter a SQL Statement step, enter the following SELECT statement, which you can

copy from the CustomerOrders.sql file in the book source code:
SELECT SOH.CustomerID, C.FirstName, C.LastName, SOH.SalesOrderNumber, SOH.OrderDate, SOH.TotalDue
FROM Sales.SalesOrderHeader AS SOH INNER JOIN
 Sales.vIndividualCustomer AS C ON SOH.CustomerID = C.BusinessEntityID
WHERE (SOH.CustomerID IN (1, 2))
ORDER BY SOH.OrderDate

13. In the Choose Methods to Generate step, accept the defaults and click Finish.
14. Go back to the Dataset Designer, and rename DataTable1 in place to CustomerOrders.
15. Repeat steps these steps to add two new data sources, SalesOrder and SalesOrderDetail. Their

queries are provided in the SalesOrder and SalesOrderDetail files. In the Dataset Designer,
rename their tables to Order and OrderDetail respectively.

Using Objects as Data Sources
If your application uses business objects, you can use an object as a data source. The SalesOr-
derObject source file in the Entities folder of the WinReporter project defines a SalesOrderOb-
ject object that you can use as a data source for a local report. Notice that the source file also
includes a SalesOrders object whose GetData method returns a collection of the SalesOrde-
rObject objects. Follow these steps to configure the SalesOrderObject object as a data source:

16. Rebuild your project.
17. Select the Object data source type in the Data Source Configuration Wizard.
18. In the Select the Object You Wish to Bind To step, expand the WinReporter.Entities names-

pace and select the SalesOrderObject object.

CHAPTER 15 528

All public properties are exposed as fields in the Data Sources window so you can bind them
to report fields. Use the following code to bind a collection of objects to the report at run time:
SalesOrders orders = new SalesOrders();
reportViewer.LocalReport.DataSources.Add(new ReportDataSource("SalesOrderObject",orders.GetProducts()));

The ObjectDataSource sample available on the ReportViewer site (see Resources) demonstrates
a working report that uses an object as a data source.

 Authoring local reports
With the report data source in place, you can proceed with authoring the actual report by us-
ing the Visual Studio Report Designer. Follow these steps to author a new report:

1. In the Solution Explorer, right-click the WinReporter project node and click Add New
Item.

2. In the Add New Item dialog box, select the Report template if you want to start with a blank
report. Or, select the Report Wizard template to auto-generate a report with the Report Wi-
zard.

3. Once the report definition file is generated, double-click it in the Solution Explorer to open it
in the Visual Studio Report Designer.

4. Lay out the report as usual. To bind report items to data, drag fields from the Data Sources
window and drop them onto the report.

Understanding Report Definitions
Recall that in local mode, ReportViewer understands RDL 2005 only. You can use the Visual
Studio Report Designer to design the report definition of the local report because this designer
generates RDL 2005.

You cannot author a report with the BIDS 2008 Report Designer or Report Builder 2.0 and
convert it easily to a local report because those tools produce RDL 2008 only. If you have SQL
Server 2005, another option is to author and test a report with the full-featured BIDS 2005
Report Designer by connecting to a database. Then, you can convert the report to a local re-
port by following the steps in the Converting RDL and RDLC topic in the Visual Studio Books
Online.

NOTE By default, local report definition files have *.rdlc file extensions. To differentiate remote from local reports, the
Reporting Services team introduced the .rdlc file extension where “c” stands for client-side processing. While you can
use any file extension for local reports, the .rdlc extension is recommended because it is associated with Visual Studio
Report Designer. In addition, when you specify a report definition by file name or embedded resource in local mode,
the viewer will try to automatically resolve the location of subreports and drillthrough reports by looking for files with the
.rdlc extension.

The WinReporter demo uses the CustomerOrders and Sales Order Details reports that are in-
cluded in the Reports folder. Click on either report definition in Solution Explorer and notice
in the Properties window that Build Action is set to None, and Copy to Output Directory is set
to Copy if Newer. Consequently, Visual Studio will copy the most recent report definitions to
the application build folder when you build the project. When it's time to deploy your appli-
cation, you can remove the report definition file from the project and let the application setup
program copy the report definitions to a known location where ReportViewer can find them.
This lets you deploy newer report definitions by simply overwriting the external files.

Sometimes, security requirements may mandate embedding the report definitions in the
application executable as resources instead of distributing them as external files. You can ac-

REPORTING FOR .NET CLIENTS 529

complish this by setting the Build Action property to Embedded Resource, and setting Copy
to Output Director to Do Not Copy. Then, you can use the following code to load an embed-
ded report definition:
reportViewer.LocalReport.ReportEmbeddedResource = "WinReporter.Reports.Customer Orders.rdlc";

Working with embedded report definitions is trickier with web applications because Report-
Viewer will try to load the resource from the same assembly that sets the ReportEmbeddedRe-
source property. Behind the scenes, ReportEmbeddedResource attempts to load the resource
by calling the .NET Assembly.GetManifestResourceStream method. If the resource file and the
code that sets ReportEmbeddedResources end up in different assemblies, the application will
fail to load the report definition.

There are two workarounds for this predicament. You can pass a reference to the Report-
Viewer object to your class library containing the resource files and then have that assembly
set the property. Or, you can load the embedded resource manually using Assem-
bly.GetManifestResourceStream and pass the stream to the viewer using LoadReportDefini-
tion. The disadvantage of the latter approach is that drillthrough reports and subreports will
not load automatically. This is because ReportViewer has no way of resolving relative paths
when the parent report definition is supplied from a stream.

Working with External Images
Handling external images requires some additional steps when working with local reports.
This is because ReportViewer won't load the image from the folder where the report is located.
As a workaround, you can use the file:// protocol to load external images. You should avoid
static image paths for maintenance reasons. Instead, the Customer Orders report contains a
simple Visual Basic embedded function that returns the application path:
Public Function GetAppPath() As String
 Return System.IO.Directory.GetCurrentDirectory
End Function

The Value property of the Adventure Works logo image uses the following function to refer-
ence the external AWC.jpg file:
=String.Format("file:///{0}\{1}", Code.GetAppPath(), "AWC.jpg")

As a result, Reporting Services will load the image from the application startup folder. You
won’t see the image at design time, but it should appear when the report is run.

 Requesting local reports
The final step to implement local report processing requires writing code to program the Loca-
lReport object:
internal void RunLocal() {
 reportViewer.Reset();
 reportViewer.ProcessingMode = ProcessingMode.Local;
 reportViewer.LocalReport.ReportPath = this.ReportPath;
 reportViewer.LocalReport.EnableHyperlinks = true;
 reportViewer.LocalReport.EnableExternalImages = true;
 reportViewer.LocalReport.ExecuteReportInCurrentAppDomain(
 System.Reflection.Assembly.GetExecutingAssembly().Evidence);
 ReportParameter[] parameters = this.UserParametersToReportParameters();
 reportViewer.LocalReport.SetParameters(parameters);
 reportViewer.LocalReport.DataSources.Add(GetCustomers(parameters[0])); break;
 reportViewer.RefreshReport();
}

CHAPTER 15 530

The code configures ReportViewer for local processing. Notice that it sets LocalRe-
port.ReportPath to the local report definition file. As a security measure, if the local report
uses navigation actions (hyperlinks), you need to explicitly enable hyperlinks (more on this in
a moment). Similarly, since the local report loads the AdventureWorks logo as an external im-
age, you need to enable external images. You also need to elevate the CAS permissions of the
local report by running the report in the current application domain. This is because the Ge-
tAppPath embedded function that is in the Customer Orders report needs FileIOPermission to
get the application path where the external image is located.

Recall that the application is responsible for supplying the local report with parameters
and data. RunLocal calls the UserParametersToReportParameters helper method, which con-
verts the user-defined parameters in the Parameters grid to an array of ReportParameter ob-
jects. Next, the code passes the parameters to the local report.

The code proceeds by calling the GetCustomer helper method to obtain the report data as
a ReportDataSource object. The Name property of the ReportDataSource object must match
the name of the dataset inside the report definition. The Value property must reference either
an ADO.NET DataTable object or a collection of business objects. Finally, the RefreshReport
method renders the report locally.

 Synchronizing data sources
The definition of the report dataset (<DataSet> element in the report definition file) and the
definition of the project data source must match in order for the local report to render suc-
cessfully. Chances are that you will need to make changes to the project data source at some
point. Adding or removing columns in either the dataset or the project data source will re-
quire that you update the corresponding data structure. While you can do this manually, Vis-
ual Studio provides several options to synchronize the report dataset definition with the Data
Source.

Figure 15.6 Use the smart tags panel
to synchronize the dataset of the local
report with the report data source.

Suppose you have made changes to the CustomerOrders Data Source and you need to update
the Customer Orders report. The following steps show you how to synchronize your changes:

1. Open the Main form in design mode.
2. Click the ReportViewer control to select it and click the side arrow to open the smart tags

panel, as shown in Figure 15.6.
3. Expand the Choose Report drop-down list and select WinReporter.Reports.Customer Or-

ders.rdlc.

Use the Choose Data Sources task in the ReportViewer Tasks smart tags panel to bind a data
source to a client report definition (.rdlc) file that you converted from a server report defini-
tion (.rdl) file. Use the Rebind Data Sources task to synchronize the report definition with the
project data source.

REPORTING FOR .NET CLIENTS 531

Suppose that you have copied local report definition files between projects that have different
data sources.

4. Double-click the Customer Orders.rdlc file in the Solution Explorer to open it in design mode.

5. Click Report menu Data Sources.

To add a new dataset to the report definition, select the data source and click Add to Report.
In most cases, this option is not necessary. Project data sources are added to the report defini-
tion automatically when you drag fields to the report layout. To remove an existing dataset
reference from the report definition, select the dataset and click Remove.

If you renamed a data source in your project, you can use the Report Data Sources dialog
box to update the dataset name in the report definition. Click the Rename button to set the
dataset name in overwrite mode, and then type the new name. Click Refresh All to update the
report definition file with your changes.

 Handling events
ReportViewer supports a number of events that your code can handle at run time. For exam-
ple, ReportViewer always processes the report request on a background thread to keep the
main application thread responsive. If the application needs to be notified when the report is
ready, it can handle the RenderingComplete event:

1. Open the Windows Form that hosts the control in design mode, and then click the Report-
Viewer control to select it.

2. In the Visual Studio Properties window, click the Events toolbar button.
3. Double-click the RenderingComplete event.

Visual Studio generates the following empty event handler:
private void reportViewer_RenderingComplete(object sender, RenderingCompleteEventArgs e)
{
}

Each event passes additional information pertinent to the event to the second argument. For
example, the RenderingCompleteEventArgs argument includes a Warnings object that may
contain warnings the server has generated when rendering the report. The second argument
for most events supports a Cancel property that you can set to True to cancel the attempted
action.

It is important to point out that in remote processing mode, the ReportViewer events are
raised by the control, not by the server. Therefore, you cannot use these events to change the
report definition. Instead, the ReportViewer raises events when the control state changes, giv-
ing your application a chance to do some pre- or post-processing before or after the report is
generated.

Although the ReportViewer raises events in both modes, you will probably find events
more useful in local mode. That’s because in local mode your application must handle addi-
tional reporting tasks, such as passing data to a drillthrough report or subreport, and collect-
ing parameters. WinReporter demonstrates how your application can handle two of the most
useful events: Drillthrough and Hyperlink events.

Implementing report drillthrough
As with its server counterpart, the Customer Orders local report lets the end user click on an
order number to drill through to the Sales Order Detail local report and see the order details.

CHAPTER 15 532

However, as with any local report, the application must supply the data for the drillthrough
report. This happens in the Drillthrough event:
private void reportViewer_Drillthrough(object sender, DrillthroughEventArgs e) {
 if (e.Report is ServerReport) return;
 LocalReport localReport = (LocalReport)e.Report;
 OrderTableAdapter orderAdapter = new Entities.SalesOrderTableAdapters.OrderTableAdapter();
 SalesOrder.OrderDataTable orderTable =
 orderAdapter.GetData(localReport.OriginalParametersToDrillthrough[0].Values[0]);
 OrderDetailTableAdapter orderDetailAdapter = new OrderDetailTableAdapter();
 SalesOrderDetail.OrderDetailDataTable orderDetailTable =
 orderDetailAdapter.GetData(localReport.OriginalParametersToDrillthrough[0].Values[0]);
 localReport.DataSources.Add(new ReportDataSource("SalesOrder", orderTable));
 localReport.DataSources.Add(new ReportDataSource("SalesOrderDetail", orderDetailTable));
}

ReportViewer passes the drillthrough target report in the DrillthroughEventArgs argument.
First, the code checks the report processing mode. If the event was triggered in remote
processing mode (that is, e.Report is ServerReport), the code exits because we want to handle
only drillthrough events from local reports. The application gets the selected order number
from the OriginalParametersToDrillthrough property. Finally, the application binds the report
to its data by passing two datasets to the Sales Order Detail report (one for the order header
and another for the order details).

Implementing custom navigation action
What if you need to pass information from the report to the application, such as a customer
identifier that a user happened to click on the report? In this scenario, the application inter-
cepts the event and displays a form that can be used to update the customer details. With the
updated information in hand, the application would refresh the report to show the changed
data. To illustrate this scenario, I used the Hyperlink event. The Customer Orders report de-
fines an expression-based Jump to URL action on the textbox that displays the customer iden-
tifier:
="customerid:" & Fields!CustomerID.Value

Next, handle the ReportViewer Hyperlink event as follows:
private void reportViewer_Hyperlink(object sender, HyperlinkEventArgs e) {
 Uri uri = new Uri(e.Hyperlink);
 if (String.Compare(uri.Scheme, "customerid", StringComparison.OrdinalIgnoreCase)==0)
 {
 e.Cancel = true;
 MessageBox.Show(String.Format("Display data for customer: {0}",
 System.Web.HttpUtility.UrlDecode(uri.AbsolutePath)));
 ((ReportViewer)sender).RefreshReport();
 }
}

The HyperlinkEventArgs argument includes the hyperlink target. Assuming that the end user
has clicked on customer 14335, the hyperlink will be “customerid:14335”. Since there may be
other hyperlink events raised by the same report or other reports, the code checks the hyper-
link schema, which in this case will return “customerid”. Next, it is up to the application to do
something with this customer. For demo purposes, the code pops up a message box that dis-

TIP Instead of hard coding the dataset name, consider using the LocalReport.GetDataSetNames method. This method
returns the names of the datasets defined in the report definition. By not hard coding the dataset names, you avoid a
bug if you change a dataset name in the report definition and forget to update the code.

REPORTING FOR .NET CLIENTS 533

plays the customer identifier. Finally, the event handler refreshes the report to show the latest
data if the application has changed the underlying data.

15.3 Reporting for Web Clients
Now, let's take a look at the ReportViewer Web server control. A common reporting require-
ment is to distribute reports over the Web to make data easily accessible to internal users, cus-
tomers and partners. You can leverage the Visual Studio ReportViewer Web server control to
report-enable your intranet, Internet, and extranet applications.

15.3.1 Understanding the ReportViewer Web Server Control
Microsoft has done a great job of unifying the appearance and programming interfaces of the
ReportViewer Windows Forms and Web Server controls. Both controls expose the same set of
properties to control the processing mode and toolbar. Similar to its Windows Forms coun-
terpart, you can add the ReportViewer Web Server control to a Web form by dragging it from
the Reporting section of the Visual Studio Toolbox and dropping it on a web form. Both con-
trols have the same look and feel, support remote and local processing modes, and expose
similar object models. Yet, the implementation of the Web server control is very different be-
cause of the targeted technology.

Figure 15.7 In remote
mode, the HTTP handler of
the ReportViewer Web server
control handles images, ex-
porting reports, and keeping
report sessions alive.

 The ReportViewer Web Server architecture
Because the ReportViewer Web Server control runs in a server application, the Web server
control always generates the report on the server side of the web application, as shown in Fig-
ure 15.7. The client never accesses the server directly. For the Web Server control, local
processing occurs in the context of your server application. As you might expect, remote
processing occurs on the report server. Remote report processing follows these steps:

1. Server-side ASP.NET code configures the control to request a server report.
2. The ReportViewer Web server control calls the report server APIs to generate the report in

HTML. The report server (not shown in Figure 15.7) processes the report and sends it back to
ReportViewer.

3. ReportViewer streams the HTML report to the browser.

Local processing mode follows similar steps with the exception that ReportViewer itself
processes the report, not the report server. If you have implemented server-side report genera-
tion without ReportViewer, you are aware of the complexities surrounding this integration

CHAPTER 15 534

scenario. For example, extra steps were required to handle report images and correlate report
requests with execution sessions. Other features, such as report interaction were simply not
available when rendering the report via SOAP. These limitations simply disappear with Re-
portViewer. How is this possible?

The first time you add ReportViewer to a web form, Visual Studio automatically registers a
special ASP.NET HttpHandler (Reserved.ReportViewerWebControl.axd), which you can see
by examining the application Web.config file. The ReportViewer HTTP handler is an integral
part of the Web ReportViewer control. You cannot remove or unregister it. If the ReportView-
er HTTP handler is missing from web.config, you will get the following error:
The Report Viewer Web Control HTTP Handler has not been registered in the application's web.config file.

The main responsibilities of the HTTP handler include handling images and events, exporting
reports to other report formats, and keeping report sessions alive. For example, if a report uses
an embedded image, the browser submits an HTTP GET request to the HTTP Handler to fetch
the image by URL.

 Understanding rendering modes
The ReportViewer Web Server control supports an AsyncRendering property that controls
how the report is rendered. If AsyncRendering is True (this is the default setting), Report-
Viewer generates the report asynchronously. Specifically, ReportViewer injects an IFRAME,
which sends an HTTP GET request to the HTTP Handler to generate the report. The net result
is that the hosting page can load without being blocked by ReportViewer.
In asynchronous mode (default), ReportViewer toolbar actions, such as page navigation, and
report interactive features (drillthrough, bookmarks, and document maps) are forwarded to
the HTTP Handler. Assuming that you don't handle events in the page code-behind, these
actions don't cause the hosting page to repost. However, if you decide to handle events, then
report actions result in a page repost so your event handler gets fired

Setting AsyncRendering to False causes ReportViewer to generate the report synchronous-
ly. ReportViewer renders the report as inline HTML with the rest of the page. Consequently,
the hosting page is rendered after the report is generated and no progress indicator is shown.
Note that document maps are not available when the report is generated synchronously. Inter-
active features always cause the hosting page to repost to the server.

In both modes, ReportViewer shows a progress indicator while the report is being gener-
ated. However, since processing always happens synchronously in local mode, the progress
indicator is only visible during the rendering portion of local mode, which tends to be much
faster than the data retrieval/processing time so the user may not notice the progress indicator
at all.

 How ReportViewer handles parameters
You may wonder how ReportViewer Web server handles report parameters and how it passes
them to the report server. The control doesn’t make any deliberate attempt to hide or obscure
parameters. However, the report parameters are not passed on each request to the server,
such as when the user pages through the report. That's because the report execution state, in-
cluding parameter values, is encapsulated in the execution session, whose identifier is sent to
the client. This was not the case in Reporting Services 2000, where parameters were sent on
each request.

REPORTING FOR .NET CLIENTS 535

 Customizing ReportViewer Web Server operations
ReportViewer supports a set of configuration settings to customize its operations. You can use
these settings to control how ReportViewer connects to the report server, where it will save its
temporary streams, and how its viewstate will be handled in a web farm environment.

ReportViewer uses ASP.NET sessions to store certain state between page reposts, including
the report server URL, timeout, user credentials, custom cookies, and custom headers. The
ASP.NET session state must be enabled for local report processing but it's optional for remote
report processing. If you turn ASP.NET sessions off, you must implement IReportServerCon-
nection or IReportServerConnection2 interfaces as described in the MSDN document
Web.config Settings for ReportViewer topic (see Resources).

ReportViewer holds temporary streams in memory when calling the RenderReport API,
such as when the user previews and exports reports. This could stress server memory if the
server is under heavy loads or servicing many users. However, you can configure ReportView-
er to save temporary streams to disk by implementing the ITemporaryStorage interface, as I'll
demonstrate in the next section.

By default, in remote processing mode, ReportViewer connects to the report server using
the credentials of the interactive user. This works best with intranet applications and Win-
dows integrated security. If Windows integrated security is not an option, you can implement
the IReportServerCredentials interface and set the ReportViewer.ServerReport.ReportServer-
Credentials property. Chapter 19 demonstrates how this can be done when the report server is
configured for custom security.

ASP.NET encrypts the page view state with a machine-specific encryption key. If your ap-
plication is running in a web farm environment, all servers must use an identical machine key
in the application web.config files to synchronize the ReportViewer view state across servers.
For more information, read the MSDN topic MachineKey Element (ASP.NET Settings Sche-
ma). Chapter 2 provides a link to a MachineKey Generator Tool that can help you generate the
machine key.

15.3.2 Embedding Reports in Web Applications
The WebReporter sample demonstrates how you can leverage the ReportViewer Web server
control to embed remote or local reports in ASP.NET applications. The source code can be
found in the WebReporter web application project in the book source code. For easier confi-
guration, the project uses the ASP.NET Development Server so you don't have to configure an
IIS application.

 Introducing the WebReporter sample
Figure 15.8 shows the WebReporter user interface (default.aspx page). As you've probably
guessed, WebReporter is an ASP.NET version of the WinReporter sample. When the page is
initially requested, it defaults to remote processing mode. This causes WebReporter to connect
to the report server and load a list of reports deployed to the specified folder.

NOTE The ReportViewer Web server doesn't encrypt the report parameters values in any way. It simply base64-
encodes their values and adds the parameters to the page viewstate so they get submitted when the page is reposted
via HTTP POST. This makes it more difficult, but not impossible, for a hacker to obtain the parameter values. As I dis-
cussed in chapter 3, you should never trust report parameters with sensitive reports. Instead, protect report data by
other means, such as row-level security.

CHAPTER 15 536

Figure 15.8 The WebRe-
porter sample demonstrates
embedding reports in custom
web applications by using
the ReportViewer in remote
and local processing modes.

When you select a report, WebReporter shows the report parameters in the Parameters grid.
You can click the Edit link to put the grid in edit mode if you want to change the report pa-
rameters. Once you enter the parameter values, you can click the Update link to post the new
parameter values to the server. You can click the Run Report button to view the report with
the new parameters.WebReporter lets you switch to local processing mode where it uses the
Customer Orders report I've already discussed. Irrespective of the chosen processing mode,
the ReportViewer Web server control renders the report on the server side of the application.

As its Windows Forms counterpart, the ReportViewer Web server control generates a
toolbar. Report printing uses an ActiveX control that is downloaded from the report server
and installed on the client the first time you click the Print toolbar button. In contrast with
previous releases, report printing is supported in both local and remote processing modes.

Since the ReportViewer Web Server control is very similar to its Windows Forms counter-
part, discussing the WebReporter implementation in detail will be redundant. Instead, I'll
highlight the most significant differences.

 Configuring the ReportViewer Web Server control
To add ReportViewer to a web form, complete the following steps:

1. Open a web form in design mode.
2. In the Visual Studio toolbar, expand the Reporting section and double-click the MicrosoftRe-

portViewer control to add it to the web form.

If the page uses XHTML format, which Visual Studio generates by default, and ReportViewer
is configured for asynchronous rendering (AsyncRendering property is True), the control will
not resize properly if it uses a relative height, such as 100%. To avoid this, set the control

REPORTING FOR .NET CLIENTS 537

Height property to a fixed value, such as 600px. Alternatively, use the cascading style sheet
(CSS) style to force the HTML elements to maximum height by following these steps:

3. Add the following style to the StyleSheet.css file or embed it inside the hosting page:
html, body, form
{
 height: 100%;
}

4. Set the ReportViewer Height property to a relative value, such as 100%.

Optionally, you can set additional properties to change the control’s appearance. For example,
you can change the toolbar appearance by setting the properties under the Appearance catego-
ry in the Visual Studio Properties window or apply an ASP.NET skin by setting the SkinID
property.

 Handling report parameters
The bulk of the changes required to implement WebReporter are not related to the control but
to porting the user interface to ASP.NET. For example, I had to replace the Windows Forms
DataGrid with the ASP.NET GridView control. This required programming the GridView con-
trol to support changing the parameter values.

GridView supports data updates best when it is bound to one of the ASP.NET data source
controls, such as SQLDataSource. However, in our case WebReporter binds the grid to an ap-
plication dataset. This involved handling a few GridView events and caching the parameter
dataset in the ASP.NET session so it's available between page reposts:
protected void grdParams_RowEditing(object sender, GridViewEditEventArgs e) {
 grdParams.EditIndex = e.NewEditIndex;
 BindData();
}
private void BindData() {
 grdParams.DataSource = Session[WebReporter.Util.SESSION_PARAMETERS];
 grdParams.DataBind();
}
protected void grdParams_RowUpdating(object sender, GridViewUpdateEventArgs e) {
 DataTable dt = (DataTable)Session[WebReporter.Util.SESSION_PARAMETERS];
 if (dt == null) return;
 GridViewRow row = grdParams.Rows[e.RowIndex];
 dt.Rows[grdParams.EditIndex]["Value"] = ((TextBox)(row.Cells[2].Controls[0])).Text;
 grdParams.EditIndex = -1;
 BindData();
 }
protected void grdParams_RowCancelingEdit(object sender, GridViewCancelEditEventArgs e) {
 grdParams.EditIndex = -1;
 BindData();
}

First, I had to enable the GridView AutoGenerateEditButton property to True so the grid
would display the Edit link. When you click the Edit link, GridView raises a RowEditing event
on the server and passes the row index of the selected row. This gives you the opportunity to
check whether the row should be updateable. In our case, the event confirms the operation by
setting the EditIndex property to the row index and rebinding the grid.

When you click the Update link to commit the changes, GridView raises a RowUpdating
event to let you validate the new values. WebReporter writes the changes to the cached para-
meter dataset. Next, WebReporter resets the grid index to -1 to clear the row selection and
then rebinds the grid. Finally, when you click the Cancel link to cancel the update operation,
GridView calls the RowCancellingEdit event. WebReporter resets the grid index and rebinds
the control.

CHAPTER 15 538

GridView supports different row styles. I changed the BackColor property of the Edi-
tRowStyle property to highlight the row being edited. To configure the grid columns, I used
the Edit Columns link in the GridView smart tags panel. I added two BoundField columns
(Name and Value) and bound them to the Name and Value data fields respectively. I also
made other formatting changes, such as setting the column HeaderStyle properties to resize
the columns, setting the column text alignment, and so on.

 Handling external images
Recall that the Customer Orders report uses an external image for the company logo. I had to
change the image Value property to reference the URL address of the external image instead of
its physical path, such as http://localhost:1966/Reports/AWC.jpg. This required a change to
the GetAppPath embedded function inside the Customer Orders report, as follows:
Public Function GetAppPath() As String
 return String.Format("http://{0}:{1}{2}",
 System.Web.HttpContext.Current.Request.ServerVariables("SERVER_NAME"),
 System.Web.HttpContext.Current.Request.ServerVariables("SERVER_PORT"),
 System.Web.HttpContext.Current.Request.ApplicationPath)
End Function

As a prerequisite, I had to reference the System.Web.dll in the Report Properties dialog box.
However, because ReportViewer will not run reports that reference external assemblies for
security reasons, you must explicitly configure it to trust these assemblies. This required add-
ing the following line to the WebReporter RunLocal method:
reportViewer.LocalReport.AddTrustedCodeModuleInCurrentAppDomain(
 "System.Web, Version=2.0.0.0, Culture=neutral,PublicKeyToken=b03f5f7f11d50a3a");

The AddTrustedCodeModuleInCurrentAppDomain method adds System.Web to the list of
assemblies that are trusted to execute in the current application domain.

 Exporting reports
By default, the ReportViewer Web server control will display the standard Internet Explorer
download dialog box when the user exports a report. If this is not desirable, you can configure
ReportViewer to bypass the confirmation dialog box and render the exported report inline. To
demonstrate this feature, I set the ReportViewer ExportContentDisposition property to Alway-
sInline.

As a result, when the report is exported, ReportViewer adds a content-disposition:inline
header to the response to instruct the browser to render the report inline. Other supported
ExportContentDisposition values include AlwaysAttachment, which indicates that content is
always presented as an attachment regardless of the export format, and OnlyHTMLInline,
which indicates that only HTML-formatted content is presented inline.

 Handling events
Suppose you want to handle the report drilldown event in order to evaluate some business
rules to determine whether the user can drill down to another report. Follow these steps to
create a new page that demonstrates how handling events affect page processing:

1. Add a new Web Form and drag the ReportViewer control to the form. Rename the control to
reportViewer.

2. Use the ReportViewer smart tags panel to bind it to the Drillthrough Action server report.
3. Put a breakpoint in the Page_Load event. In Solution Explorer, right-click the new Web Form

and click Set as Start Page. Press F5 to start the debugger.

REPORTING FOR .NET CLIENTS 539

4. In the Drillthrough Action report, expand the Bike Racks accessories on rows and year 2003
on columns.

5. Click the Internet Sales hyperlink under quarter 4 and year 2003 to initiate the drillthrough
action.

Notice that Page_Load event is not called because the page doesn't repost. Instead, the Re-
portViewer HTTP Handler receives and handles the drillthrough event. This is good because it
avoids refreshing the entire page with each postback.

NOTE You may have heard of a web development technology called AJAX (Asynchronous JavaScript and XML) for
creating interactive web applications. AJAX-enabled pages exchange data with the server behind the scenes so that
entire web pages do not have to be reloaded each time there is a need to fetch data from the server. As it stands, the
ReportViewer Web server control is not AJAX-capable. Consequently, interactive features and toolbar actions will result
in refreshing the entire ReportViewer area. While you might be able to get some simple reports to display in the Visual
Studio UpdatePanel AJAX control, most of the supporting javascript will not work. Consequently, most interactive fea-
tures and toolbar features are likely to be broken, and even the keep-alive pings from the client to keep the execution
session open will not execute.

In the steps that follow, let's reconfigure ReportViewer to register a drillthrough event.
6. Open the web form in design mode and click the ReportViewer control.
7. In the Visual Studio Properties Window, click the Events toolbar button.
8. Double-click the Drillthrough event to create an event handler.
9. Change the Drillthrough event handler as follows:

protected void reportViewer_Drillthrough(object sender, DrillthroughEventArgs e) {
 // Evaluate some business rules and cancel report drillhtrough
 e.Cancel = true;
}

10. Start the debugger and simulate the drillthrough action again.

Notice that this time the page posts to itself, which means that you can program the drill-
through event. Moreover, once you register a ReportViewer server-side event, the page will
continue to repost with each interactive action even if the initiated action doesn't have a regis-
tered event handler.

The ReportViewer Web Server control doesn't support a Hyperlink event. The assumption
is that most developers will want to navigate the user directly to the link target. For example,
if you want to redirect the user to a web page that displays the customer details, you would
directly specify the web page URL address in the navigation link. This necessitates a change to
the Jump to URL link of the Customer field in the Customer Orders report, as follows:
="http://localhost:1966/CustomerDetails.aspx?CustomerID=" & Fields!CustomerID.Value

Consequently, when the user clicks the customer identifier, the user is redirected to a Custo-
merDetails.aspx page (not implemented) for maintaining the customer details.

 Implementing temporary stream storage
In remote processing mode, ReportViewer uses URL access for report delivery to avoid hold-
ing the entire report in memory by streaming the report in chunks of 80KB. As the number of
concurrent report users increases, you may find that the memory required for holding the re-
port streams increases as well. You can minimize the memory utilization by streaming the re-
port streams to disk instead of memory when users export and preview reports:

CHAPTER 15 540

1. Create a class that implements the ITemporaryStorage interface, as the TemporaryStorage in
the WebReporter project demonstrates. This interface defines a single CreateTemporaryStream
method that must return a custom stream, such a stream to a disk file:
public class TemporaryStorage:ITemporaryStorage {

 public System.IO.Stream CreateTemporaryStream() {
 FileStream stream = null;
 try
 {
 string streamPath = String.Format(@"{0}\webreporter.tmp",
 System.Web.HttpContext.Current.Server.MapPath("."));
 stream = new FileStream(streamPath, FileMode.OpenOrCreate);
 }
 catch (System.Exception ex)
 {
 throw ex;
 }
 return stream;
 }

CreateTemporaryStream creates a webreporter.tmp file and returns the file stream.
2. Register the TemporaryStorage class in the web.config file, as follows:

<appSettings>
 <add key="ReportViewerTemporaryStorage" value="WebReporter.TemporaryStorage, WebReporter"/>
</appSettings>

The first argument of the value setting specifies the fully qualified class name that implements
the ITemporaryStorage interface, while the second specifies the assembly name. When the
web application starts, the ReportViewer Http Handler checks the ReportViewerTemporaryS-
torage element and discovers that ReportViewer is configured to use custom streams. Conse-
quently, streams required to support report export and preview will be saved in the
webreporter.tmp file.

3. Grant the ASP.NET process ACL rights to create files in the folder where the stream will be
located.

4. Use WebReporter to request a server report in remote processing mode.
5. Preview or export the report.
6. In Windows Explorer, navigate to the WebReporter folder.

If the size of the response from the server exceeds 80KB, ReportViewer should have created a
webreporter.tmp file. ReportViewer overwrites the temporary file with subsequent report re-
quests. It will increase the file size to accommodate more requests if needed. As you would
expect, saving report streams to disk will slow down report previewing and exporting, but it
will save memory and make the application more scalable when memory utilization is a re-
source constraint.

15.4 Reporting for Rich Internet Applications
If you've been following the evolution of the user experience (UX), you have undoubtedly
heard the latest buzzword – Rich Internet Applications. A Rich Internet Application (RIA) is a
hybrid between a traditional desktop application (rich client) and a web application. Similar to
a desktop application, a RIA provides a rich presentation layer and eliminates annoying page
refreshes. Not unlike traditional web applications, RIAs are easy to install and distribute.

REPORTING FOR .NET CLIENTS 541

The quest for rich Internet applications is not new. Wrestling its RIA beast for years, Mi-
crosoft has delivered a number of development technologies, including Visual Basis Docu-
ments, Remote Data Services, XML data islands with XSL Transformations, and remote
scripting, but they have failed to receive broad support. The silver lining is the latest .NET
based technology called Silverlight.

Since RIAs represent the next generation of web applications, I felt that a sneak preview
that demonstrates how you can integrate them with Reporting Services would be useful. In
this next section, I'll introduce you to the Silverlight technology and demonstrate a couple of
techniques for report-enabling Silverlight applications. The demo is based on Silverlight 2.0
Beta1, which is the most recent Silverlight version at the time of this writing.

15.4.1 Understanding Microsoft Silverlight
Microsoft Silverlight is a cross-browser, cross-platform client technology that lets you imple-
ment rich Internet applications. It is cross-browser because Silverlight is compatible with a
variety of browsers including Internet Explorer, Firefox, and Safari. It is also a cross-platform
technology because it can run on Windows, Macintosh, and Linux (through the Novell Moon-
light project).

Silverlight applications are web-based applications that are easy to install and configure.
They can provide a rich user experience that goes far beyond the traditional web applications
by including features such as animation, vector graphics, and audio-video playback. The best
way to appreciate the Silverlight presentation capabilities is to see them in action. Visit the
Silverlight official website (www.silverlight.net) to learn more about this technology through
videos and tutorials.

Although originally designed to enhance the user web experience, Silverlight can also
power your business applications. This approach lets you realize a browser-hosted, cross-
platform RIA. Moreover, you can leverage your existing .NET skills to code the presentation
layer without being stuck with the limitations of HTML.

 About the Silverlight history
As a newcomer, Silverlight has a short history. Microsoft unveiled Silverlight version 1.0 Beta
in April 2007 at the MIX07 conference, followed by the release version in September 2007.
Silverlight 1.0 consisted of four components, including a core presentation framework (UI
core), Input for handling input from devices, Media for playing back media files, and Extensi-
ble Application Markup Language (XAML, pronounced zammel) for describing the user inter-
faces. Besides Silverlight, XAML is also used in Windows Presentation Foundation (WPF) and
Windows Workflow Foundation (WF). Developers can programmatically manipulate the user
interface by interacting with the browser Document Object Model (DOM) using JavaScript.

Silverlight 2.0 Beta 1, which was previously referred to as version 1.1, was released in
March 2008 at the MIX08 conference. It includes two main components: a core presentation
framework and .NET Framework for Silverlight. The core presentation framework handles the
user interface and user interaction. It includes a set of lightweight controls for user input, digi-
tal rights management, data binding, and presentation features, such as vector graphics, text,
animation, and images. The .NET Framework for Silverlight is a subset of the .NET Frame-
work 3.0 and provides data integration, extensible Windows controls, networking, base class
libraries, and the common language runtime (CLR). What this means to you as a developer is

CHAPTER 15 542

that you can program the user interface using a .NET-compatible language like C# or Visual
Basic.NET.

Figure 15.9 A Silverlight application is downloaded and executed in the browser.

 Understanding Silverlight applications
Figure 15.9 shows a diagram of what a Silverlight business solution might look like. The Sil-
verlight application, consisting of the XAML markup and code, is compiled into .NET assem-
blies, which are then compressed into an .xap file. The application is hosted in a web server
that supports Silverlight. A hosting page, such as an ASP.NET or HTML page, references a Sil-
verlight browser plug-in. When the user requests the page, the plug-in downloads and de-
compresses the application .xap file on the client. Additional resources like video and
application binaries can be downloaded on demand outside the .xap file.

The presentation code is compiled and executed on the client. The presentation layer can
employ several techniques for managing state. Just like a traditional desktop application, the
client can maintain state in-memory during the application lifetime because there are no page
reposts. You can use the .NET Framework isolated storage to maintain durable state per appli-
cation and user (for example, storing the user preferences between application restarts). Final-
ly, the application can make service calls to save the data elsewhere to make it available to
other users.

Silverlight supports standard protocols to exchange data with Windows Communication
Foundation (WCF) services, Plain Old XML (POX) services, and Representational State Trans-
fer (REST) services. A Silverlight application can make secure cross-domain calls. All service
calls are asynchronous.

 Understanding developer tools
Microsoft has provided several developer tools to help you implement Silverlight solutions.
Visual Studio 2008 is the Microsoft premium environment for developing and debugging Sil-
verlight solutions. At the time of this writing, you need to install Microsoft Silverlight Tools
Beta 1 for Visual Studio 2008 (see Resources) to integrate Silverlight with Visual Studio 2008.
You can optionally use Microsoft Expression Blend to design the presentation layer. The ver-
sion I used is Expression Blend 2.5 March 2008 Preview (see Resources for a download link).
Designer-oriented tools include:

REPORTING FOR .NET CLIENTS 543

 Expression Designer for graphics
 Expression Blend for composition
 Expression Media for video
 Deep Zoom Composer for implementing image zooming that lets the user explore high

resolution images without waiting for huge file downloads.

Now that you have high-level understanding of Silverlight, let me walk you through the
process of creating and report-enabling a Silverlight application.

15.4.2 Implementing the User Interface
Implementing a Silverlight application is not much different than implementing a traditional
ASP.NET application. It involves creating a project, designing the user interface as a set of
pages, and writing code to implement the application presentation and business logic.

Figure 15.10 The Silver-
light Reporter sample de-
monstrates two approaches
for report-enabling Silver-
light applications.

Figure 15.10 shows my Silverlight Reporter sample whose implementation details are dis-
cussed in the remainder of this section. As you've probably guessed, it is a RIA version of the
WebReporter sample except that it doesn't support local report processing. The user can enter
the report server URL and the folder path. The application "remembers" these settings be-
tween restarts.

Upon startup, the application loads a list of server reports deployed to the specified folder.
When the user selects a report, Silverlight Reporter displays the report parameters in the grid
below the Reports list. The user can change the parameter values if needed and click the Run
Report button to view the report.

CHAPTER 15 544

As it stands, the ReportViewer controls are not Silverlight-aware so you must use other
techniques for integrating Reporting Services with Silverlight. Silverlight Reporter demon-
strates two approaches for embedding reports in a Silverlight application:
 HTML Fragment—If the user selects the HTML Fragment option, the report is rendered as

an HTML fragment to the right of the application
 IFrame—By contrast, the IFrame option displays the report in the HTML Viewer by re-

questing the report by URL.

 Creating a Silverlight project
Start by creating a Silverlight Application project in Visual Studio 2008. Visual Studio 2008
includes C# and Visual Basic project templates to create a solution with the basic settings and
code files for a Silverlight-based managed application.

1. In Visual Studio 2008, click File New Project.
2. In the New Project dialog box, expand the Visual C# folder (or Visual Basic) and select one of

the Silverlight project types.
3. In the Templates pane, select the Silverlight Application template.
4. Enter SilverlightReporter as a project name. Specify a project location and click OK.

You can host your Silverlight application in an ASP.NET page or in an HTML page.
5. In the Add Silverlight Application dialog box, accept the default settings and click OK.

Visual Studio generates a solution with two projects. The Silverlight application project con-
tains the configuration, assembly references, and code files that are required to build and run
a minimal Silverlight application. The Page page (Page.xaml) represents the user interface of
the Silverlight application. Use its code-behind class (Page.xaml.cs) to write code to manipu-
late the presentation layer. The App class defines the starting point of the application and in-
stantiates the Page class.

The SilverlightReporter_Web ASP.NET project is provided to host and test the Silverlight
application. It contains two test pages which are pre-wired to host the Silverlight application.
The SilverlightReporterTestPage.aspx file is configured as a startup web page. When the Sil-
verlight-based application project is built, the application package (.xap) is copied to the web
site in order for the test page to be able to download and run it.

The SilverlightReporterTestPage.html page includes an <OBJECT> tag to configure and in-
stantiate the Silverlight plug-in that downloads and runs the Silverlight-based application. The
.aspx file uses the Silverlight ASP.NET server control, which generates similar HTML when the
page is rendered.

 Designing the user interface
You can use Visual Studio to implement the user interface but I found the pre-release functio-
nality somewhat lacking. Instead, I used Expression Blend to design the user interface of the
Page class. Discussing Expression Blend in detail is beyond the scope of this book. I found the
samples and tutorials gallery on the Expression Blend team blog (see Resources) very useful
for getting started with this tool. Next, I will highlight some the implementation steps for au-
thoring the SilverlightReporter user interface.

Expression Blend and Visual Studio 2008 share the same project file format, so you can
use them interchangeably. For example, you can create a Silverlight project in Visual Studio
and open it in Expression Blend and vice versa.

REPORTING FOR .NET CLIENTS 545

1. Start Microsoft Expression Blend 2.5.
2. In the splash screen, select the Projects tab and click the Open Project link.
3. Navigate to the Visual Studio project (SilverlightReporter.csproj) that you created and click

Open to load the project in Expression Blend.

Expression Blend designer includes several panes. The right pane has Project, Properties, and
Resources tabs. Similar to the Visual Studio Solution Explorer, the Project tab shows the struc-
ture of your project. The Properties tab lets you configure the user controls. You can optional-
ly declare a style, such as a brush, as a resource so that it can be shared by multiple elements.
The Resources tab shows you all resources defined in the project. To apply a particular style to
a control, you can simply drag it from the Resources pane and drop it onto the control.

4. Click the Project tab and double-click the Page.xaml page.

Similar to Report Designer, Expression Blend includes a graphical What You See Is What You
Get (WYSIWYG) designer for laying out the user interface (see Figure 15.11). The rectangular
area in the middle pane is called an artboard. You can design the page presentation by adding
controls from the toolbox to the artboard.

Figure 15.11 Expression Blend supports a graphical WYSIWYG designer.

The Toolbox provides access to various elements which you can use to assemble the presenta-
tion layer. The layout panels are containers that control the layout and positioning of the ele-
ments they contain. The Grid layout panel is the most flexible layout container because it lets
you arrange elements in a freeform fashion. Just like desktop or web applications, Silverlight
supports a set of common controls, such as TextBox, Button, RadioButton, CheckBox, and so
on. The big difference is that these controls are rendered using vector graphics so you can
shape, position, style these controls any way you want. Third-party vendors can provide addi-
tional controls.

CHAPTER 15 546

5. Double-click the Grid layout panel to add it to the artboard.
6. Click the Split tab on the right of the artboard to see or edit the XAML definition that de-

scribes the page layout.
7. Click the Selection button in the toolbox and click the grid in the artboard to select the grid

element.
8. In the Properties tab, change the background brush to White. Next, lay out the user interface,

as shown in Figure 15.12.

Figure 15.12 The Silver
Reporter presentation layer
includes several controls.

9. To add a TextBox control for the Server URL field, double-click the TextBox control in the
toolbox.

10. To add a TextBlock control for implementing labels, click and hold the TextBox control in the
toolbox. In the menu selector that follows, select the TextBlock control and then double-click
the TextBlock control in the toolbox.

TIP To see all controls, click the double arrow (last button) in the toolbox. In the Asset library that follows, click a
control and drag it to the grid panel.

Since we need to display the report parameters when the user selects a report, we need to reg-
ister a ListBox SelectionChanged event.

11. Select the ListBox control and click the Properties pane.
12. Click the Events button next to the ListBox properties.
13. Enter lstReports_SelectionChanged in the SelectionChanged property and double-click on it to

create an empty event handler in the page code behind.
14. Repeat the last three steps to configure a click event for the button control.

You can let the DataGrid control auto-generate columns at run time when the application
binds it to data or you can explicitly specify the columns and bindings at design time. This is
not much different than configuring the Windows Forms DataGrid control that you may be
already familiar with. Use the Columns property in the Miscellaneous section to configure the
column properties. Alternatively, you can enter the required changes manually by changing
the DataGrid XAML definition:
<my:DataGrid Margin="20,213,0,0" x:Name="grdParams" AutoGenerateColumns="False"
 HorizontalAlignment="Left" VerticalAlignment="Top" RowHeight="20" Width="350" Height="70"
 d:LayoutOverrides="GridBox" RowBackground="Cornsilk" AlternatingRowBackground="LemonChiffon">
 <my:DataGrid.Columns>
 <my:DataGridTextBoxColumn Header="Name" Width="100" IsReadOnly="True"
 DisplayMemberBinding="{Binding Name}" FontSize="12" />

REPORTING FOR .NET CLIENTS 547

 <my:DataGridTextBoxColumn Header="Value" Width="200" FontSize="12"
 DisplayMemberBinding="{Binding Value}" />
 </my:DataGrid.Columns>
</my:DataGrid>

This definition defines two columns for the parameter Name and Value properties. I use the
DisplayMemberBinding property to define the column binding. For example, DisplayMem-
berBinding="{Binding Name}" binds the column to a Name field.

 Configuring the hosting page
As noted, you can host the Silverlight application in an ASP.NET page or an HTML page. The
ASP.NET page is more flexible because it can include ASP.NET controls and server-side code.
This is why I decided to host the Silverlight Reporter application in the SilverlightReporter-
TestPage.aspx. I had to add a couple of HTML elements to display the report content:

1. In Visual Studio, double-click the SilverlightReporterTestPage.aspx to open it in the designer.
2. Click the Source tab to view the page source:

<form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server"></asp:ScriptManager>
 <div style="height:350px">
 <asp:Silverlight ID="Xaml1" runat="server" Source="~/ClientBin/SilverlightReporter.xap"
 Version="2.0" Width="380" Height="350" />
 </div>
 <div style="position:relative;top:-426px;left:386px;z-index:20" id="reportPlaceholder"></div>
</form>
<iframe id="iReport" style="position:relative;top:-87px;left:23px;z-index:10;margin-bottom:4px;"
 height="100%" width="820px" frameborder="0" />

I added the reportPlaceholder DIV element to display the report as a HTML fragment. I also
added an IReport IFRAME element whose Src property I set programmatically to the report
URL. The Silverlight server control generates the browser plug-in at run time that downloads
the application package (SilverlightReporter.xap) and initializes the application. Visual Studio
adds also a ScriptManager control to the page. This control is needed for ASP.NET pages that
use Silverlight server control.

15.4.3 Report-enabling Silverlight Applications
Now that the user interface is defined, it's time to write some code that wires it up to your ap-
plication. Similar to ASP.NET applications, Silverlight lets you use managed code to control UI
elements. Unlike ASP.NET, the code is downloaded and executed on the client and not the
server. This is important because it eliminates page refreshes and lets the application maintain
state on the client.

 Invoking Web services
SilverReporter calls down to the ReportService2005 management endpoint to load the report
list and obtain the parameters of the selected report. This requires adding a service reference
to the ReportService2005 management endpoint:

1. In Solution Explorer, right-click the SilverlightReporter project node and click Add Service
Reference.

2. In the Add Service Reference dialog box, enter the address of the management endpoint. By
default, this is http://localhost/ReportServer/ReportService2005.asmx?wsdl. Click Go to re-
trieve the service contract definition.

CHAPTER 15 548

3. Enter ReportService as the service namespace and click OK.

Let's take a closer look at the code that loads the reports:
private void LoadReports() {
 Binding binding = new BasicHttpBinding();
 EndpointAddress address = new EndpointAddress(this.ReportServiceAddress);
 ReportingService2005SoapClient rs = new ReportingService2005SoapClient(binding, address);
 rs.ListChildrenCompleted += new
 EventHandler<ListChildrenCompletedEventArgs>(ListChildrenCompleted);
 rs.ListChildrenAsync(txtFolder.Text, false);
}
void ListChildrenCompleted(object sender, ListChildrenCompletedEventArgs e) {
 CatalogItem[] items = e.CatalogItems;
 foreach (CatalogItem item in items)
 {
 if (item.Type == ReportService.ItemTypeEnum.Report && item.Name.Contains("Chart"))
 lstReports.Items.Add(item.Name);
 }
 if (lstReports.Items.Count > 0)
 {
 lstReports.SelectedIndex = 0;
 btnRun.IsEnabled = true;
 }
}
private string ReportServiceAddress {
 get {return String.Format("{0}/ReportService2005.asmx", txtServerUrl.Text);}
}

As it stands, Silverlight supports only SOAP 1.1 and cannot use WS-* protocols, such as WS-
Addressing. These requirements are met by configuring the proxy to use BasicHttpBinding.
LoadReports configures the Web service proxy to use BasicHttpBinding and the user-specified
report server URL. Notice that I don't set the proxy's credentials to DefaultCredentials. In fact,
Silverlight doesn't let you overwrite the proxy's credentials. This is because the Silverlight
communication stack is built on top of the browser networking stack. Consequently, the
browser authenticates the user to the report server by using Windows integrated security.

As noted, Silverlight supports only asynchronous out-of-band service calls to prevent blocking
the user interface. This requires configuring a callback handler for each method invocation.
The callback handler for the ListChildren method call is ListChildrenCompleted. Once Loa-
dReports configures the callback handler, it calls ListChildrenAsync to invoke the method
asynchronously.

When the method calls complete, .NET calls the ListChildrenCompleted method. List-
ChildrenCompleted obtains the results (CatalogItems). Then, it loops through the catalog
items and adds the item to the lstReports ListBox control if the item is a report and its name
contains "Chart". The decision to add only chart reports to the list was a personal preference
to avoid wasting too much real estate with wider and taller reports. If the report list is not
empty, ListChildrenCompleted selects the first report.

 Handling report parameters
When the user selects a report, .NET triggers the lstReports_SelectionChanged event. This
event calls the LoadReportParameters helper method. ListReportParameters invokes the Re-

NOTE Because the SilverlightReporter project is configured to use the ASP.NET developer server, which listens on
a random port, Silverlight treats localhost (the Reporting Services host) and localhost:port (the host on which the
ASP.NET application runs) as two different domains. Because Silverlight doesn't allow cross-domain calls for security
reasons, the method call will fail. As a workaround, deploy the clientaccesspolicy.xml file found in the
ch15\SilverlightReporter folder in the book source code to your local IIS default folder (usually C:\inetpub\wwwroot). In
addition, configure the Default Web Site for Anonymous Access.

REPORTING FOR .NET CLIENTS 549

porting Services GetReportParameters API asynchronously as discussed before. When the me-
thod returns, .NET calls the GetReportParametersCompleted event handler:
private void GetReportParametersCompleted(object sender, GetReportParametersCompletedEventArgs e) {
 _userParameters= new List<EntityParameter>();
 foreach (ReportParameter p in e.Parameters)
 {
 _userParameters.Add(new EntityParameter(p.Name,
 p.DefaultValues==null?String.Empty: String.Join(",", p.DefaultValues)));
 }
 grdParams.ItemsSource = _userParameters;
 btnRun.IsEnabled = true;
}

GetReportParameters returns an array of ReportParameter objects that we need to display in
the Parameters grid. Although the SilverLight DataGrid control supports binding to a collec-
tion of objects, we cannot use it to populate the Parameters grid because the ReportParameter
DefaultValues property returns a string array, which we cannot bind directly to a DataGrid
column. We have at least two approaches to solve this predicament. We can implement a val-
ue converter to "flatten" the string and bind the converter to the Value column in the grid.
Scott Morrison demonstrates this approach in his Defining Columns for a Silverlight DataGrid
control (see Resources).

Another approach is to use an object that presents the report parameters in the desired
format. This is the approach I took in the WinReporter and WebReporter samples. However,
as it stands, Silverlight doesn’t support ADO.NET datasets so I had to create a simple EntityPa-
rameter class with Name and Value properties.

The DataGrid control is a very flexible control that supports data edits. In our case, I con-
figured the parameters grid to let the user change the Value column. For the sake of simplici-
ty, I didn't implement data validation that would ensure that the parameter value or format is
correct. Again, this is another example of a case where a data converter would be useful.

 Generating reports
When the user clicks the Run Report button, .NET fires a click event that SilverReporter han-
dles in the Button_Click event handler:
private void Button_Click(object sender, RoutedEventArgs e) {
 string url = this.ReportUrl;
 if (radHtmlFragment.IsChecked == true
 {
 WebRequest request = WebRequest.Create(new Uri(url));
 IAsyncResult arResp = request.BeginGetResponse(
 new AsyncCallback(this.ReportRenderResponseCompleted), new object[]
 { request, lstReports.SelectedItem.ToString()});
 }
 else _doc.GetElementById("iReport").SetProperty("src", this.ReportUrl);
 SaveUserSettings();
}
private void ReportRenderResponseCompleted(IAsyncResult ar) {
 string reportPayload = null;
 object[] State = (object[])ar.AsyncState;
 WebRequest webReq = (WebRequest)State[0];
 WebResponse response = webReq.EndGetResponse(ar);
 using (StreamReader reader = new StreamReader(response.GetResponseStream()))
 {
 reportPayload = reader.ReadToEnd();
 }
 _doc.GetElementById("reportPlaceholder").SetProperty("innerHTML", reportPayload);
}

CHAPTER 15 550

If the HTML Fragment radio button is checked, SilverReport generates the report by URL. To
do so, Silverlight Reporter calls the WebRequest.GetResponse method asynchronously. This
approach is similar to the URL Stream option which I demonstrated in the IntegrationOptions
sample back in chapter 14. The report URL request uses device information settings to remove
the toolbar (rc:Toolbar=False), export the report as an HTML fragment
(rc:HtmlFragment=True), and zoom the report to 75 percent (rc:Zoom=75) to fit the report in
the available space. Once the report stream is received, ReportRenderResponseCompleted
converts the report payload to a string.

Similar to ASP.NET, Silverlight lets you manipulate the browser DOM object programmat-
ically. To embed the report on the page, I call the DOM GetElementbyId method to get a ref-
erence to the reportPlaceholder DIV element and set its innerHTML property to the report
HTML fragment. If the IFRAME option is selected, the Button_Click obtains a reference to the
iReport IFRAME element and sets its SRC property to the report URL. This causes the
IFRAME to request the report by URL.

 Maintaining state
Maintaining user-specific state is an important requirement for most business applications. A
Silverlight application can maintain application and user-specific state in the .NET isolated
storage file system. In fact, a Silverlight application is sandboxed and cannot write only to its
isolated storage. Silverlight Reporter demonstrates this by saving the user preferences (report
server URL and folder path) so they are available between application restarts:
private void LoadUserSettings() {
 string data = null;
 IsolatedStorageFile iso = IsolatedStorageFile.GetUserStoreForApplication();
 using (IsolatedStorageFileStream isoStream = new IsolatedStorageFileStream("app.config", FileMode.Open, iso))
 {
 using (StreamReader reader = new StreamReader(isoStream))
 {
 data = reader.ReadToEnd();
 }
 }
 if (data != null)
 {
 string[] settings = data.Split(new char[] {'~'});
 txtServerUrl.Text = settings[0];
 txtFolder.Text = settings[1];
 }
}
private void SaveUserSettings() {
 string data = String.Format("{0}~{1}", txtServerUrl.Text, txtFolder.Text);
 IsolatedStorageFile iso = IsolatedStorageFile.GetUserStoreForApplication();
 using (IsolatedStorageFileStream isoStream = iso.CreateFile("app.config")) {
 using (StreamWriter writer = new StreamWriter(isoStream))
 {
 writer.Write(data);
 }
 }
}

Because a Silverlight page doesn't have an Unload event, Silverlight Reporter saves the user
preferences when the user clicks the Run Report button. SaveUserSettings calls IsolatedStora-
geFile.GetUserStoreForApplication to obtain user-scoped isolated storage corresponding for
the application and writes the report server URL and folder path to an app.config file. When
the application starts, the class constructor calls LoadUserSettings to retrieve the user prefe-
rences. LoadUserSettings reads the content of the app.config file and parses the report server
URL and folder path.

REPORTING FOR .NET CLIENTS 551

15.5 Summary
Report-enabling a custom application doesn’t have to be a tedious chore. If you are tasked to
report-enable a .NET desktop or web application, definitely consider the Visual Studio Re-
portViewer controls to save yourself a considerable integration effort. Configure ReportViewer
in remote processing mode when requesting server reports. Use local processing mode when
you need to distribute reports with your application or bind reports to application datasets or
business objects.

On the Web frontier, technology boundaries are blurring. Rich Internet applications are
emerging to bring together the best of traditional desktop and web applications. Currently, the
ReportViewer controls don't support natively RIA technologies like AJAX or Silverlight. How-
ever, thanks to the Reporting Services open architecture, you can report-enable RIAs by invok-
ing the Report Services APIs and requesting reports by URL.

15.6 Resources
Browser Support for ReportViewer Web Server Controls

(http://tinyurl.com/2rg55o)—Explains the browser support for ReportViewer.
Microsoft Report Viewer Redistributable 2008

(http://tinyurl.com/2yyz5k)— The ReportViewer redistributable package. For
ClickOnce deployment, use http://go.microsoft.com/fwlink/?LinkID=98185.

ReportViewer Controls Documentation
(http://tinyurl.com/ynvoam)—The ReportViewer documentation.

IReportViewerMessages Interfaces
(http://tinyurl.com/2v8vmy)—ReportViewer Windows Forms localization.
(http://tinyurl.com/3ap3bb)—ReportViewer Web server localization.

Web.config Settings for ReportViewer
(http://tinyurl.com/2k5uv7)—Explains how to customize ReportViewer operations.

machineKey Element (ASP.NET Settings Schema)
(http://tinyurl.com/3y762c)—Synchronize view state in a web farm environment.

ReportViewer Website
(http://www.gotreportviewer.com)—This ReportViewer website.

ReportViewer Discussion Forum
(http://tinyurl.com/2azpuq)—The ReportViewer discussion list.

Microsoft Silverlight Tools Beta 1 for Visual Studio 2008
(http://tinyurl.com/2spyr4)—A Visual Studio 2008 add-in for developing Silverlight
applications.

Microsoft Expression Blend 2.5 March 2008 Preview
(http://tinyurl.com/2k8la2)—You can use Microsoft Expression Blend 2.5 to author
the presentation layer of Silverlight applications.

Samples and Tutorials Gallery - Expression Blend
(http://tinyurl.com/35owal)—A set of resources for Expression Blend.

Defining Columns for a Silverlight DataGrid
(http://tinyurl.com/2sljeb)—Learn about the DataGrid control and Silverlight.

552

CChhaapptteerr 1166

Integrating with Analysis Services

16.1 Understanding Analysis Services 552
16.2 Authoring OLAP Reports 564
16.3 Extending Reports with End-User Features 586

16.4 Authoring Data Mining Reports 595
16.5 Summary 600
16.6 Resources 600

To be frank, an organization that only occasionally reviews its data through spreadsheets or
canned reports is probably missing the strategic value of its data. The data that you are already
collecting and storing might very well be holding important answers to the next business deci-
sion you need to make. Once you’ve successfully mastered the basics of reporting, you may
find that it is time to “graduate” to the next level—efficient, consistent, and rich data analytics.
This is where Analysis Services comes in. I believe that every small to medium-size organiza-
tion should tap into the power of Analysis Services to implement reporting solutions for his-
torical and trend reporting, as well as predictive analysis.

Because this book is about Reporting Services, this chapter gives you just enough back-
ground to understand and use Analysis Services to build synergetic reporting solutions. It
starts by introducing you to Analysis Services and laying out the fundamentals of this integra-
tion scenario. The bulk of this chapter covers building OLAP reports that draw data from
Analysis Services cubes. You'll learn how to implement reports that leverage Analysis Services
end-user features, including report actions and translations. I will also show you how to au-
thor data mining reports that display prediction results.

16.1 Understanding Analysis Services
As its name suggests, Microsoft SQL Server Analysis Services promotes better data analytics by
giving information workers powerful ways to analyze data. To be more specific, we can de-
scribe Analysis Services as a server-based platform that provides two core services—On-Line
Analytical Processing (OLAP) and Data Mining. Let’s cover these two terms in more detail.

16.1.1 Understanding OLAP
There are two types of database-driven systems that serve very different requirements: On-
Line Transactional Processing (OLTP) systems and OLAP systems. To understand Analysis
Services, it is important to learn how these two system types compare.

 About OLTP systems
OLTP systems are designed for fast transactional input to support transaction-oriented appli-
cations such as data entry applications. Typically, the schema of a database that stores OLTP
data is highly normalized, which means that it both minimizes duplication of information and

INTEGRATING WITH ANALYSIS SERVICES 553

safeguards the database against certain types of logical or structural problems that can com-
promise data integrity.

The AdventureWorks2008 sample database demonstrates a realistic OLTP schema. As it
stands, its database schema contains more than 70 tables. Figure 16.1 contains a portion of
the AdventureWorks2008 database schema that shows some of the tables that capture sales
order data. Notice that the schema is highly normalized. For example, the order header infor-
mation is captured in the SalesOrderHeader table while the order detail information is stored
separately in the SalesOrderDetail table. Similarly, the Customer table stores customer identity
information, while the customer address details are kept in a separate Address (Person) table.

OLTP systems have three key benefits:
 Efficient storage—Since the schema is normalized, there is no duplication of data.
 Fast data entry—Relational databases (RDBMS) are optimized to process data changes

quickly (by that, I mean insert, delete, and update operations).
 Fast retrieval by primary keys or indexes—Relational databases can retrieve indexed

records extremely fast. For example, assuming that the sales order number column is in-
dexed, retrieving the details of a single order can appear to be instantaneous.

At the same time, OLTP databases have well-known disadvantages:
 Inefficient report processes—In general, the more data the report aggregates, the slower

the query response time will be if the report gets its source data from an OLTP database.
To make things worse, SELECT statements may lock the underlying data while the report
is processing, which can negatively impact the performance of the OLTP applications that
use the database.

 Not intuitive to end users—OLTP systems are designed with the system and not the user
in mind. Consequently, business users may find it difficult to navigate the database sche-
ma and understand which tables need to be joined to author ad-hoc reports.

 About OLAP systems
By contrast, OLAP systems are designed to support data analytics and reporting needs. This is
achieved by reducing the number of tables available for reporting, de-normalizing data, and
simplifying the database schema. OLAP is geared toward having the user online with the data,
slicing and dicing the data to view it in different ways, drilling down into the data to see more
detail.

Figure 16.1 OLTP database
schemas are highly normalized
and optimized for data storage.

CHAPTER 16 554

The AdventureWorksDW2008 sample database demonstrates an OLAP database that has
been designed in accordance with dimensional modeling methodology. This OLAP database
runs in the SQL Server Database Engine alongside its OLTP counterpart. In comparison with
its OLTP counterpart, the AdventureWorksDW2008 sample database contains less than 30
tables. Figure 16.2 shows just the tables that contain data about individual sales. The FactIn-
ternetSales table stores the numeric facts used to measure sales to consumers. Dimension
tables, such as DimDate, DimCustomer, and so on, let the user slice the consumer sales data
in the fact table by subject areas.

As you might have immediately noticed, the fact table (FactInternetSales) and its related di-
mension tables form the star pattern that is typical of OLAP. With a star schema, the dimen-
sion data is contained within a single table. This requires denormalizing the dimension data,
which is another common OLAP data modeling technique. For example, a Product dimension
able may contain all product-related data, such as products, product category, model, color,
and so on.

Figure 16.3 A typical
OLAP reporting solution
includes data sources,
OLAP database, model,
and presentation layers.

If the dimension hierarchy is left normalized, then the schema is of a snowflake type. For ex-
ample, if for some reason product category data is located in a separate dimension table, the
product dimension table would reference the product category dimension table. Analysis Ser-
vices supports both star and snowflake schemas. However, star schemas usually work best

Figure 16.2 OLAP database
schemas are optimized for data
analytics and reporting.

INTEGRATING WITH ANALYSIS SERVICES 555

with OLAP and you should gravitate toward them whenever possible. Ad-hoc reporting
processes can also benefit from a star schema because it minimizes the number of tables that
you work with.

On the downside, as you've probably guessed, OLAP requires more effort for designing
the dimensional schema and implementing the data logistics processes that load the OLAP
database. Figure 16.3 shows these processes in the context of a typical OLAP reporting solu-
tion. ETL (Extract, Transform, and Load) packages implemented as Microsoft SQL Server In-
tegration Services packages periodically extract data from the operational data sources, such as
OLTP databases or flat files. The data is scrubbed and loaded into a multidimensional OLAP
database, such as a data mart or a data warehouse database.

 Why use Analysis Services?
If we can design and use an OLAP database that is already optimized for reporting through the
SQL Server Database Engine, why do we need Analysis Services? The answer to that question
can be found in the rich metadata layer that Analysis Services provides. Analysis Services
builds on an OLAP database by adding the Unified Dimensional Model (UDM), also known as
an Analysis Services cube, between the database and presentation layer. UDM brings substan-
tial benefits besides just slicing and dicing data.

Let's enumerate some of the most important Analysis Services benefits.
1. Performance—To start with, Analysis Services is designed to deliver exceptional performance

with large data volumes. According to Microsoft, data can be expected to grow at the rate of
35% each year on average. Nowadays, it is not uncommon for organizations to accumulate
hundreds of gigabytes, if not terabytes, of data. Historical and trend reports that directly query
a relational data source and aggregate huge data loads are likely to present performance chal-
lenges. Moreover, ad-hoc reports aggravate this situation even further because the auto-
generated queries they create are so variable that they can’t use the database optimization
techniques (such as indexing) that you provide.

2. Business calculations—Relational databases are not suitable for defining business calculations,
such as year-to-date, percent of total, moving averages, year-to-year growth, and so on. This is
because relational databases have no notion of the hierarchical relationships in data—for ex-
ample, years that break down into semesters, which break down into quarters, and so on. By
contrast, Analysis Services understands the semantics of data and lets you extend your cubes
with business calculations in the form of (Multi-Dimensional EXpressions) MDX expressions.

3. Security—How do you secure your report data? If your current data security solution is either
non-existent or hopelessly complex, you can benefit from the flexible role-based security
model provided by Analysis Services. This security model is enforced when the user connects
to the cube. If you want to learn more about Analysis Services security, you may find my Pro-
tect UDM with Dimension Data Security article (see Resources) helpful.

4. End-user features—Analysis Services supports additional features that provide an intuitive
end-user experience. Actions can extend your cubes in versatile ways. For example, suppose
that the user has drilled down to the lowest level of the Product dimension and wants to see

DEFINITION The cube is a logical storage object that combines dimensions and measures to provide a multidimen-
sional view of data. The term Unified Dimensional Model (UDM) promotes the idea that an Analysis Services cube is
more than a traditional OLAP cube because it combines characteristics of relational (attributes, flexible relationships)
and dimensional models (dimensions, measures, hierarchies). I will use the terms "UDM" and "cube" interchangeably.

CHAPTER 16 556

the individual sales orders that have been placed for that product. If the order information is
not stored in the cube, you can implement a reporting action that lets the user request a report
that displays the order data from another system. Key performance indicators (KPIs) measure
the company's performance and can be displayed on the report. Translations let you localize
the cube data and metadata for international users.

5. Good client support—There are many Microsoft-provided and third-party tools that support
Analysis Services and its MDX query language. For example, executive managers can use Mi-
crosoft Excel for interactive historical and trend reporting and Reporting Services for standard
and ad-hoc reporting.

6. Data mining—Data mining is one of my favorite Analysis Services features. It also happens to
be one of the least understood features, so let's discuss it next in more detail.

16.1.2 Understanding Data Mining
The second main service that Analysis Services provides is data mining. Data mining is a
science in itself. Generally speaking, data mining is concerned with the process used to predict
the unknown based on known statistical facts. However, instead of asking us to look into a
crystal ball, Analysis Services employs sophisticated mathematical models that can analyze
large volumes of data, discover patterns and trends, and produce prediction results.

NOTE OLAP and data mining are two different technologies and shouldn't be used interchangeably. OLAP gives you
slicing and dicing data with a click of a mouse. However, you can click all day long and still not be able to discern hid-
den data patterns, such as understanding your customer profiles or the factors that influence a customer’s decision to
purchase a given product. This is where data mining can help.

 Why use data mining?
Typical examples of how data mining can help include forecasting, customer profiling, and
basket analysis. For instance, by examining historical sales data, data mining can answer the
following questions:
 What are the forecasted sales numbers for the next few months?
 What additional products is a customer likely to buy along with the product he or she

already chose?
 What type of customer (described in terms of gender, age group, income, and so on) is

likely to buy a given product?

Let’s take a closer look at how data mining can help you with sales forecasting. Suppose that
the Adventure Works management has asked you to forecast sales by territory for the next five
months. Instead of dusting off your college math book, you prudently decide to use Analysis
Services. Once you build the data mining model, you can produce a report similar to the one
shown in Figure 16.4 with a few mouse clicks.

 Using data mining for sales forecasting
This report uses the Adventure Works Forecasting data mining model, which is one of the
sample mining models included in the Adventure Works Analysis Services project. It shows
the Adventure Works historical sales on the left side of the vertical line. The dotted line
represents the forecasted sales. You can change the Prediction Steps up-down field to tell the
model how many periods of forecasted data you want to see. In this case, the report shows

INTEGRATING WITH ANALYSIS SERVICES 557

only European sales. Behind the scenes, the model uses the Microsoft Time Series algorithm to
predict expected sales.

Figure 16.4 Use data
mining to discover trends in
data, such as forecasting
future sales.

16.1.3 Historical and Trend Reporting
Analysis Services can be best understood when seen in action. Assuming that you have dep-
loyed the Adventure Works cube and have Microsoft Excel 2007, let's take a look at how a
business user might leverage the OLAP capabilities of Analysis Services for historical and trend
reporting. This demo will also help us clarify some Analysis Services terms. You can find the
finished report (Reseller Sales.xlsx) in the Excel folder of the book source code.

 Connecting to the cube
Start by setting up a connection to the Adventure Works cube.

1. Open Microsoft Excel 2007. Click the Data main menu.
2. Expand the From Other Source drop-down menu located in the Get External Data ribbon

group and click From Analysis Services to start the Data Connection Wizard.
3. In the Connect to Database Server step, enter the server name that hosts the Adventure Works

cube, such as (local) if the cube is deployed locally.
4. In the Select Database and Table step, shown in Figure 16.5, expand the drop-down and se-

lect Adventure Works DW 2008, which is an Analysis Services database that hosts the Adven-
ture Works cube.

NOTE Don't confuse the Adventure Works DW 2008 OLAP database with the AdventureWorksDW2008 RDBMS
database. The Adventure Works DW OLAP database runs under Analysis Services. The latter runs under SQL Server.

Observe that the Adventure Works DW 2008 Analysis Services database contains cubes and
perspectives. An Analysis Services perspective is a logical subset of the cube. Its main purpose
is to reduce the perceived complexity of a large cube by exposing only a subset of the cube
objects. For example, the Channel Sales perspective includes only reseller-related objects.

5. Assuming that you are interested in analyzing reseller sales only, select the Channel Sales
perspective and click Next.

6. Accept the defaults in the Save Data Connection and Finish step and click Finish.

CHAPTER 16 558

Figure 16.5 An Analysis Ser-
vices database contains cubes
and perspectives.

7. In the Import Data dialog box that follows, accept the default settings and click OK.

Excel generates an empty PivotTable report and displays the cube metadata in the PivotTable
Field List pane, as shown in Figure 16.6.

Figure 16.6 You can au-
thor an Excel PivotTable
report by selecting dimen-
sions and measures.

Understanding Analysis Services metadata
You can easily tell OLAP objects apart by glancing at the PivotTable Field List. Measure
groups, which usually correspond to fact tables in the database, are prefixed with a special
sum ∑ symbol. The Channel Sales perspective includes measure groups for Exchange Rates,
Reseller Orders, and Resellers Sales. A measure group is a container of measures. For example,
the Exchange Rates measure group contains Average Rate and End of Day Rate measures.

INTEGRATING WITH ANALYSIS SERVICES 559

The main goal of Analysis Services and dimensional models is to let users slice and dice
data along dimensions, such as time, geography, and product, so that you can isolate and view
the factors that contribute to or detract from the value of a measure. Dimensions are contain-
ers of attributes (not shown in the screenshot) that map to columns in the underlying dimen-
sion table. For example, the Calendar Year attribute in the Date dimension may map to a
CalendarYear column in a table in the data source.

Each dimension attribute can form its own hierarchy. This brings tremendous flexibility
for analyzing data. For example, most attribute hierarchies include a special All member that
returns an aggregated grand total value for a measure used on the report. Given an attribute
hierarchy of Calendar year and a Reseller Sales Amount measure, the All member of Calendar
year will show total reseller sales across all years.

Besides attribute hierarchies, the modeler may have defined useful navigational paths in
UDM by combining attributes in user-defined hierarchies. For example, it is likely that a user
might prefer to slice data by the date natural hierarchy, such as Year Semester Quarter
Month Date. Consequently, you can set up a Calendar hierarchy consisting of these levels,
which are formed by the corresponding attributes.

Figure 16.7 This report shows the top 20 resellers.

 Authoring a report
Once a user becomes familiar with the cube metadata, authoring a trend report is a matter of
selecting the desired measures and attributes. Let's author the report shown in Figure 16.7.
This report shows the top 20 Adventure Works resellers sorted by their overall sales.

1. Expand the Reseller Sales measure group and select the Reseller Sales Amount measure.

As soon as you select the measure, Excel auto-generates an MDX query, sends it to the server,
and displays the results in single cell. The result represents the grand total reseller sales
amount across all dimensions.

TIP Excel doesn't let you view the auto-generated MDX query. You can use the SQL Server Profiler (in the Microsoft
SQL Server 2008 Performance Tools program group) to connect to the server and trace the calls to it.

CHAPTER 16 560

2. To slice the Reseller Sales Amount measure by time, in the PivotTable Field List, expand the
Date dimension and the Calendar display folder, and select the Date.Calendar user-defined
hierarchy. It consists of Calendar Year, Calendar Semester, Calendar Quarter, Month, and
Date levels.

Excel updates the report to show reseller sales broken out by time. Because the Calendar.Year
has multiple levels, you can drill down to the next level. For example, to drill down to the
semester level of calendar year 2001, expand the plus sign of the CY 2001 member.

3. In the PivotTable Field List, scroll down to the Reseller dimension. Expand the More Fields
folder which groups the attributes of the Reseller dimension. Select the Reseller attribute.

The report now shows reseller sales data broken down by resellers on rows and time on col-
umns. The lower area of the PivotTable Field List shows the objects used on the report. You
can move the objects around to change the report layout. For example, if you want to see the
report broken down by time and resellers on rows, drag the Date.Calendar field from the Col-
umn Labels list and drop it before the Reseller field in the Row Labels list. The Excel Undo
(Ctrl-Z) command is your best friend if you need to cancel unwanted changes.

4. To define a top 20 filter, right-click any reseller on the report, and click Filter Top 10.
5. In the Top 10 filter dialog box that follows, change the filter to top 20 and click OK. Excel

updates the report to show the top 20 resellers by their grand total sales.
6. To sort the report by grand total in descending order (top-selling resellers on top), right-click

any cell in the Grand Total column and choose Sort Sort Largest to Smallest.

As you can imagine, although we've only scratched the tip of the iceberg, this type of interac-
tive reporting is a dream come true for data analysts and executive managers. With a click of
the mouse, you can slice and dice data efficiently to analyze the company performance from
different angles.

16.1.4 Introducing Analysis Services and Reporting Services Integration
While Excel is a great tool for interactive historical and trend analysis, its PivotTable compo-
nent has a fairly rigid layout that does not lend itself to authoring standard reports. For exam-
ple, Excel doesn't let you define report groups. In addition, Excel alone doesn't support
enterprise reporting features, such as report catalog, subscriptions, security, and so on. This is
where Reporting Services comes in.

 Understanding integration options
You can integrate Reporting Services and Analysis Services to distribute and visualize cube
data in new and interesting ways. As Figure 16.8 demonstrates, reports that you build in Re-
porting Services can draw data from an Analysis Services cube. When using a cube as a data
source, Reporting Services can benefit from the Analysis Services breadth of features, which I
discussed before.

At the same time, Reporting Services complements Analysis Services by providing a pres-
entation layer for delivering reports. Developers and power users can use the graphical MDX
Query Designer included in the BIDS Report Designer and Report Builder 2.0 to author full-
featured standard and ad hoc reports. Non-technical users can consider using Report Builder
1.0 to author simple reports, as I demonstrated in chapter 9. In addition, you can author and

INTEGRATING WITH ANALYSIS SERVICES 561

deploy strategic reports, such as performance reports with KPIs, to SharePoint-based executive
dashboards.

From a Reporting Services standpoint, an OLAP or data-mining report is no different than any
other report. This means that you can use Reporting Services’ flexible delivery options to dis-
tribute reports on demand or via subscriptions.

Glancing back at the solution depicted in Figure 16.7, UDM is a focal point for data analy-
sis and serves most of the reporting needs. But what if you want to extend UDM with reports
that show data that is not stored in the cube? Fortunately, the integration between Analysis
Services and Reporting Services is bi-directional. Not only can UDM be used as a report data
source but also it can request reports. UDM reporting actions let you display Reporting Servic-
es detailed reports by querying directly the OLAP database or the operational data source. I
will demonstrate this scenario in section 16.3.2.

 Understanding the Analysis Services data provider
To facilitate integration with Analysis Services, Reporting Services installs an Analysis Services
data provider which I will also refer to as the built-in Analysis Services data provider. This data
provider remains unchanged from the previous release. It is implemented as a Microsoft .NET
data processing extension that uses the ADOMD.NET programming library to communicate
with Analysis Services. The Analysis Services data provider supports several features that
would otherwise require significant development effort on your part, such as parameterized
queries, server aggregates, and extended properties.

Analysis Services can return query results in two formats: cellset and rowset. The cellset
format preserves the hierarchical nature of the multi-dimensional data, including row axes,
column axes, and server (All member) aggregates. Most OLAP browsers, Microsoft Excel in-
cluded, prefer the cellset format. By contrast, the rowset format "flattens" the results into a
tabular dataset. The Analysis Services data provider uses the rowset format. As a result, the All
member totals are excluded by default from the query results.

Another unfortunate limitation of the Analysis Services data provider is that it supports
only static query schemas with fixed columns. Figure 16.9 shows how dynamic (left diagram)
and static schemas (right diagram) differ. Most OLAP browsers have no restrictions on the
MDX query schema. For example, the Excel PivotTable report I demonstrated earlier requests
the Date dimension on columns and Reseller dimension on rows. If a new year is added to the

Figure 16.8 You can integrate Re-
porting Services and Analysis Services
to get the best of both worlds.

CHAPTER 16 562

Date dimension, the report will pick it up and add a new column the next time you refresh
the report data.

Category 2002 2003 2004

Bikes 200 300 400

Clothing 200 300 400

Components 200 300 400

SELECT [Date].[Calendar Year].ALLMEMBERS ON COLUMNS,
[Product].[Category].Members ON ROWS
FROM [Adventure Works]
WHERE [Measures].[Reseller Sales Amount]

Category Year Amount

Bikes 2002 200

Bikes 2003 300

Bikes 2004 400

Clothing 2002 200

SELECT [Measures].[Reseller Sales Amount] ON COLUMNS,
[Product].[Category].[Category] *
[Date].[Calendar Year].[Calendar Year] ON ROWS
FROM [Adventure Works]

Figure 16.9 Reporting Services supports static columns only, as the example on the right shows.
By contrast, unless you have a matrix report, the layout of a Reporting Services report is fixed
at design time and cannot "expand" to accommodate new columns. What will happen the
next time you request the report if the dimension has new members that are not included in
the report layout? The new members simply won't show up, while deleted members will result
in empty columns. This is why the built-in Analysis Services data provider doesn't let you
place dimensions on columns.

To help you avoid a broken report layout at run time, Reporting Services requires that you
place dimensions on rows and measures on columns, as demonstrated in the right diagram.
In case you are curious, the asterisk (*) operator in the second query is used to cross-join the
Category attribute hierarchy of the Product dimension with the Calendar Year attribute hie-
rarchy of the Date dimension. You can use the SQL Server Management Studio to test the
MDX query. To do so, connect to Analysis Services, click the Analysis Services MDX Query
toolbar button, enter the query text, and click the exclamation button.

I personally think that this limitation is overly restrictive. A better approach could have
been to support dynamic query schemas anyway, allowing the report author to assume the
risk to report layout and then mitigate that risk using code or advanced features. In section
16.2.6, I will demonstrate two options for getting around the static schema limitation.

NOTE Does the static query schema get in the way? Chris Webb (SQL Server MVP) and Andrew Wiles have imple-
mented a commercial Intelligencia Query product (see Resources) that supports arbitrary MDX queries. Behind the
scenes, Intelligencia Query rewrites the query results by transforming columns to rows. This lets you use the Reporting
Services matrix region to pivot the results back and recreate the original structure of the query.

 Understanding the MDX Query Designer
The Report Designer includes a handy graphical MDX Query Designer, which you were intro-
duced to briefly during the hands-on lab in chapter 1. Figure 16.10 shows the components of
the MDX Query Designer.

The Cube Selection control lets you select a cube or perspective in the connected data-
base. The Metadata pane displays the cube metadata. The MDX Query supports two modes
that you can toggle by clicking the Design Mode toolbar button. In design mode, the MDX
Query Designer auto-generates the MDX query as a result of dragging and dropping objects
from the Metadata pane to the Data pane. This facilitates ad-hoc reporting since the user
doesn't have to know MDX to prepare the report query. You can drag attribute and user-

INTEGRATING WITH ANALYSIS SERVICES 563

defined hierarchies, hierarchy levels, measures, calculated members, and KPI constituents
(Value, Goal, Target, and Status).

Figure 16.10 The MDX
Query Designer auto-
generates the MDX query
as you drag and drop
objects from the Metadata
pane to the Data pane.

In some cases, you will need to change the MDX query to support more advanced scenarios,
such as when you need more control over query parameters. The query mode lets you view
the raw MDX query and make changes to it. However, be aware that your changes will be lost
if you switch back to design mode. In other words, the MDX Query Designer cannot reverse-
engineer changes made in the Query mode. Once you choose query mode and edit the query
directly, you need to stay in that mode. Saving and reopening the query restores the ability to
work in design mode.

You can filter the query results by dragging objects from the Metadata pane to the Filter
pane. You can drag attribute and user-defined hierarchies, individual members, hierarchy le-
vels, and named sets.

DEFINITION A named set is a pre-defined set of dimension members that is assigned an alias. For example, the
Reseller dimension in the Adventure Works cube includes a Large Reseller set that selects that returns resellers with
a number of employees between 81 and 100.

Finally, the Calculated Members pane lets you define expression-based members that can be
used on the report. For example, you can define a Profit calculated member that uses the fol-
lowing MDX expression:
[Measures].[Sales Amount] - [Measures].[Total Product Cost]

 Understanding security
Bear in mind that Analysis Services supports Windows authentication only. This means you
need to be aware of the "double hop" issue with NTLM when Reporting Services and Analysis
Services are installed on different machines (this issue was discussed in chapter 2). The best
way to avoid double-hop connection errors is to configure Kerberos so Reporting Services can
delegate the user identity to Analysis Services.

CHAPTER 16 564

If configuring Kerberos is not possible, you have two options: use a single set of stored
credentials that retrieves data for all users, or prompt the user for credentials. First, consider
the trusted account approach that sends all report queries to Analysis Services under the same
Windows account, as follows:

1. Open the data source properties page in Report Manager.
2. Select the Credentials Stored Securely in the Report Server option.
3. Enter the credentials of a Windows account that has minimum permissions to retrieve data

from the cube.
4. Check the Use as Windows Credentials When Connecting to the Data Source option. Click

Apply.

The trusted account approach is easy to set up. However, Analysis Services won't be able to
differentiate users.

TIP Analysis Services supports an EffectiveUserName connection string setting that lets you override the connec-
tion identity and differentiate users with the trusted account approach. This setting requires the trusted account to
have administrator rights to Analysis Services (or membership in the server role). For example, the report can use
custom code to integrate with a security service and obtain the user login. Then, you can set up a private expression-
based data source for the report that passes the user name to Analysis Services on connect, such as "Data
Source=(local);initial catalog="Adventure Works DW 2008"; EffectiveUserName=Bob;" . Because EffectiveUserName
requires elevated privileges, using it may introduce a security risk and therefore should be used with caution.

The second option is to prompt users for credentials, as follows:
5. In Report Manager, select the Credentials Supplied by the User Running the Report option on

the data source properties page.
6. Check the Use as Windows Credentials Option When Connecting to the Data Source option.

In this case, the user must enter a user name and password each time he or she views the re-
port. Because credentials are passed on the wire from the client to the server, you should only
use prompted credentials if the connection is encrypted.

If direct access to Analysis Services is not an option, such as when you need to connect
Report Designer to a cube located on a web server, you can configure Analysis Services for
HTTP connectivity and use a HTTP-based connection string in the report data source. For
more information about this deployment scenario, read the Configuring HTTP Access to SQL
Server 2005 Analysis Services on Microsoft Windows Server 2003 paper (see Resources).

16.2 Authoring OLAP Reports
Now that you have a good grasp of Analysis Services and how it can integrate with Reporting
Services, let’s start by authoring a basic report that retrieves source data from the Adventure
Works cube. We will extend this report later on to demonstrate more advanced features.

16.2.1 Authoring a Basic Report
Figure 16.11 shows the Product Sales Basic report, which uses the Adventure Works cube as a
data source. The report shows Internet sales and resellers sales grouped by product category,
subcategory, and product. The report demonstrates the following main features:

INTEGRATING WITH ANALYSIS SERVICES 565

 Connecting to Analysis Services using the Analysis Services data provider
 The MDX Query Designer drag-and-drop support

 Setting up a data source
Begin authoring the report by setting up a data source for connecting to the Adventure Works
cube.

1. In BIDS, create a new Report Server project.
2. In the Solution Explorer, right-click the Shared Data Sources folder and click Add New Data

Source.
3. In the Shared Data Source Properties dialog, enter AdventureWorksAS2008 in the Name field.
4. Expand the Type drop-down list and select the Microsoft SQL Server Analysis Services data

provider, as shown in Figure 16.12.

5. Click the Edit button to open the Connection Properties dialog box.

Figure 16.11 The Product
Sales Basic report sources data
from the Adventure Works cube.

Figure 16.12 Choose the Microsoft SQL Server Analysis Services data provider.

CHAPTER 16 566

6. In the Connection Properties dialog box, enter the name of the Analysis Services server, such
as (local).

7. Expand the Database Name drop-down list and select Adventure Works DW 2008.
8. Click Test Connection to test connectivity and click OK to return to the Shared Data Source

Properties dialog box. BIDS generates the following connection string:
Data Source=(local);Initial Catalog="Adventure Works DW 2008"

9. Select the Credentials page and verify that the Use Windows Credentials option is selected.
Click OK to create the AdventureWorksAS2008 data source.

 Setting up the report dataset
Once the data source is in place, we are ready to create the report and define a dataset.

1. In the Solution Explorer, right-click the Reports folder and select Add New Item.
2. In the Add New Item dialog box, select the Report template and name the new report Product

Sales Basic.rdl. Click Add to create the report definition and open it in the Report Designer.
3. Next, you need to associate the report with the AdventureWorksAS2008 data source. In the

Report Data window (press Ctrl-Alt-D if not shown), expand the New drop-down menu and
click Data Source.

4. In the Data Source Properties dialog box that follows, name the data source Adventure-
WorksAS2008. Select the Use Shared Data Source Reference option and in the drop-down list
and choose the AdventureWorksAS2008 data source that you've created. Click OK to set up
the data source reference.

5. In the Report Data window, right-click the AdventureWorksAS2008 data source and click
Add Dataset. This associates the new dataset with the AdventureWorksAS2008 data source.

6. In the Dataset Properties dialog box that follows, enter Main as a dataset name and click the
Query Designer button.

The Report Designer opens the MDX Query Designer in design mode. The Cube Selector con-
trol should show the Adventure Works cube.

7. Click the Cube Selector control and note that you can select a perspective if you prefer to
work with a subset of the cube metadata. For example, you can select the Channel Sales pers-
pective to see only the reseller-related metadata objects.

The report dataset requires the Internet Sales Amount measure, Reseller Sales Amount meas-
ure, Category, Subcategory, and Product attributes from the Product dimension. You can add
these objects to the Data pane in any order but you will see query results only after you add a
measure to the Data pane.

8. In the Metadata pane, expand the Measures folder. The folders below the Measures node are
the measure groups defined in the cube.

9. Expand the Internet Sales measure group, as shown in Figure 16.13.

The Internet Sales measure group contains regular measures that map directly to fact columns
in the fact table, such as Internet Sales Amount, and calculated members that are defined in
the cube, such as Internet Average Unit Price.

10. Drag the Internet Sales Amount measure and drop it on the Data pane. As you hover the
mouse pointer over the Data pane, a red vertical line shows the possible locations where you
can drop the object.

INTEGRATING WITH ANALYSIS SERVICES 567

Figure 16.13 The Metadata
pane organizes the cube meta-
data in dimension and measure
group folders.

The MDX Query Designer auto-generates the query, executes it, and display the results. The
query results in a single cell that represents the overall sales to customers across all subject
areas.

TIP The MDX Query Designer is configured to execute the query automatically as soon as the Data pane changes.
You can toggle the Auto Execute toolbar button to disable this behavior. To execute the query on demand, click the
Run Query button.

11. In the Metadata pane, expand the Reseller Sales measure group and drag the Reseller Sales
Amount measure to the Data pane.

12. The Product Sales Basic report slices the measures by the product category, subcategory, and
product. In the Metadata pane, expand the Product dimension.

You can drag the Category, Subcategory and Product attributes, or you can drag the Product
Categories’ user-defined hierarchy which includes these attributes. While both approaches
produce the same results, user-defined hierarchies may yield better performance with larger
cubes so you should use them whenever possible.

NOTE User-defined hierarchies have certain performance advantages over attribute hierarchies. First, the naviga-
tion paths are optimized at processing time. Second, the navigation tree of a user-defined hierarchy is materialized
on disk. Finally, cube aggregations (pre-calculated summaries of data) favor user-defined hierarchies.

Drag the Product Categories user-defined hierarchy to the Data pane. At this point, your query
results should match Figure 16.14.

Figure 16.14 The dataset for the
Product Sales Basic report.

CHAPTER 16 568

 Understanding Query Mode
As noted, the MDX Query Designer supports a query mode to let you view and change the
auto-generated MDX query.

1. Click the Design Mode toolbar button to switch to query mode, as shown in Figure 16.15.

Figure 16.15 In query
mode, the MDX Query
Designer lets you view and
change the MDX query.

In query mode, the MDX Query Designer displays the MDX query in a text window. In our
case, the MDX Query Designer has generated the following SELECT statement.
SELECT NON EMPTY { [Measures].[Internet Sales Amount], [Measures].[Reseller Sales Amount] } ON COLUMNS, NON EMPTY
{ ([Product].[Product Categories].[Product].ALLMEMBERS) } DIMENSION PROPERTIES MEMBER_CAPTION,
MEMBER_UNIQUE_NAME ON ROWS
FROM [Adventure Works] CELL PROPERTIES VALUE, BACK_COLOR, FORE_COLOR, FORMATTED_VALUE, FORMAT_STRING,
FONT_NAME, FONT_SIZE, FONT_FLAGS

Let's dissect this query and explain its parts. It requests the two measures on the COLUMNS
axis (that is, on columns) and the All members of the Product Categories user-defined hie-
rarchy on the ROWS axis. Cubes are usually rather sparse and have a huge number of empty
cells. For example, customers are unlikely to purchase every product, so many members of the
Product and Customer dimensions simply don't exist with respect to each other. The NON
EMPTY keywords are used to exclude such empty cells from the query results. In design
mode, you can click the Show Empty Cells button to see the effect of the NON EMPTY clause.

Besides selecting the data you want to use, the query also requests extended properties.
The CELL PROPERTIES clause requests some common cell properties, such as color, back-
ground color, format string, and so on, which can be used on the report. Similarly, the DI-
MENSION PROPERTIES clause requests the MEMBER_CAPTION (the translated member
name) and MEMBER_UNIQUE_NAME (a system name to reference a member) properties.

As noted, changes made in query mode are not carried back to design mode. If you click
the Design Mode button within the same session (meaning you haven't closed the report), the
MDX Query Designer will ignore the changes made in query mode and restore the original
query. If you do this between sessions, the MDX Query Designer will remove the entire query
and you have to start from scratch.

In query mode, the Metadata pane adds two new tabs that come in handy for constructing
MDX queries. The Functions pane shows a list of the supported MDX functions. The Tem-

INTEGRATING WITH ANALYSIS SERVICES 569

plates tab contains common templates of calculated members and named sets, such as a Top
N Count template to select top dimension members based on a given numeric criteria.

In the process of authoring the MDX query you may need to validate that it is syntactically
correct. The Prepare button executes the query and displays any error messages. The Query
Parameters button lets you view and change the query parameters. As in design mode, use the
Run Query button to execute the query and see the results.

2. Click the Design Mode toolbar button to switch to design mode again without making any
changes.

3. Click OK to return to the Dataset Properties dialog box and click OK again to create the data-
set.

The report dataset is added to the Report Data window. It has five fields (Category, Subcate-
gory, Product, Internet_Sales_Amount, Reseller_Sales_Amount). To edit the query later on,
right-click the dataset in the Report Data window and choose Query to open the MDX Query
Designer.

From here, laying out the report is nothing you haven't seen so far, so I won't discuss the re-
maining steps.

16.2.2 Working with Filters and Parameters
As it stands, the Product Sales Basic report reads from the entire cube space and doesn't let
end users filter the report data. Adding parameters gives you a way to return a more managea-
ble amount of data. To illustrate the use of parameters, the Product Sales Parameterized.rdl file
(see Figure 16.16) builds upon the Product Sales Basic report by adding Product Categories
and From Date parameters.

Figure 16.16 The Product Sales
Parameterized report lets the user
filter the report data by product cat-
egory and specify a start date.

In the finished report, the user can select one or more members of the Product Categories us-
er-defined hierarchy in the Product Categories parameter. In addition, the user can specify a

TIP The auto-generated field names tend to become quite long. If you don't like the system-generated names, such as
Reseller_Sales_Amount, you can rename the fields. To do so, right-click the dataset and click Edit. In the Dataset Prop-
erties dialog box, select the Fields tab and rename the fields as needed.

CHAPTER 16 570

start date to filter the report data from this date onward by using the From Date parameter.
The report demonstrates the following main features:
 Working with Equal and InRange filters
 Promoting filters to report parameters

 Understanding filters
The MDX Query Designer lets you apply filters to attributes in user-defined hierarchies to re-
strict the query results. Table 16.1 shows the supported filter operators.

Table 16.1 The filter operators supported by the MDX Query Designer

Operator Description

Equal Equal to one of a set of members.

Not Equal Not equal to any of a set of members.

In The members must be in a given named set.

Not In The members are not in a given named set.

Contains The name, key or caption of the member contains a given string. The comparison is case-insensitive.

Begins With The name, key or caption of the member begins with a given string. The comparison is case-insensitive.

Range In the range from one member/value to another member/value. The range can be based on key, name or caption, and can
be inclusive or exclusive. Either From or To can be left null, providing LessThanOrEqualTo and GreaterThanOrEqualTo.
The comparison is based on natural ordering of the members.

MDX MDX expression is used to specify the set of members from the hierarchy of the filtered item.

You can specify a set of filters that use different filter operators if the report needs to filter on
several hierarchies.

 Implementing an Equal filter
Let's use the Equal filter operator for the Product Categories parameter. The steps marked
with (Optional) are meant to help you better understand the changes that are taking place.

1. In the Report Data window, right-click the Main dataset and click Query to open the MDX
Query Designer.

2. Drag the Product Categories user-defined hierarchy (Product dimension) from the Metadata
pane and drop it on the Filter pane.

The MDX Query Designer defaults the filter operator to Equals and lets you specify a default
value for the filter.

Figure 16.17 Setting up a filter
involves choosing a hierarchy,
filter operator, and default value.

INTEGRATING WITH ANALYSIS SERVICES 571

3. Expand the Filter Expression drop-down list, as shown in Figure 16.17.

The Filter Expression drop-down list shows members of the Product Categories user-defined
hierarchy. You can select a single member or multiple members from the list.

4. Select the Bikes product category to show Bike-related sales by default.
5. (Optional) Switch to query mode and inspect the generated MDX query. You will see the fol-

lowing filter expression:
FROM (SELECT ({ [Product].[Product Categories].[Category].&[1] }) ON COLUMNS
FROM [Adventure Works]

This expression defines a subcube by applying the filter operator you specified. [Prod-
uct].[Product Categories].[Category].&[1] is the unique name of the Bikes category.

6. Preview the report.

Notice that now the report totals are lower because the report shows bike sales only. As it
stands, the Product Categories filter is not very useful because it doesn't let the user change
the filter value without modifying the query directly. Let's promote the filter to a report para-
meter so that users can pick a filter value at run time. This takes a mouse click.

7. In the Filter pane, check the Parameters checkbox and click OK to return to the Report De-
signer.

Several things happen behind the scenes. First, the MDX Query Designer generates a new re-
port-level parameter. Next, it creates a new dataset for the parameter available values. Finally,
the designer changes the MDX query to use the new parameter.

8. In the Report Data window, right-click the AdventureWorksAS2008 node and click Show
Hidden Datasets. Expand the AdventureWorksAS2008 node and note that there is a new Pro-
ductProductCategories dataset.

9. (Optional) Right-click the ProductProductCategories dataset and click Query. The MDX
Query Designer switches to query mode (see Figure 16.18) because the parameter query is
system-generated.

Figure 16.18 The MDX
Query Designer generates
a dataset for the parameter
available values.

CHAPTER 16 572

The ProductProductCategories query returns all members in the Product Categories hierarchy.
In addition, it defines several calculated members to return the member caption (Parameter-
Caption), unique name, (ParameterValue) and hierarchy level (ParameterLevel). Although not
shown, the Report Designer generates an additional calculated field ParameterCaptionIn-
dented to indent the member values in the parameter prompt area.
<Field Name="ParameterCaptionIndented">
 <Value>=Space(3*Fields!ParameterLevel.Value) + Fields!ParameterCaption.Value</Value>
</Field>

10. Back to the Report Data window, expand the Parameters node and notice that the MDX Query
Designer has generated a ProductProductCategories report-level parameter.

11. Double-click the ProductProductCategories parameter to open its properties.
12. Select the Available Values page and note that the ProductProductCategories available values

are derived from the ProductProductCategories dataset. The ProductProductCategories is con-
figured as a multivalued parameter and its default value is set to Bikes category ([Prod-
uct].[Product Categories].[Category].&[1]). Click OK to close the Report Parameter Properties
dialog box.

13. (Optional) In the Report Data window, right-click the Main dataset and select Query.
14. (Optional) In the MDX Query Designer, switch to query mode by clicking the Design Mode

toolbar button.

Notice that the MDX Query Designer has changed the query subselect filter as follows:
FROM (SELECT (STRTOSET(@ProductProductCategories, CONSTRAINED)) ON COLUMNS
FROM [Adventure Works])

At run time, the @ProductProductCategories parameter returns a comma-delimited string
containing the unique names of the selected members, such as:
[Product].[Product Categories].[Product].&[1], [Product].[Product Categories].[Product].&[2], . . .

In the next statement, the StrToSet function converts the strings into an MDX set. To reduce
the risk of injection attacks, the CONSTRAINED flag forces the query to specify a set of specif-
ic members. For example, this query will return an error if the CONSTRAINED filter clause is
specified:
STRTOSET([Product].[Product Categories].[Product].Members, CONSTRAINED)

In contrast, the query will succeed if the CONSTRAINED flag is not specified.
15. Click OK to return to the Report Designer and preview the report by selecting the Preview tab.

Notice that the report now includes a Product Categories parameter (see again Figure 16.16).

 Implementing an InRange filter
Follow these steps to configure the From Date parameter to use the InRange filter operator.

1. In the Filter pane, click <Select Dimension> in the second row (Dimension column) and select
the Date dimension from the dimension list.

2. In the Hierarchy column, expand the drop-down list, and select the Date.Date hierarchy,
which represents the lowest level (day) of the Date dimension.

3. Expand the Operator column and choose the In Range (Inclusive) operator.

The MDX Query Designer generates two Filter Expression columns and two Parameters col-
umns to accommodate the lower and upper range values. If you leave the second (upper) filter

INTEGRATING WITH ANALYSIS SERVICES 573

expression empty, the last member in the hierarchy will be used. Let's use January 1, 2004, for
the lower range of the time period. In section 16.2.6, we will replace this fixed value with a
sliding time window that includes all dates within the past month.

Figure 16.19 An InRange
filter has lower and upper
ranges.

4. Expand the drop-down list inside the first Filter Expression column, as shown in Figure
16.19.

Since the Date attribute contains many members, the drop-down list displays the first 1,000
members only. However, at the end of the list, there is a Filter Members link that lets you find
a specific member.

5. Click the Filter Member link to open the Filter Members dialog box.
6. Configure the Filter Members dialog box to search for January 1, 2004, as shown in Figure

16.20.

7. Click the Test button. The filter should return a single member.
8. Select the January 1, 2004 member and click OK to return to the MDX Query Designer.
9. The drop-down lists should display the January 1, 2004 member on top. Select this member

and click OK.
10. Check the first Parameter checkbox to promote the filter to report parameter. Click OK to

return to the Report Designer.
11. Double-click the FromDateDate parameter and change its prompt to From Date.
12. Preview the report.

The report now should look like the one shown in Figure 16.16.

NOTE The MDX Query Designer configures each new parameter as a cascading parameter that depends on the
parameters defined before it in the Filter pane. For example, changing the Product Categories parameter executes the
From Date parameter query to retrieve only the dates that exist for the selected members of the Product dimension.

Figure 16.20 The Filter Members
dialog lets you search for members
by different filter conditions.

CHAPTER 16 574

 Implementing an MDX filter
Unfortunately, the Filter pane doesn't let you filter on measures, thereby preventing you from
performing common queries like filtering the top ten selling products based on their resale
sales. Fortunately, there is a workaround. The Filter pane includes an MDX filter operator that
can get the job done. This is an open-ended operator that lets you use an MDX expression to
return a set of members from the filtered hierarchy.

The Product Sales Top report, which builds upon the Product Sales Parameterized report,
demonstrates how you can leverage an MDX expression to return the top ten products based
on the Internet Sales Amount measure.

1. In the Filter pane, add a new filter that uses the Product hierarchy or the Product dimension
and choose the MDX operator.

2. Use the handy MDX Builder to author the MDX expression. MDX Builder includes a Metadata
pane that exposes the cube metadata and Functions pane that lists the MDX functions orga-
nized in logical categories. Click the button inside the Filter Expression column to launch
MDX Builder, as shown in Figure 16.21.

3. Expand the Set category and double-click the TOPCOUNT function. The MDX Builder gene-
rates the following expression text:
TOPCOUNT(«Set», «Count»[, «Numeric Expression»])

The Set argument accepts a valid MDX set, such as members of the Product dimension. The
Count argument specifies the top count. The Numeric Expression argument specifies a nu-
meric expression that will be used for filtering, such as a measure or a calculated member. You
can drag objects from the Metadata pane to replace the argument placeholders.

4. Change the MDX expression as shown below and click OK.
TOPCOUNT([Product].[Product].[Product].Members, 10, [Measures].[Internet Sales Amount])

[Product].[Product].[Product].Members returns a set of all members of the Product attribute
hierarchy inside the Product dimension excluding the All member. Consequently, the server
will return the top ten members based on their Internet sales.

Figure 16.21 Use MDX Build-
er to construct filter expressions
and check the syntax.

INTEGRATING WITH ANALYSIS SERVICES 575

16.2.3 Working with Calculated Members
A calculated member is an expression-based dimension member that you can define at the
cube or report level. In general, useful business expressions should be defined as cube-level
calculated members to make them available to all reporting clients. In contrast, the MDX
Query Designer lets you define report-level calculated members that are available only in the
containing report.

Figure 16.22 The Product
Sales Calculated Members
reports includes Percent of
Total and Last Year calcu-
lated members.

The Product Sales Calculated Members report, shown in Figure 16.22, includes two report-
level calculated members. The PercentOfParent calculated member (Percent of Total column)
shows the percentage contribution of the product to its parent total. For example, the Moun-
tain-200 Black, 38 bike has contributed 17.21% to the Mountain Bikes sales for year 2004.
The LastYearSalesAmount calculated member (Last Year column) returns the product sales
(Sales Amount measure) for the preceding year. For example, Mountain-200 Black, 38 bike
has made $1,327,957 in 2004 and $1,261,406 in 2003. This report demonstrates the follow-
ing features:
 Report-level calculated members
 Using query mode to change the parameter dataset query
 Interactive sorting to let the user sort the numeric columns on the report

This report builds upon the Product Sales Parameterized report with a few exceptions. I re-
placed the Date InRange filter with an Equal operator that uses the Date.Calendar Year hie-
rarchy. I removed the Internet Sales Amount and Reseller Sales Amount measures and added
the Sales Amount measure.

 Implementing calculating members
Follow these steps to implement the PercentOfTotal calculated member:

1. Open the Main dataset in the MDX Query Designer.

TIP The MDX Query Designer doesn't support auto-generating parameters with filters that use the MDX operator. If
you need to parameterize the operator, such as to let the user specify an arbitrary measure or the top count, you need
to use the OLE DB Provider for Analysis Services and an expression-based query, as I'll demonstrate in section 16.2.6.

CHAPTER 16 576

2. Click the Add Calculated Member toolbar button to open the Calculated Member Builder
dialog box, as shown in Figure 16.23.

Figure 16.23 Use Calculated
Member Builder to define report-
level calculated members.

Similar to MDX Builder, Calculated Member Builder lets you define an MDX expression and
check its syntax. A calculated member must be associated with a cube dimension. This is why
Calculated Member Builder includes Parent Hierarchy and Parent Member fields. Analysis
Services treats the cube measures as members of a special MEASURES dimension. Since most
calculated members are expression-based measures, the MEASURES dimension is pre-
selected.

3. Enter PercentOfParent in the Name field.
4. Enter the following expression in the Expression pane:

[Measures].[Sales Amount]/([Product].[Product Categories].Parent, [Measures].[Sales Amount])

MDX includes functions for hierarchy navigation. The Parent function returns the parent
member of the current member. For example, the parent member of Mountain-200 Black, 38
in the Product Categories hierarchy, is its product subcategory Mountain Bikes. Consequently,
the coordinate ([Product].[Product Categories].Parent, [Measures].[Sales Amount]) returns the
total Sales Amount for the Mountain Bikes subcategory. Although very simple, this example
demonstrates how easy it is to leverage Analysis Services and MDX to create business calcula-
tions that take into account the hierarchical relationships within data.

5. Click the Check button to verify the syntax and the OK button to create the member.
6. Repeat steps 1-4 to create a LastYearSalesAmount calculated member that uses the following

expression:
(PARALLELPERIOD([Date].[Calendar].[Calendar Year], 1, [Date].[Calendar].CurrentMember), [Measures].[Sales Amount])

The ParallelPeriod function returns a member from a prior period in the same relative position
as a specified member given a hierarchy level. In this case, ParallelPeriod returns the previous
year based on the current year specified in the report parameter.

7. Click OK to go back to the MDX Query Designer and click OK again to return to Report De-
signer. The Main dataset should now include two new fields.

8. Test the new fields on the report by binding them to columns in the tablix region.

INTEGRATING WITH ANALYSIS SERVICES 577

 Changing the Calendar Year parameter
The LastYearSalesAmount calculated member requires that the user selects a single year. This
necessitates a small change to the DateCalendarYear dataset, which is used for the available
values of the Calendar Year parameter. Specifically, I had to change the ROWS axis to return
only the calendar years, excluding the All member, as follows:
[Date].[Calendar Year].[Calendar Year].ALLMEMBERS ON ROWS

I also unchecked the Multi-value property of the CalendarYear parameter.

16.2.4 Working with Server Aggregates
Server aggregates are query subtotals calculated by the data provider. All reports that we've
discussed in this chapter have recreated the report subtotals in the table groups by using the
Reporting Services built-in aggregate functions, such as Sum. That's fine with fully additive
measures that can be summed across any dimension, such as Sales Amount, Internet Sales
Amount, and so on.

In some cases, Reporting Services cannot produce the group subtotals. This will be the
case when you deal with semi-additive measures calculated in the cube, such as averages, that
cannot be summed across any dimension. Or, the cube may use custom rollup formulas and
special semi-additive aggregate functions, such as LastNonEmpty and AverageOfChildren,
which are not available in Reporting Services. In such cases, we can instruct the Analysis Ser-
vices data provider to return server aggregates by using the Aggregate function in the group
subtotals.

 Requesting server aggregates
The Product Sales Aggregates report, shown in Figure 16.24, which starts off by using Report-
ing Services built-in aggregate functions, can be used to demonstrate how to obtain the server
aggregates from Analysis Services. As originally defined, it displays the Average Unit Price
measure (Sales Summary measure group) broken down by Product Categories. Average Unit
Price is defined in the cube as a calculated member that uses the formula [Measures].[Internet
Unit Price]/[Measures].[Internet Transaction Count].

Notice that the report shows correct and incorrect group subtotals to help you understand
why and when to use Analysis Services aggregates. The first Avg Unit Price column on the re-
port uses the Sum function and produces wrong group subtotals because averages cannot be
summed up. By contrast, the second Avg Unit Price column is correct. It uses the Aggregate
function to obtain the aggregates from the server, as shown in Figure 16.25.

Figure 16.24 This report de-
monstrates how to use the Ag-
gregate function to obtain the
server aggregates.

CHAPTER 16 578

Figure 16.25 Request
server aggregates by using
the Aggregate function.

 Viewing server aggregates
The server aggregates are not automatically inferred and returned by the Analysis Services data
provider. Instead, the report author must explicitly request them at design time by using the
Aggregate function in report groups. When you add the function, the Report Designer ap-
pends a collection of Aggregate elements to the query specification (under the QueryDefinition
element) in the report definition file.
<Aggregates<Aggregate><Levels><Level><DimensionName>Product</DimensionName><HierarchyName>Product
Categories</HierarchyName><HierarchyUniqueName>[Product].[Product
Categories]</HierarchyUniqueName><LevelName>Category</LevelName><UniqueName>[Product].[Product
Categories].[Category]</UniqueName></Level></Levels></Aggregate></Aggregates>

The Aggregate nodes specify the dimension name, hierarchy name, and hierarchy level name
for which the server aggregates are requested. The Report Designer then calls to the Analysis
Services data provider to obtain the modified MDX query statement, which now includes the
All member on the ROWS axis, such as:
SELECT NON EMPTY { [Measures].[Sales Amount], [Measures].[Average Unit Price] } ON COLUMNS,
NON EMPTY {{[Product].[Product Categories].[All Products]}, [Product].[Product Categories].[Category].ALLMEMBERS, . . .

You can view the server aggregates in the MDX Query Designer (design mode) by toggling the
Show Aggregates button on and executing the query, as shown in Figure 16.26.

The rows with (null) values in the dimension columns are the server aggregates. By default,
Reporting Services displays the server aggregates only in the group total or grand total rows
and not in the detail rows. If you want the server aggregates to be treated as details rows, set
the Interpret Subtotals As Detail Rows option to True on the Option page in the dataset prop-
erties (Optons tab). This option should be used with caution because server aggregates on de-
tail rows may skew the subtotals if standard aggregate functions are used, such as Sum.

Figure 16.26 Toggle the
Show Aggregations button
to view the server aggre-
gates in the query results.

INTEGRATING WITH ANALYSIS SERVICES 579

16.2.5 Implementing Detailed Reports
If you are building detailed reports on large dimensions, you will undoubtedly encounter per-
formance and usability issues when retrieving a dataset for the parameter available values list.
Resolving these issues will require your best troubleshooting and design expertise. We will
need to abandon the laissez-faire approach we’ve followed so far and explore two options for
dealing with large dimensions: cascading parameters and lookup.

 Using cascading parameters
The first option, demonstrated in the Customer Details Cascading report (see Figure 16.27),
takes advantage of the Reporting Services cascading parameters feature. Suppose you need to
author a report that displays the details of a given customer that the user picks from a large
Customer dimension. Loading all customers in a huge drop-down list is definitely something
you should avoid.

Figure 16.27 Cascading parameters lets you narrow the available values with large dimensions.

Instead, consider narrowing the customer list by using another attribute or user-defined hie-
rarchy. For example, the Customer Details Cascading report uses the Customer Geography
user-defined hierarchy to let the user select a city first. Because the Customer parameter de-
pends on the Customer Geography parameter, the report refreshes to display only the custom-
ers that are located in that city. Implementing this report involves several steps.

1. Define two Equal filter conditions that use the Customer Geography and Customer hierarchies
in this order. As a result, the Customer query will depend on the Customer Geography para-
meter.

2. Prune the Customer Geography hierarchy. In Adventure Works, the Customer Geography
hierarchy consists of Country, State-Province, City, Postal Code, and Customer levels. To
make the parameter drop-down list more manageable, I limited the query to return only the
first three levels by using the following MDX expression:
Exists(
 DESCENDANTS([Customer].[Customer Geography].[All Customers],
 [Customer].[Customer Geography].[City], SELF_AND_BEFORE)
 ,, "Internet Sales")

The MDX Descendants function returns the members below a given member to a specified
level. The Exists function limits the list further by returning only those cities that have data in
the Internet Sales measure group. In other words, only customer cities with sales are returned.

CHAPTER 16 580

3. Change the CustomerCustomer query that returns the customer available values to exclude
the All member by using the triple hierarchy convention:
[Customer].[Customer].[Customer].ALLMEMBERS ON ROWS

4. Make both parameters single-valued parameters so the user can select a single value.

This report also demonstrates working with member properties. Address, EmailAddress, and
Phone don't exist as attribute hierarchies in the Customer dimension. Instead, they are defined
as member properties of the Customer attribute. To show them on the report, I defined cor-
responding calculated members. For example, to display the customer's address, I added an
Address calculated member that uses the following expression:
[Customer].[Customer].Properties("Address")

 Using lookup
A second approach for making large dimensions more manageable is to add a lookup capabili-
ty that lets the user enter a value that must be matched by a single dimension member. Con-
sider a user who wants to look up a specific customer by their phone number or e-mail
address. Adding a lookup field requires tweaking the report query. This is where the query
mode of the MDX Query Designer can help, as the Customer Details Lookup report (see Fig-
ure 16.28) demonstrates.

Figure 16.28 This report finds a customer by an e-mail address.

5. Start by defining a single filter parameter that uses the Customer.Customer hierarchy. This
will generate a Customer parameter and configure the main dataset to use it.

6. Delete the CustomerCustomer dataset. You won't need it because the user will type in an e-
mail address in the Customer parameter instead of selecting a customer from a drop-down list.

7. Change the prompt of the CustomerCustomer parameter to E-mail and specify a default value,
such as michele14@adventure-works.com, so that you can easily test the report.

8. Switch the MDX Query Designer in query mode and open the Query Parameters dialog box by
clicking the Query Parameters button. which is available only in query mode.

Recall that by switching to query mode, you've taken the red pill (see Matrix the movie). Once
you've changed the query, there is no going back to design mode. Consequently, you will now
need to configure query parameters manually in the Query Parameters dialog box.

9. Configure the Query Parameters dialog box, as shown in Figure 16.29. Assigning a default
parameter value will help you test the query in the MDX Query Designer. Click OK.

INTEGRATING WITH ANALYSIS SERVICES 581

10. Change the FROM clause in the query as follows:
FROM (SELECT (
 Exists
 (
 [Customer].[Customer].[Customer].Members,

 Iif (
 InStr(1, @CustomerCustomer, "[") <> 0, StrToMember(@CustomerCustomer),
 Filter
 (
 [Customer].[Customer].[Customer].Members,
 [Customer].[Customer].Properties("Email Address") = @CustomerCustomer)
) /*Filter*/
) /*IIF*/
) /*Exists*/
))

Let's explain what’s going on here. To find a customer by e-mail, the Exists function cross-
joins the members of the Customer attribute hierarchy (all customers) with the given custom-
er. This is where things get trickier. When you test the query in the MDX Query Designer, the
default parameter value gives you the unique name of the customer member, such as [Cus-
tomer].[Customer].&[20075]. However, when you run the report, you will get only the e-mail
address from the report parameter.

I use the MDX IIF function to support both cases. This function checks if the
@CustomerCustomer parameter includes a square bracket. If this is the case, we are in query
mode and we will get the member unique name as a string, which we pass to the StrToMemb-
er function to convert it to the actual member. Otherwise, at run time, we use the Filter func-
tion to find a customer with a matching e-mail address.

16.2.6 Working with the OLE DB Provider for Analysis Services
For some scenarios, the Analysis Services data provider is simply not up to the task. For ex-
ample, you may need to handle dynamic query schemas, which this provider doesn't support.
In such cases, you can bypass this provider and use the OLE DB Provider for Analysis Servic-
es. The Microsoft OLE DB Provider for Analysis Services 10.0 (msolap100.dll) is an interface
for applications interacting with Microsoft Analysis Services 2008. Client applications can use
this provider to execute MDX queries and interact with multidimensional data. This provider
is more flexible, but requires more coding on your part because you need to handle parame-
ters, server aggregates, and other server features.

Figure 16.29 Use the Query Parameters dialog to define parameters in query mode.

CHAPTER 16 582

 Handling dynamic schemas
A common reporting requirement is authoring cross-tab reports that have dynamic columns.
As noted, the MDX Query Designer won't let you request dimensions on columns because it
supports static query schemas only. This leaves you with two implementation approaches for
handling dynamic schemas: cross-tab report layout and the OLE DB Provider for Analysis Ser-
vices.

As you are already familiar with the first approach, I won't discuss its details. For the sake
of completeness, I included a Product Sales by Year Matrix report with the source code for this
chapter. It demonstrates how to implement a cross-tab report that uses the Adventure Works
cube as a data source by rotating the members of the Date dimension from rows to columns.

Configuring the OLE DB Data Provider
If you need to execute an arbitrary MDX query, such as a query that you obtained from Micro-
soft Excel, consider the OLE DB Provider for Analysis Server. Readers who have experience
with Reporting Services 2000 and Analysis Services will probably recall this provider, as this
was the only option for integrating reports with Analysis Services cubes. To use the OLE DB
data provider, do the following:

1. Configure the data source to use the OLE DB provider type, as shown in Figure 16.30.

Figure 16.30 Consider the
OLE DB Provider for Analysis
Services 10.0 for direct access
to Analysis Services 2008.

2. In the Connection Properties dialog box, select the Microsoft OLE DB Provider for Analysis
Services 10.0 and specify the connection details, including the server name and cube name.

Working with the OLE DB Provider
The Product Sales by Year OLEDB report, shown in Figure 16.31, demonstrates the OLE DB
provider in action. Similar to the Product Sales by Year Matrix report, it lets the user select one
or more calendar years and displays a cross-tab report with years on columns. Unlike its coun-
terpart, however, it has fixed columns because its query requests the Date dimension on the
COLUMNS axis using this query.
= "SELECT NON EMPTY {" & JOIN(Parameters!DateCalendarYear.Value, ",") + "} ON COLUMNS,
NON EMPTY {[Product].[Category].[Category].Members} ON ROWS
FROM [Adventure Works]
WHERE [Measures].[Reseller Sales Amount]"

INTEGRATING WITH ANALYSIS SERVICES 583

In this example, the Join function is used to turn a multivalued report parameter into an MDX
set.

NOTE When working with Analysis Services, report parameter values need to return the UniqueName value of the
dimension member because this is how Analysis Services identifies members. This is particularly important when pass-
ing parameters to subreports or drillthrough reports. A common mistake is attempting to the pass the member Caption
value. While passing the caption might indeed match the parameter label, it won’t match the parameter values.

If you need to parameterize the query, you must resort to expression-based query text because
the OLE DB provider doesn't support parameters. The query obtains the selected years from
the DataCalendarYear parameter (which in turn uses another query for the parameter available
values) and concatenates them together. For example, it the user selects all years, the resulting
query will be:
SELECT NON EMPTY {[Date].[Calendar Year].&[2001],[Date].[Calendar Year].&[2002],
[Date].[Calendar Year].&[2003],[Date].[Calendar Year].&[2004]} ON COLUMNS,
NON EMPTY {[Product].[Category].[Category].Members} ON ROWS
FROM [Adventure Works] WHERE [Measures].[Reseller Sales Amount]

When you request dimension members on columns, your report layout needs to account for
new and deleted members. This is why the report includes four columns for the years 2001-
2004. What do you think will happen if the user selects a subset of all members, such as 2003
and 2004 only? The report columns for the missing members will show up as empty. This is
why I set a conditional Hidden property for each of the four columns to account for missing
dataset fields. For example, the expression =Fields!Y2001.IsMissing hides the Y2001 column if
the user has excluded this year from the parameter selection.

While the report accommodates missing dimension members, it doesn’t handle new di-
mension members, such as year 2005, when they are added to UDM. New members require
changing the report layout and redeploying the report. To avoid the overhead of having to
manually update the report layout for new members, consider adding additional columns to
the table to accommodate future members.

 Handling advanced parameters
Another scenario that may require the OLE DB provider involves handling more advanced
parameter requirements. For example, when we designed the Product Sales Top report, we
used a fixed top count value to select the top products. What if we want to let the user specify
the top count number? Unfortunately, the Analysis Services data provider configures parame-
ters to use cube dimensions. However, what's really needed in this case is a regular text-based
parameter. This requires using the OLE DB provider, which the Product Sales Top Advanced
report (see Figure 16.32) demonstrates.

Figure 16.31 Consider the OLE DB
Provider for Analysis Services to
execute arbitrary MDX queries.

CHAPTER 16 584

The user can select one of the pre-defined values in the Top Count parameter to filter the
query results accordingly. The report uses an expression-based query to construct the MDX
statement.
=String.Format ("SELECT NON EMPTY {{ [Measures].[Internet Sales Amount],
[Measures].[Reseller Sales Amount] }} ON COLUMNS,
NON EMPTY [Product].[Product Categories].[Product].ALLMEMBERS ON ROWS
FROM (SELECT (TOPCOUNT([Product].[Product].[Product].Members, {1},
[Measures].[Internet Sales Amount])) ON COLUMNS
FROM (SELECT (STRTOMEMBER('{0}', CONSTRAINED) : null) ON COLUMNS
FROM [Adventure Works]))", Parameters!FromDateDate.Value, Parameters!Top.Value)

This expression leverages the .NET string formatting support for replacing format items en-
closed in curly brackets with positional values. Thus, the first argument {0} will be replaced
with Parameters!FromDateDate.Value, while the second is replaced with Parame-
ters!Top.Value.

This report also demonstrates how to work with both Analysis Services data providers in the
same report. The dataset for the available values of the From Date parameter uses the built-in
Analysis Services data provider, while the main dataset uses the OLE DB provider. Another
interesting feature of this report is that the From Date query implements a sliding time win-
dow to return the available dates within the last month by using the following filter:
{ParallelPeriod([Date].[Calendar].[Month], 1, Tail(EXISTS([Date].[Calendar].[Date].Members, ,
"Reseller Sales")).Item(0)):Tail(EXISTS([Date].[Calendar].[Date].Members, ,"Reseller Sales")).Item(0)}

The Tail function returns the last date for which there are reseller sales in the Reseller Sales
measure group. The MDX ParallelPeriod function lags one month from that date. Consequent-
ly, the range operator (:) returns the members that fall within one month of the last date with
reseller sales.

16.2.7 Working with Parent-Child Hierarchies
Parent-child hierarchies represent recursive relationships among dimension members. For
example, the Adventure Works cube includes an Employees parent-child hierarchy (in the
Employee dimension) that models an employee-manager relationship and an Accounts hie-
rarchy (in the Account dimension) that defines a chart of accounts.

Figure 16.32 Consider the OLE
DB Provider for Analysis Services
to handle arbitrary parameters.

TIP When using the OLE DB provider, start with a MDX query that is not expression-based and doesn't use any pa-
rameters. Make sure that the query works in the generic query designer. Then, convert the query to an expression-
based statement. Make sure to double any curly braces in the query.

INTEGRATING WITH ANALYSIS SERVICES 585

Unfortunately, the built-in Analysis Services data provider collapses the parent-child hierarchy
into one column as a part of flattening the result set. This presents an issue if you want to
work with the hierarchical relationships on the report. Next, I will present two options for
reporting on parent-child hierarchies. The first option leverages the Reporting Services recur-
sive hierarchy support, while the second uses the OLE DB provider.

Figure 16.33 You can use
the Reporting Services recur-
sive hierarchy support to dis-
play parent-child hierarchies.

 Using the Reporting Services recursive hierarchy support
The Parent Child Recursive report, shown in Figure 16.33, is an example of a financial report
that shows the Adventure Works account categories and the amount for each category. It uses
the built-in Analysis Services data provider to retrieve the members of the Accounts parent-
child hierarchy and the Amount measure in the Financial Reports measure group. It also de-
fines two calculated members, MemberName and ParentName, which returns the unique
names of the current account and its parent category. Reporting Services provides a way to
expand parent-child hierarchies by configuring the details grouping of the Tablix region, as
follows:

1. In the Row Groups pane, double-click the Details group. In the General tab, notice that I
group on the [MemberName] field.

2. Click the Advanced Tab. Notice that the Recursive Parent field groups on the [ParentName]
field.

At run time, Reporting Services walks the hierarchy recursively and expands it on the report. I
also set the left padding of the first column to indent its text, as follows:
=2 + Level() * 8 & "pt"

The Reporting Services Level function returns the current level of depth in a recursive hie-
rarchy.

 Using the OLE DB provider
The Reporting Services recursive hierarchy support is easy to set up but it doesn't let you de-
fine additional groups on the report, such as displaying the account category total in the group
footer. The Parent Child OLEDB report (see Figure 16.34) uses the Analysis Services OLE DB
provider and an MDX query to expand the hierarchy.

CHAPTER 16 586

The resulting dataset (see Figure 16.35) includes a column for each hierarchy level. This gives
you more control over the layout because it lets you group the results for each level. On the
downside, the report assumes a fixed number of levels. If new levels are introduced later on,
you need to change the report layout to accommodate them.

Figure 16.35 This query expands the parent-child hierarchy by generating a column for each hierarchy level.

16.3 Extending Reports with End-User Features
UDM is an end-user oriented model that is designed for interactive reporting and data analy-
sis. You can extend UDM with additional features that enrich the reporting experience. Fea-
tures that are of particular interest to report authors include key performance indicators
(KPIs), extended properties, actions, and translations. I will cover KPIs in chapter 21, where I
will show you how to build a custom report item for visualizing the KPI values. Next, I will
show you how to leverage extended properties, actions, and translations on your reports.

16.3.1 Working with Extended Properties
Besides values, dimension members and cube cells have format properties (such as format
string, color, background color) that determine a cell’s appearance. As a report author, you
can query these properties and set them in the report.

 Understanding extended properties
As noted, when auto-generating the MDX query, the Analysis Services data provider appends
additional statements to retrieve dimension (DIMENSION PROPERTIES clause) and cell
(CELL PROPERTIES clause) properties. Extended properties are not automatically added to
the report dataset but you can write expressions to extract and use these properties on the re-
port.

Figure 16.34 This report uses an
MDX query to expand the parent-
child hierarchy.

INTEGRATING WITH ANALYSIS SERVICES 587

In Reporting Services, extended properties include predefined and custom properties. Re-
porting Services extends the Field object to support predefined properties, which Table 16.2
shows alongside their UDM equivalents.

Table 16.2 Predefined extended properties

RDL Property UDM Equivalent Purpose Example

Value MEMBER_CAPTION (dimension
members) unformatted value (cell)

Specifies the data value of the field. Bikes (the localized name for
the Bikes dimension member)

UniqueName <Member>.UniqueName Returns the member fully qualified name. [Date].[Calendar Year].&[2001]

BackgroundColor BACK_COLOR Returns the cell background color in hex
format.

#00FF40 /*green*/

Color FORE_COLOR Returns the cell foreground color in hex
format.

#00FF40 /* red*/

FontFamily FONT_NAME Returns the font name. Arial

FontSize FONT_SIZE Returns the font size in pixels. 10

FontStyle FONT_FLAGS. Returns the font style. 3 (Bold italic)

FontWeight FONT_STYLE Returns the font style. 3 (Bold italic)

FormattedValue N/A Returns the cell formatted value as text. $14.56

LevelNumber <HierarchyLevel>.Level.Ordinal For parent-child hierarchies, returns the
level ordinal number.

1

ParentUniqueName <Member>.Parent.UniqueName For parent-child hierarchies, returns a
fully qualified name of the parent.

[Account].[Accounts].&[1]

The property style values of the BackgroundColor, FontFamily, and FontWeight properties
don't match between RDL and UDM. For example, the RDL colors are RGB, while the UDM
colors are defined as integers. However, when accessing extended properties, Reporting Ser-
vices converts the values automatically into the RDL style values. The IntelliSense support in
the Expression dialog box (right-click a field and choose Expression) shows the predefined
extended properties, as shown in Figure 16.36.

You can retrieve these property values on the report by using either of the following syntaxes:
Fields!Field.Property or Fields!Field("Property")

Figure 16.36 The predefined
extended properties are exposed in
the Expression dialog box.

CHAPTER 16 588

In addition to pre-defined extended properties, UDM defines custom dimension member and
cell properties, such FORMAT_STRING, that are not directly accessible from the field proper-
ties. However, once you add a custom property to the DIMENSION PROPERTIES or CELL
PROPERTIES clause in the query, you can access it using the following syntax:
Fields!Field("Property")

This syntax is case-sensitive. The property name must exactly match the casing as it is re-
turned by the ADO MD provider. SQL Server Books Online (see Resources) provides a full list
of the supported custom properties. As noted, the built-in Analysis Services provider converts
the integer value to a Reporting Services-compatible hex format. If you target the OLE DB
provider, you can use the following function to convert the integer value:
Function ConvertColor (ByVal value as String) as String
 Dim isValid as Boolean
 Dim intValue As Integer = Convert.ToInt32(value, isValid)
 If isValid Then
 Return String.Format("#{0:x2}{1:x2}{2:x2}",(intValue And 255),(intValue >> 8) And 255,(intValue >> 16) And 255)
 Else
 Return String.Empty
 End If
End Function

NOTE By default, the Analysis Services OLE DB provider doesn’t return extended properties. You must reconfigure
the report data source by adding the ReturnCellProperties setting in the advanced data source properties, so that its
connection string becomes Provider=MSOLAP.4;Data Source=(local);Initial Catalog="Adventure Works DW
2008";Extended Properties="ReturnCellProperties=true".

 Using extended properties
The Extended Properties report, shown in Figure 16.37, demonstrates how you can work with
extended properties.

The report cells obtain the field background color and format string from the UDM. When
you point your mouse cursor to a cell, a tooltip pops up to show the values of the extended
properties that were retrieved from the UDM. Follow these steps to implement the report:

1. To obtain the predefined background color, set the BackgroundColor property of the field to
=Fields!Amount.BackgroundColor.BackgroundColor.

2. To obtain the format string from the UDM, set the Format property to
=Code.ConvertFormat(Fields!Amount("FORMAT_STRING"))

The ConvertFormat helper function translates the UDM standard format strings to Reporting
Services culture-independent equivalents. For example, "Currency" will be mapped to "C". If
the modeler has specified a custom format string, such as #,#0.00 to format the cell values

Figure 16.37 This report ob-
tains the cell background color
and format string extended prop-
erties from the UDM.

INTEGRATING WITH ANALYSIS SERVICES 589

with a thousand separator and two decimal values, the custom format string will pass through
to the report.

16.3.2 Working with Reporting Actions
A UDM action is a pre-defined MDX expression that targets a specific part of the cube. Actions
can extend the UDM in versatile ways. For example, suppose that the user has drilled down to
the lowest level of the Customer dimension and wants to see the individual sales orders that
have been placed by this customer. If the order information is not stored in the cube, you can
implement a reporting action that lets the user request a Reporting Services report that dis-
plays the order data from another data source.

 Understanding actions
With the exception of a drilldown action, which is carried out by the server, UDM actions are
interpreted and executed by the client application. UDM actions are user-initiated. What this
means is that the user has to select a part of the cube to which the action applies and invoke
the action. This, of course, assumes that the client application, whether a third-party OLAP
browser or a custom application, supports the action.

NOTE Actions are defined in the cube but are interpreted and initiated by the client application. Not all clients support
actions. For example, Excel 2007 supports actions, but the Reporting Services designers don't have built-in support for
actions. Therefore, before implementing actions, consider what reporting tools your users will use to browse the cube.

UDM supports three types of actions:
 Regular actions—These are multi-purpose actions that can target different client applica-

tions. In this case, the action content type tells the client application what the action ex-
pression represents. For example, if the content type is set to URL, the expression should
return a valid URL.

 Drillthrough actions—Let the client access the details behind a cube cell. This is the only
action that is executed by Analysis Services.

 Reporting actions—This action type can be used to request a Microsoft Reporting Services
report. The action command is the report path with optional report parameters.

A client application can request a list of actions defined for the cube by querying the cube me-
tadata. As part of the action discovery stage, the client provides the cube scope in the form of
coordinates to retrieve the actions defined for that scope. Upon receiving the request, the serv-
er evaluates the action condition to determine if any actions are defined for this scope. If a
suitable action exists, UDM resolves the action command and returns it to the client. The
client is responsible for presenting the action to the user and executing the action.

 Implementing a reporting action
Suppose that the customer order data doesn't exist in the cube and is kept in the operational
data source. Let's implement a reporting action that let the end user right-click a customer in a
Microsoft Excel 2007 PivotTable report and launch a Reporting Services report. The Customer
Orders report, which we will use for this practice, retrieves the customer orders from the Ad-
ventureWorks2008 database.

1. Assuming that you have installed the AdventureWorksDW2008 database from CodePlex (see
the book front matter for instructions), open the Adventure Works Analysis Services project

CHAPTER 16 590

from \Program Files\Microsoft SQL Server\100\Tools\Samples\AdventureWorks 2008 Analysis
Services Project\enterprise\Adventure Works DW 2008.dwproj.

2. In the Solution Explorer, double-click the Adventure Works.cube file to open the cube defini-
tion in the Cube Designer.

3. Click the Actions tab, as shown in Figure 16.38.
4. Click the New Reporting Actions toolbar button.
5. Enter Customer Orders in the Name field.
6. Set the Target Type drop-down list to Attribute Members to target the members of the Cus-

tomer attribute hierarchy.
7. Expand the Target Object drop-down list and select the Customer attribute hierarchy in the

Customer dimension. Consequently, the Customer Orders action will be available for this hie-
rarchy only.

8. Enter localhost in the Server Name field. This assumes that Reporting Services is installed on
the same machine.

9. In the Report Path field, enter ReportServer?/AMRS/Customer Orders.

The Customer Orders report takes the customer identifier as a parameter. The parameter cor-
responds to the CustomerID column in the Sales.SalesOrderHeader table in the Adventure-
Works2008 database. The CustomerKey column (which the Customer attribute hierarchy uses
as an attribute key) carries over the custom identifier to the AdventureWorksDW2008 data-
base. The Member_Key property returns the value of the attribute key that we need to pass to
the report.

Figure 16.38 Implement a reporting action by specifying the report URL and parameters.

INTEGRATING WITH ANALYSIS SERVICES 591

10. In the Parameters section, create a CustomerID parameter and enter [Custom-
er].[Customer].Member_Key as its value, as shown in Figure 16.39.

Figure 16.39 Use
Microsoft Excel 2007 to
test UDM actions.

11. Save and deploy the Analysis Services project.
12. Deploy the Customer Orders report to the report server.

 Testing the reporting action
Let's use Excel 2007 as an OLAP browser to test the Customer Orders action.

1. Open Excel 2007 and connect to the Adventure Works cube.
2. Create a PivotTable report that requests the Customer Geography user-defined hierarchy, as

shown in Figure 16.39. The report can be found in the Reporting Action.xlsx file.
3. Right-click a customer and hover on the Additional Actions context menu.

Excel sends a discover command to Analysis Services and sends the coordinates of the user
selection. Analysis Services evaluates the actions defined for the Customer attribute hierarchy
and returns the Customer Orders action which Excel presents to the user.

4. Click Customer Actions.

Excel requests the Customer Orders report by URL. You should see the Customer Orders re-
port displayed in Internet Explorer. The report should show the orders placed by the selected
customer.

16.3.3 Localizing Reports with Translations
Analysis Services makes it easy for you to target international users by defining translations in
the cube. As its name suggests, a translation is a translated version of cube metadata, including
captions of measures, dimensions, perspectives, and data (that is, members of attribute hierar-
chies).

 Understanding translations
The Adventure Works cube includes sample French and Spanish metadata and data transla-
tions. By default, Analysis Services selects a translation based on the local culture of the cur-
rent thread. At design time, the easiest way to test translations is to browse the cube in SQL
Server Management Studio or BIDS and select the desired language from the Languages drop-
down list.

CHAPTER 16 592

Figure 16.40 Use SQL Server Management Studio Cube Browser to test translations.

1. Open SSMS and connect to the Adventure Works cube.
2. Create the report as the report on the left in Figure 16.40 by dropping the Product Categories

user-defined hierarchy (Product dimension) on rows, Date.Calendar user-defined hierarchy
(Date dimension) on columns, and Sales Amount (Sales Summary measure group) on data.

Assuming that that your operating system culture is English, the report data and metadata
should show up in English.

3. Expand the Language drop-down list and select French (France).

The Cube Browser refreshes the report. The captions of the dimension members are now
shown in French. The cube metadata (not shown) also shows the French translations.

 Implementing localized reports
UDM translations definitely make it easier to localize reports. The Translations report, shown
in Figure 16.41, demonstrates how you can leverage Analysis Services translations. To pass the
user culture to the cube, configure the report to use a report-specific data source with an ex-
pression-based connection string.
="Data Source=(local);Initial Catalog=""Adventure Works DW 2008"";Locale Identifier=" &
New System.Globalization.CultureInfo(User.Language).LCID.ToString()

Figure 16.41 The
Translations report uses
the Analysis Services
translations feature to
localize column cap-
tions and fields.

Analysis Services supports passing the locale identifier (LCID) in the connection string. I ob-
tain the locale identifier from the .NET CultureInfo object by passing the user's language code
(User.Language) and set the Locale Identifier connection string setting accordingly. Thus,
when a user in the USA requests a report, the locale identifier will be 1033. The locale iden-
tifier for a French user in France will be 1252. See the Locale Identifier Constants and Strings
topic in the Resources section for a complete list of locale identifiers.

INTEGRATING WITH ANALYSIS SERVICES 593

Once the data source is set up, localizing the fields on the report is easy because the query
results include the localized data, such as member names. However, localizing report metada-
ta, such as column captions, requires more effort on your part.

Localizing the report metadata
If you open the report in layout mode, you will see that I use dynamic column captions by
calling an external custom assembly:
Prologika.RS.Extensibility.Translator.GetTranslatedCaption("[Product].[Category]")

Specifically, it calls the GetTraslatedCaption method of the Translator class and it passes the
name of the attribute hierarchy.
static Hashtable cache = new Hashtable();
[PermissionSet(SecurityAction.Assert, Unrestricted = true)] // grant callers FullTrust
public static string GetTranslatedCaption(string item) {
 string caption = null;
 try
 {
 // get language identifier, e.g. 1033 for En-US
 string lid = Thread.CurrentThread.CurrentUICulture.TextInfo.LCID.ToString();
 Trace.WriteLine(String.Format("Language ID: {0}", lid));
 // get cache identifier
 string cacheID = GetCacheIdentifier(item, lid);
 // attempt to get item from cache
 caption = (string)cache[GetCacheIdentifier(item, lid)];
 if (caption == null)
 {
 CacheMetadata(lid);
 caption = (string)cache[GetCacheIdentifier(item, lid)];
 }
 }
 catch (Exception ex) { caption = ex.ToString();}
 return caption;
}

GetTranslatedCaption obtains the locale identifier from the calling thread and attempts to ob-
tain the translated version of the item from an internal cache. Because the metadata isn’t
loaded yet, this action will result in a cache miss when the report is requested for the first time
for each locale identifier. However, in the next step, GetTranslatedCaption calls the CacheMe-
tadata method to obtain the translated metadata from Analysis Services.
private static void CacheMetadata(string lid) {
 AdomdRestrictionCollection restrictions = new AdomdRestrictionCollection();
 DataSet ds = new DataSet();
 AdomdConnection conn = new AdomdConnection(String.Format(@"Data Source=(local);
 Initial Catalog=Adventure Works DW;Integrated Security=SSPI;Locale Identifier={0};", lid));
 conn.Open();
 lock (cache.SyncRoot)
 {
 // cache dimensions
 restrictions.Add("CUBE_SOURCE", 2);
 ds = conn.GetSchemaDataSet("MDSCHEMA_CUBES", restrictions);
 foreach (DataRow row in ds.Tables[0].Rows)
 {
 string cacheID = GetCacheIdentifier(row["CUBE_NAME"].ToString(), lid);
 if (cache[cacheID] == null) cache.Add(cacheID, row["CUBE_CAPTION"].ToString());
 }
 // cache all attributes
 restrictions.Clear();
 ds = conn.GetSchemaDataSet("MDSCHEMA_HIERARCHIES", restrictions);
 foreach (DataRow row in ds.Tables[0].Rows)
 {
 string cacheID = GetCacheIdentifier(row["HIERARCHY_UNIQUE_NAME"].ToString(), lid);
 if (cache[cacheID] == null) cache.Add(cacheID, row["HIERARCHY_CAPTION"].ToString());
 }

CHAPTER 16 594

 // cache all measures
 restrictions.Clear();
 ds = conn.GetSchemaDataSet("MDSCHEMA_MEASURES", restrictions);
 foreach (DataRow row in ds.Tables[0].Rows)
 {
 string cacheID = GetCacheIdentifier(row["MEASURE_UNIQUE_NAME"].ToString(), lid);
 if (cache[cacheID] == null) cache.Add(cacheID, row["MEASURE_CAPTION"].ToString());
 }
 }
}

CacheMetadata opens an ADOMD.NET connection to the Analysis Services cube.
ADOMD.NET is a built-in data provider that client applications can use to communicate with
Analysis Services. It is important to note that the connection goes out under the Reporting
Services service account even if you specify the credentials of a Windows account in the con-
nection string. Consequently, you must grant the service account read permissions to the
cube.

ADOMD.NET lets you retrieve the cube metadata definitions by calling the GetSchemaDa-
taSet method. CacheMetadata uses this method to retrieve the cube schema (MDSCHE-
MA_CUBES). Since Analysis Services treats dimensions as cubes, MDSCHEMA_CUBES
returns the localized versions of both cubes and dimensions.

Next, CacheMetadata obtains the name of the attribute hierarchies in all dimensions by
using the MDSCHEMA_HIERARCHIES schema. Finally, CacheMetadata retrieves the captions
of the cube measures by using the MDSCHEMA_MEASURES schema. For performance rea-
sons, all translations are cached in the internal cache once for each locale identifier. When a
cached report translation is subsequently requested a second time, GetTranslatedCaption re-
turns the cached translation.

 Deploying custom code
Before running the report, follow these steps to deploy the Prologika.RS.Extensibility assem-
bly:

1. Open the Translations.sln solution file in Visual Studio and build the solution (Ctrl+Shift+B).
I've defined post-build events in the Prologika.RS.Extensibility project properties that deploy
the assembly to the Report Designer folder and report server bin folder.

2. Open the Report Designer RSPreviewPolicy.config file (located in \Program Files\Microsoft
Visual Studio 9.0\Common7\IDE\PrivateAssemblies) and add the following after the last Co-
deGroup element:
<CodeGroup class="UnionCodeGroup" version="1" Name="SecurityExtensionCodeGroup"
 Description="Code group for the RsViewer library" PermissionSetName="FullTrust">
 <IMembershipCondition class="UrlMembershipCondition" version="1" Url="C:\Program Files\Microsoft Visual Studio
9.0\Common7\IDE\PrivateAssemblies\Prologika.RS.Extensibility.dll" />
</CodeGroup>

This element grants the Prologika.RS.Extensibility assembly FullTrust rights at design time.
3. Open the report server rssrvpolicy.config file (located in \Program Files\Microsoft SQL Serv-

er\MSRS10.MSSQLSERVER\Reporting Services\ReportServer) and add the following after the
last CodeGroup element:
<CodeGroup class="UnionCodeGroup" version="1" Name="SecurityExtensionCodeGroup"
 Description="Code group for the RsViewer library" PermissionSetName="FullTrust">
 <IMembershipCondition class="UrlMembershipCondition" version="1" Url="C:\Program Files\Microsoft SQL
Server\MSRS10.MSSQLSERVER\Reporting Services\ReportServer\bin\Prologika.RS.Extensibility.dll"/>
</CodeGroup>

This element grants the Prologika.RS.Extensibility assembly FullTrust rights at run time.

INTEGRATING WITH ANALYSIS SERVICES 595

16.4 Authoring Data Mining Reports
Business intelligence should help users analyze patterns from the past to plan for the future.
Data mining presents ample opportunities to implement a new generation of reports with pre-
dictive analytics features. Such reports could process historical patterns to present views of
opportunities and trends. The Targeted Campaign report included in this chapter demon-
strates how you can leverage the data mining features of Analysis Services to author “smart”
reports. The report presents a list of the top fifty customers that are most likely to purchase a
given product.

16.4.1 Understanding the Targeted Mailing Data Mining Model
Adventure Works has already implemented a set of mining models to analyze the sales data
and derive patterns. One of them is the Targeted Mailing mining structure that includes a se-
ries of mining models. Each of these models employs a different algorithm to identify the most
important factors that may influence the customer decision to purchase a bike.

 Understanding the Decision Tree results
Let's explore one of these models—the Decision Tree mining model.

1. Open SSMS and connect to Analysis Services.
2. Expand the Adventure Works DW 2008 database and the Mining Structures folder under it.
3. Expand the Targeted Mailing folder, select the TM Decision Tree algorithm, and click Browse.

Microsoft provides viewers for each mining algorithm. The Decision Tree algorithm includes
Decision Tree and Dependency Network viewers. The Decision Tree viewer is shown in Figure
16.42.

Figure 16.42 The De-
pendency Network tab
helps you find the strong-
est correlations between
the predicted columns and
input criteria.

CHAPTER 16 596

Let’s see what conclusions we can make by inspecting the decision tree graph. When the
Background drop-down is set to All Cases (default selection), you can use the Decision Trees
Viewer to find which factors may influence the customer decision to purchase a bike. For ex-
ample, the model has determined that the most significant factor is the number of cars owned.
That’s why the first split (after the root All node) is done on the Number Cars Owned factor.

The background color of each tree node is significant. The darker the color is, the larger
the customer population. The root node of the tree is always the darkest. Pointing the mouse
pointer to the root node, or examining the mining legend, reveals that we have 18,484 cus-
tomers. Of those customers, almost 50% have purchased a bike (bike buyer is 1). The same
information can be approximated by glancing at the color bar inside each node.

Moving to the second level of the tree graph, we discover that the second darkest node
represents 6,457 customers who have two cars. Therefore, this group of customers is also like-
ly to purchase a bike. By clicking on this node and looking at the mining legend (not shown
in Figure 16.42), we discover that about 40% of these customers have purchased bikes.

 Understanding the dependency network
In real life, your decision tree may have many splits and it may be difficult to find the most
significant factors by using only the Decision Tree tab. The Dependency Network tab, shown
in Figure 16.43, is designed to help you find these correlations quickly.

To find the strongest links, slide down the slider on the left of the diagram. By sliding it down,
you are in essence filtering out the less significant factors. The results should match the Deci-
sion Tree viewer. For example, you will find that the most significant factor influencing cus-
tomers to purchase a bike is the number of cars owned. Backing up to the previous node, we
determine that the second important factor is customer’s age.

Figure 16.43 The
Dependency Network
tab helps you find the
strongest correlations
between the predicted
columns and input
criteria.

INTEGRATING WITH ANALYSIS SERVICES 597

16.4.2 Implementing "Smart" Reports
Given the Targeted Mailing mining mode, we can author a standard report that lists the most
likely buyers, as the one shown in Figure 16.44. The end user can filter the report by sales
region. The report shows the top fifty customers that may purchase a product from the se-
lected region and the estimated probability.

 Constructing the DMX query
To facilitate a wide spread adoption of data mining and minimize the learning curve, Micro-
soft adopted a SQL-like query language that is familiar to database developers and easy to use.
Client applications can create and query data mining models and obtain predictions by send-
ing DMX (Data Mining EXtensions) statements. The MDX Query Designer supports a DMX
command mode that lets you query data mining models.

1. Create a dataset that uses AdventureWorksAS2008 data source.
2. In the MDX Query Designer, select the pickaxe toolbar button to switch to the DMX com-

mand mode.
3. Click Select Model button in the Mining Model pane. In the Select Mining Model dialog box

that follows, expand Targeted Mailing node and select the TM Decision Tree mining model
that we've just discussed.

Figure 16.44 The Targeted Cam-
paign report uses a data mining model
to display a list of potential buyers.

Suppose that the Adventure Works management has provided you with a list of potential cus-
tomers to use as an input for the data mining algorithm. The vTargetMail view, which is in-
cluded in the AdventureWorksDW2008 database, returns these customers from the database.
We will pass this list to the TM Decision Tree model to identify the top most likely buyers.

4. In the Select Input Table(s) pane, click the Select Case Table button.
5. In the Select Table dialog box that follows, select the vTargetMail view and click OK.

The Data Mining Designer attempts to map the columns of the mining model with the vTar-
getMail view by naming convention. If the columns have different names, you can link them
manually by dragging a column from the Mining Model pane and dropping it over the corres-
ponding column in the Select Input Table(s) pane. Let's now specify the columns that we want
the query to return.

CHAPTER 16 598

6. Drag the CustomerKey column from the Mining Model pane and drop it in the grid. Enter
Customer ID as a column alias.

7. Drag the FirstName and LastName columns from the Mining Model pane and drop them in
the grid.

DMX supports various prediction functions. The function that we need to return the probabil-
ity of a bike purchase is PredictProbability. This function lets you predict a column from a
mining model.

8. On the new row of the grid, expand the Source drop-down list and select the Prediction Func-
tion item. Expand the Field column and select the PredictProbability function. Drag the Bike
Buyer column from the mining model to the Criteria/Argument column to replace the default
criteria of the PredictProbability function.

9. To parameterize the query by sales region, drag the Region column from the Mining Model
pane and drop it on the grid. Enter =@Region in the Criteria/Argument column, as shown in
Figure 16.45.

As with the MDX command mode, the moment you introduce a parameter placeholder in the
DMX query, the Report Designer creates a report-level parameter. To make the parameter da-
ta-driven, I used a second dataset (dsRegion) that fetches the product categories from the Ad-
ventureWorksDW2008 database. I used this dataset to derive the parameter available values.
You can view the finished report from the book source to see how the dataset is defined.

 Working with query mode
Since the report needs a top N clause, which the graphical designer doesn't support, you need
to finalize the query by switching to query mode.

1. Right-click on an empty space in the upper pane (outside the Mining Model and Select Input
Table panes) and click Query.

Figure 16.45 Use
the Data Mining De-
signer to build and
test DMX queries.

INTEGRATING WITH ANALYSIS SERVICES 599

2. Enter a TOP 50 clause and ORDER BY clause to sort the customers by probability in descend-
ing order. The finished query is shown below with changes highlighted in bold.
SELECT TOP 50
 (t.[CustomerKey]) as [Customer ID],
 t.[FirstName], t.[LastName], t.Region,
 PredictProbability([TM Decision Tree].[Bike Buyer]) As [Probability]
From
 [TM Decision Tree]
PREDICTION JOIN
 OPENQUERY([Adventure Works DW],
 'SELECT
 [CustomerKey],[FirstName],[LastName],[MaritalStatus],[Gender],[YearlyIncome],[TotalChildren],
 [NumberChildrenAtHome],[HouseOwnerFlag],[NumberCarsOwned],[CommuteDistance],[Region],[Age],
 [BikeBuyer]
 FROM
 [dbo].[vTargetMail]') AS t
ON
 [TM Decision Tree].[Marital Status] = t.[MaritalStatus] AND
 [TM Decision Tree].[Gender] = t.[Gender] AND
 [TM Decision Tree].[Yearly Income] = t.[YearlyIncome] AND
 [TM Decision Tree].[Total Children] = t.[TotalChildren] AND
 [TM Decision Tree].[Number Children At Home] = t.[NumberChildrenAtHome] AND
 [TM Decision Tree].[House Owner Flag] = t.[HouseOwnerFlag] AND
 [TM Decision Tree].[Number Cars Owned] = t.[NumberCarsOwned] AND
 [TM Decision Tree].[Commute Distance] = t.[CommuteDistance] AND
 [TM Decision Tree].[Region] = t.[Region] AND
 [TM Decision Tree].[Age] = t.[Age] AND
 [TM Decision Tree].[Bike Buyer] = t.[BikeBuyer]
WHERE t.Region = @Region
ORDER BY PredictProbability([TM Decision Tree].[Bike Buyer]) DESC

As with the MDX Query Designer, once you've made changes in query mode, you cannot
switch back to design mode without losing changes. The Data Mining Designer lets you ex-
ecute the query and view results.

3. Click on the Query Parameters toolbar button. In the Query Parameters dialog box that fol-
lows, replace @Region with a value region name, such as North America.

4. Right-click on an empty space and select Result.

The Data Mining Designer executes the query and displays the results.
5. Right-click an empty space in the Results pane and choose Query to return to query mode.

Click on the Query Parameters toolbar button again and replace the region name with
@Region to let the end user pass the selected region as a report parameter.

Once the report query and parameters have been taken care of, authoring the report layout is
nothing you haven’t seen so far. I used a tablix region that uses the Main dataset. Next, I
dragged the Main fields from the Datasets pane and dropped them on the table region to bind
the three columns. The report also demonstrates how expression-based conditional formatting
can be used to alternate the background color of the table rows.

NOTE Need more "smart" report examples? Check my Implementing Smart Reports with the Microsoft Business
Intelligence Platform article (see Resources). It demonstrates how you can leverage the SQL Server CLR stored pro-
cedures and data mining to create compelling and consistent sales forecast reports.

CHAPTER 16 600

16.5 Summary
Reporting Services and Analysis Services are complementary technologies that you can use
together to implement end-to-end business intelligence solutions. Analysis Services provides
OLAP and data mining services. The MDX Query Designer uses the Analysis Services provider
and supports drag-and-drop, auto-generating MDX queries, parameters, server aggregates, and
calculated members. However, it is limited to static query schemas only. When the Analysis
Services data provider is not enough, consider the OLE DB Provider for Analysis Services. It
lets you send any MDX query but requires more programming effort.

You can leverage UDM end-user features on your reports. Extended field properties let
you inherit the server-side formatting settings from UDM. You can implement reporting ac-
tions in a cube to allow users to launch Reporting Services reports. If your cube includes
translations, you can localize the cube metadata and data on reports by obtaining the transla-
tions from UDM.

Leverage the Analysis Services data mining features to author "smart" reports for predic-
tive analysis. Data mining reports fetch data by sending DMX queries to the mining model.
Use the DMX mode of the MDX Query Designer to create and test DMX queries.

16.6 Resources
Protect UDM with Dimension Data Security

(http://tinyurl.com/yop6oj)—Discusses the fundamentals of Analysis Services di-
mension data security and two practical approaches for implementing it.

Intelligencia Query
(http://www.it-workplace.co.uk/IQ.aspx)—A custom data extension with a graphi-
cal MDX query designer that supports any MDX query schema.

Configuring HTTP Access to SQL Server 2005 Analysis Services on Microsoft Win-
dows Server 2003 by Edward Melomed

(http://tinyurl.com/bgb5g)—This paper explains the steps required to set up HTTP
access to Analysis Services.

Dimension Member and Cell Properties
(http://tinyurl.com/2m6p2q and http://tinyurl.com/2r9hl7)—Lists all dimension
member and cell properties.

Locale Identifier Constants and Strings
(http://tinyurl.com/3dpq6a)—Describes predefined constants and strings for locale
identifiers used in multilingual applications.

Implementing Smart Reports with the Microsoft Business Intelligence Platform
(http://tinyurl.com/232vb2)—This article demonstrates how you can use data min-
ing and CLR stored procedures to implement reports with forecasting capabilities.

601

CChhaapptteerr 1177

Integrating with SharePoint

17.1 Understanding SharePoint Integration 601
17.2 Configuring SharePoint Integration 612
17.3 Managing Report Content 618

17.4 Implementing Web Part Pages 626
17.5 Summary 634
17.6 Resources 634

We all need to share information. If your organization has formalized its information sharing
needs by adopting tools and business processes to support that effort, chances are your com-
pany is already using SharePoint to manage documents and collaborate online. As an IT pro-
fessional who is also using Reporting Services, wouldn't it be nice if you could upload strategic
reports to a SharePoint site to quickly disseminate insightful information across the enterprise?
Or, quickly assemble a digital dashboard page to help a management team understand com-
pany business and make decisions?

To meet these needs, Reporting Services supports SharePoint integration features that let
you view and manage reports from a SharePoint site. This chapter starts with an overview of
the SharePoint technologies. Then, I will explain different options for integrating Reporting
Services with SharePoint. I will walk you through the process of installing Windows Share-
Point Services and configuring Reporting Services for SharePoint integration. Finally, I will
conclude by showing you how to manage and view reports inside SharePoint and implement
web part pages that display report content on a SharePoint site.

17.1 Understanding SharePoint Integration
Nowadays, many organizations leverage Microsoft SharePoint products and technologies for
web-based document management and collaboration. To ensure that business reports are
available within this collaborative environment, Reporting Services has included in the last
several releases a set of features that allow you to run reports from a SharePoint site. This inte-
gration scenario presents numerous benefits, including centralized report management and
viewing through SharePoint sites, and leveraging SharePoint collaboration capabilities to bring
versioning and workflow support to your Reporting Services reports.

Before we dive into this integration scenario, let's take a moment to step back and under-
stand the SharePoint technologies.

17.1.1 Understanding SharePoint Products and Technologies
SharePoint Products and Technologies is collective name for three applications: Windows
SharePoint Services, Microsoft Office SharePoint Server and Microsoft Office SharePoint De-
signer, as shown in Figure 17.1.

CHAPTER 17 602

Figure 17.1 SharePoint Products and Technologies include Windows SharePoint Services, Microsoft Office
SharePoint Server, and Microsoft Office SharePoint Designer

Let's briefly take a look at each of these components and their features.

 Windows SharePoint Services
Windows SharePoint Services (WSS), previously known as SharePoint Team Services, is a free
web technology download that runs on Windows Server operating systems (see Resources).
WSS is a core technology upon which other Microsoft web-based applications are based, in-
cluding Microsoft Office SharePoint Server and Microsoft Office Project Server.

WSS provides basic features that let you quickly build web pages for showing content.
Typically, information workers leverage SharePoint to implement personalized web pages con-
sisting of web parts. A SharePoint web part is an ASP.NET control that exposes content, such
as a report. A SharePoint site includes a collection of SharePoint pages. A SharePoint web ap-
plication hosts a collection of sites and runs under IIS. Similar to Reporting Services, WSS uses
SQL Server databases to store documents, metadata, and configuration information, such as
security policies. SharePoint requires a Windows Server operating system with IIS and
ASP.NET enabled.

Now in its third major release, WSS provides essential services for document management
and collaboration, including document editing, document organization and version control
capabilities. It also includes other popular content features, such as wikis, blogs, to-do lists,
alerts, discussion boards, and workflows. WSS integrates well with Microsoft Office to let you
open and publish documents to and from WSS sites and libraries.

For more information about Windows SharePoint Services and its features, visit its official
web page at http://office.microsoft.com/sharepointtechnology.

 Microsoft Office SharePoint Server
Microsoft Office SharePoint Server (MOSS) is a product of the Microsoft Office system. MOSS
is built on top of Windows SharePoint Services and adds more features, web parts, and infra-
structure. Specifically, it offers enterprise search capabilities across multiple SharePoint sites
and external resources. It extends the WSS content management features by consolidating
content from multiple sources into a centrally managed and scalable repository. Microsoft In-

INTEGRATING WITH SHAREPOINT 603

foPath Forms Services, which is a component of MOSS, can streamline business processes by
allowing information workers to fill in Web forms.

MOSS also offers several business intelligence features that you may find interesting. First,
its Excel Services lets you execute Excel spreadsheets on the server. For example, you can au-
thor an Excel PivotTable report connected to an Analysis Services cube and publish the
spreadsheet to MOSS. When the user requests the spreadsheet, Excel Services refreshes the
spreadsheet on the server and streams it in HTML format. Consequently, end users don't need
to have Microsoft Excel installed locally to view the results.

Another interesting BI-related feature is Business Data Catalog. Organizations can leverage
the MOSS Business Data Catalog to present business data from back-end server applications,
such as SAP or Siebel 2007, without writing any code.

MOSS also provides additional web parts that are not available in the WSS technology
download. Reporting Services users may find the MOSS filter web parts particularly interest-
ing. Suppose you have implemented a dashboard page that displays a Reporting Services re-
port and an Excel chart side-by-side and both web parts accept a date parameter. You can use
a Date Filter web part to collect the date from the end user and synchronize the web parts au-
tomatically, as opposed to entering the date parameter for each web part.

 Microsoft Office SharePoint Designer
Microsoft Office SharePoint Designer is an HTML editor for creating and customizing Micro-
soft SharePoint Web sites. It is a successor to Microsoft FrontPage but it was redesigned to
include SharePoint-specific features for opening SharePoint sites, working with web parts, and
adding workflow support. Hence, the name changed to SharePoint Designer.

You can use Microsoft Office SharePoint Designer to create and edit basic SharePoint pag-
es without writing any code. Should you need programming logic and more advanced func-
tionality, such as implementing connectable web parts, you can use Visual Studio to build
ASP.NET web parts that are fully supported by SharePoint.

17.1.2 Understanding Partial Integration
Reporting Services supports two SharePoint integration options. Partial integration is sup-
ported through a pair of web parts that you install on a SharePoint site and point to a report
server configured for native mode. SharePoint full integration is achieved by configuring the
report server for SharePoint integration mode. This section describes the features that provide
partial integration support.

 Understanding the Version 2.0 web parts
Reporting Services 2000 Service Pack 2 introduced two web parts: Report Explorer and Report
Viewer, that provided a quick and easy way to integrate SharePoint with Reporting Services.
These web parts continue to be available in Reporting Services 2008.

NOTE Reporting Services does not include any MOSS-specific features. This is why this chapter targets exclusively
Windows SharePoint Services, with the exception of the Analysis Services filter web part that I cover its section 17.4.3.
That said, you should evaluate the MOSS Business Intelligence capabilities, such as Excel Services and filter web
parts, when planning to integrate Reporting Services with SharePoint and determine whether those features justify an
upgrade to MOSS.

CHAPTER 17 604

NOTE Because the Report Explorer and Report Viewer were originally designed for SharePoint version 2.0, the
documentation refers to them as SharePoint 2.0 web parts. The Report Explorer and Report Viewer web parts contin-
ue to work with SharePoint 3.0.

The Report Explorer web part lets users browse the report catalog, subscribe to reports, and
launch the Report Builder 1.0 client. The Report Viewer web part can be used to view reports.
From an implementation standpoint, these web parts are very simple. They are implemented
as HTML IFRAME elements that reference Report Manager pages with some part-to-part
communication built in so that the Report Explorer drives the Report Viewer web part. Figure
17.2 shows the WebParts20.aspx page (included in the book source code) that demonstrates
these web parts.

Figure 17.2 The Report Explorer web part passes the report path to the Report Viewer web part.

On the top half of the page, the Report Explorer web part lets you navigate the report server
folder namespace. When you click a report link, the Report Explorer web part passes the re-
port path to the Report Viewer web part that is embedded on the bottom half of the page. Re-
port Viewer displays the report by sending a client-side URL request to the report server.

 Installing the version 2.0 web parts
Follow these steps to install the Report Explorer and Report Viewer web parts on an existing
SharePoint site.

1. Copy the web parts .cab file (\Program Files\Microsoft SQL Server\100\Tools\Reporting Ser-
vices\SharePoint\RSWebParts.cab) to the SharePoint server.

INTEGRATING WITH SHAREPOINT 605

2. Open the Windows Command Prompt and navigate to the folder that has the Stsadm.exe tool,
such as \Program Files\Common Files\Microsoft Shared\web server extensions\12\bin.

3. Execute the following command:
STSADM.EXE -o addwppack -filename "<path>\RSWebParts.cab" -globalinstall

Replace the path placeholder with the path to the folder where you copied the RSWeb-
Parts.cab file.

 Configuring the version 2.0 web parts
Follow these steps to configure the web parts on a new page.

1. Open the SharePoint site in the browser. Expand the Site Actions drop-down lis and click
Create.

2. In the Create page, click the Web Part Page link in the Web Pages section.
3. In the New Web Part Page page, name the page WebParts20, accept the default Header, Foo-

ter, 3 Columns layout template and click Create.

SharePoint creates a new page and opens it in Edit mode, as shown in Figure 17.3. The page
contains Headers, Left Column, Middle Column, Right Column, and Footer web part zones.
Each zone contains an Add a Web Part link which you can click to add a new web part to that
zone.

4. Click the Add a Web Part link inside the Header zone.
5. In the Add Web Parts dialog box that follows, scroll down to the Miscellaneous section, as

shown in Figure 17.4, select the Report Explorer web part, and click Add.

SharePoint adds the Report Explorer web part to the Header zone and opens its configuration
pane to let you configure it.

6. Configure the Report Explorer web part as shown in Table 17.1. Click the Apply button.

Figure 17.3 A web part
page contains web part
zones which can contain
one or more web parts.

CHAPTER 17 606

Table 17.1 Report Explorer configuration properties

Category Property Setting Description

Configuration Report Manager URL http://<servername>/reports The URL address of a functional Report Manager.

 Start Path AdventureWorks Sample Reports The path to a folder that will be displayed by default.
Leave it empty if you want to display the Home folder.

 View Mode List Corresponds to the Show Details mode of Report Man-
ager.

Appearance Height 150 pixels The web part height.

SharePoint initializes and renders the Report Explorer web part. At this point, the Report Ex-
plorer web part should display the content of the AdventureWorks Sample Reports folder as-
suming you have deployed them to the target report server. Next, you configure the Report
Viewer web part and connect it to the Report Explorer web part.

Figure 17.4 The Report Explorer and
Report Viewer web parts are found
under the Miscellaneous section in the
Add Web Parts dialog box.

7. Click the Add a Web Part link in the Footer zone.
8. In the Add Web Parts dialog box, select the Report Explorer web part.
9. Size the Report Explorer as needed by changing the Height property. Leave the rest of the

properties set to their default values.

SharePoint supports connectable web parts to let web parts exchange information with each
other. The Report Explorer is designed as a provider web part so it can pass the path of the
selected report to the Report Viewer web part, which is implemented as a consumer web part.
Connect the two web parts as follows.

10. Expand the Edit drop-down of the Report Explorer web part.

11. Select Connections Show Report In Report Viewer, as shown in Figure 17.5.

SharePoint refreshes the page to apply the connection changes. At this point, you can click a
report link in the Report Explorer web part and the report will appear in the Report Viewer
web part. Repeat the last two steps if you decide to disconnect the web parts later on.

INTEGRATING WITH SHAREPOINT 607

Figure 17.5 The Re-
port Explorer and Re-
port Viewer web parts
are implemented as
connectable web parts.

12. Click the Exit Edit Mode link in the upper right corner of the page to exit the edit mode and
render the page as it will be shown to the end user.

 Pros and Cons of partial integration
The partial SharePoint integration option has the following advantages:
 Easy setup—You don't have to reconfigure the report server to let end users navigate the

report catalog and view reports inside SharePoint.
 Full-featured Reporting Services support—This integration option doesn't disable any Re-

porting Services features.
 No impact to existing applications—If you have an existing applications that integrate

with Reporting Services, they will not be affected.

At the same time, the partial SharePoint integration option is just that. It provides a partial
support for SharePoint and it has the following limitations:
 Separate management interfaces—The administrator must use the SharePoint environ-

ment to manage the SharePoint content and Report Manager to manage the report catalog.
 Different security models—The administrator must maintain separate security policies for

document and report management and viewing. Access to a report depends equally on
SharePoint permissions on the web part page and role assignments on the report server.

 Separate content stores—Because report definitions are kept outside SharePoint, you can-
not leverage the SharePoint management features, such as version control and workflows.
In addition, if you target Microsoft Office SharePoint Server, you won't be able to use its
filter web parts to synchronize reports on the page.

17.1.3 Understanding Full Integration
Realizing the deficiencies of the partial integration option, Microsoft introduced full support
for SharePoint in SQL Server 2005 Service Pack 2, which is discuss throughout the rest of this
chapter. You can implement this deployment scenario by configuring Reporting Services for

CHAPTER 17 608

SharePoint integration mode. Version 2008 of Reporting Services adds support for data-driven
subscriptions and passing report parameters with URL access.

NOTE Readers who have used the full integration option with Reporting Services 2005 should note that now Report-
ing Services supports two approaches for passing parameters to a report. First, you can do so via the Report Viewer
web part, such as http://<site>/_layouts/ReportServer/RSViewerPage.aspx?/RelativeReportUrl=/DocumentLibrary
<ReportPath >.rdl?param1=value1¶m2=value2.
Second, you can reference the report definition directly in the document library, such as http://<site>/< DocumentLi-
brary>/<ReportPath>.rdl?param1=value1¶m2=value2. The outcome is the same—a full page rendering of the
report in the SharePoint document library.

 Understanding integration architecture
The major goal of this scenario is a seamless integration between SharePoint and Reporting
Services where reports become equal citizens with other SharePoint documents. The Report-
ing Services architecture has undergone major changes to accommodate this integration scena-
rio, as shown in Figure 17.6.

Figure 17.6 In Share-
Point integration mode, file
definitions and security
configuration are stored in
the SharePoint database.

In SharePoint integration mode, the SharePoint database hosts the report namespace, security
policies, report definitions, data source definitions, Report Builder models, and resources. This
lets you manage the report catalog inside the SharePoint environment just like you manage
any other SharePoint document. Because SharePoint doesn’t provide equivalent functionality,
the report server database stores all non-file definitions, including schedules, caching, and
subscriptions. As with native mode, the report server is responsible for report rendering and
executing background tasks.

To let SharePoint "know" about Reporting Services, you need to download and install a
Microsoft SQL Server 2008 Reporting Services Add-in for Microsoft SharePoint Technologies
on the SharePoint server. This add-in installs a ReportViewer web part for report viewing, and
management pages for managing the report catalog. I will be quick to point out that although
having identical names, the ReportViewer web part in full integration mode has nothing to do
with the version 2.0 ReportViewer web part. The former wraps the ReportViewer Web server
control (discussed in chapter 15) and renders reports on the server side. As noted, the version
2.0 ReportViewer web part is just an IFRAME that request reports by URL on the client side.

INTEGRATING WITH SHAREPOINT 609

On the report server side, a special security extension integrates with the SharePoint secu-
rity model and inherits the SharePoint security policies. For example, the SharePoint standard
Owners group will get unrestricted rights to the report catalog, while the Members group will
have Contributor level permissions, including rights to create and view reports. The security
extension is an internal component that you cannot configure or manage. A SharePoint-
specific endpoint, ReportService2006.asmx, extends the catalog management APIs and lets
SharePoint and custom applications communicate with a report server configured for Share-
Point integration mode.

Although the diagram shows two separate servers, Reporting Services and SharePoint can
be hosted on the same server. A single-server deployment is of course easier to set up and
more cost-effective. Distributed deployment requires installing the WSS object model on the
report server by performing a SharePoint Web Front End (server farm) install.

 Understanding runtime interaction
Although totally transparent to the end user, on-demand report delivery involves a bi-
directional communication between SharePoint and Reporting Services, as shown in Figure
17.7. SharePoint always keeps the most recent (master) copy of the report definition. When
the user runs a report, SharePoint forwards the report request to the report server. The report
server checks if the report definition exists in the report server database and if it is the same as
the master copy.

The report server doesn't receive document management events from SharePoint. If the
report definition doesn't exist (a new report) or is not up to date, the report server calls back
to SharePoint to get the latest version. Next, the report server processes the report as usual and
sends the report payload to SharePoint. SharePoint displays the report in the ReportViewer
web part.

 Understanding security
In SharePoint integration mode, the Reporting Services security model is superseded by the
SharePoint security model. Consequently, Reporting Services operations map to SharePoint
Web or List rights. For example, the Reporting Services CreateReport operation maps to the
Add Items SharePoint right. Similarly, site permissions replace Reporting Service system oper-
ations. For example, the CreateSchedules operation is replaced with the Manage Web Site
SharePoint site permission.

In SharePoint mode, the Reporting Services item-level roles are replaced by the standard
SharePoint permissions levels. Table 17.2 shows the standard SharePoint permission levels
and the permitted Reporting Services features.

Figure 17.7 The report
server synchronizes the
report definition on-demand.

CHAPTER 17 610

Table 17.2 Security mapping

SharePoint Role Reporting Services Features

Read View/run reports, view data sources and models. Create and delete user-owned subscriptions, view report history and
snapshots.

Contribute Create, edit, and delete reports, data sources, and models. Create and delete snapshots.

Design Create and delete folders.

Full Control Create, edit, and delete shared schedules and any subscription.

To view the SharePoint permissions levels and the permitted tasks:
1. In SSMS connect to the report server using the SharePoint site URL, such as

http://<servername>.
2. Expand the Security folder and the Roles folder under it. SSMS shows the SharePoint permis-

sion levels as roles.
3. Double-click a role to view its definition.

NOTE You can use SQL Server Management Studio to connect to a report server running in SharePoint integration
mode to view its server properties, security policies, and schedules. You can connect using the server name or the
SharePoint site URL, such as http://<servername>. The latter option is preferable because you will able to view and
manage shared schedules and view role definitions.

You can only view and not modify the SharePoint permission levels in SSMS. You need to use
SharePoint if you want to change them. SharePoint includes three predefined groups (Owners,
Members, and Visitors) that have assigned permission levels. To simplify security manage-
ment, I recommend you stick with the standard SharePoint groups whenever possible. For
example, you can grant a user Full Control rights to the report catalog by assigning the user to
the Owners group. The Members group has Contribute level permissions. Finally, the Visitors
group has Read level permissions. In SharePoint integration mode, Report Services supports
two mutually exclusive security modes, as shown in Figure 17.8.

Windows Authentication
Windows Authentication is the default security mode for a report server configured for Share-
Point integration. This is preferred mode for intranet deployments with Active Directory

Figure 17.8 Reporting Services
supports Windows Integrated and
Trusted Account security modes.

INTEGRATING WITH SHAREPOINT 611

where the user is authenticated based on the user's Windows identity. In this case, SharePoint
impersonates the call to the report server.

For example, if Bob logs in to the Adventure Works domain as aw\bob, SharePoint for-
wards the call to the report server as aw\bob. The report server uses the internal security ex-
tension to call into the WSS object model and asks SharePoint to authorize the user to
perform the requested action. If the report server and SharePoint are installed on separate
servers, you will need to configure Kerberos delegation on the SharePoint server to avoid the
"double hop" issue. For more information how this could be done, read the Configuring Ker-
beros for SharePoint 2007 blog by Martin Kearn (see Resources).

Trusted Account
Trusted account mode refers to a special "trusted" account that SharePoint uses to communi-
cate with a report server. All requests that flow from SharePoint to a report server are made
under this single account. Within the request, SharePoint prepares an encrypted token con-
taining the user identity and sends this token to the report server. If SharePoint is configured
for Forms Authentication, this token contains the user login name. If SharePoint is configured
for Windows authentication, the token contains the Windows login.

Consider using trusted account mode when Windows authentication is not appropriate.
For example, a SharePoint portal may be Internet-facing, using Forms Authentication to verify
user identity. Or, you might need to use trusted account if your organization does not allow
Kerberos within distributed server deployments.

As with Windows authentication mode, you can use the User!UserID property to retrieve
the user identity and use it on the report. On the downside, in trusted account mode, you
can't use Windows integrated security to connect to report data sources. Instead, you must use
stored or prompted credentials for data source connections. With data sources that require
Windows authentication, such as Analysis Services, you can store or prompt for Windows
credentials.

 Pros and Cons of full integration
The SharePoint full integration option offers the following benefits:
 Centralized report management—You can manage reports inside SharePoint.
 Centralized security—SharePoint security policies supersede the report server security

model.
 SharePoint-specific features—Since reports are stored in the SharePoint databases, they

are treated as any other document type. Consequently, you get features that are not avail-
able in native mode, such as decorating reports with additional metadata properties, ap-
plying version control, subscribing to alerts when a report is changed, attaching a business
workflow to a report, and so on.

At the same time, the full integration option is subject to the following limitations:
 Impact on existing applications—Re-configuring a report server for SharePoint integration

will break existing applications that integrate with Reporting Services as a result of
changes to navigational paths and unsupported features. For example, a native report path
of /AMRS/Company Sales becomes http://<Site >/<Document Library>/AMRS/Company
Sales.rdl. Consequently, you need to rewrite your applications to use this format.

 No automatic upgrade path—Re-configuring a report server for SharePoint integration
necessitates creating a new report catalog and redeploying the report content.

CHAPTER 17 612

 Feature loss—The following Reporting Services features are not available in SharePoint
integration mode: Report Manager, Report Scripting Host (rss.exe), linked reports, My
Reports, custom security (SharePoint supports its own Forms Authentication model), and
method batching.

TIP It's possible to implement custom applications that target both native and SharePoint integration modes by refe-
rencing the appropriate endpoint (ReportService2005.asmx for native mode and ReportService2006.asmx for Share-
Point mode) and constructing correct navigational paths. You need to code to the lowest common denominator by
avoiding features that SharePoint integration doesn't support.

17.2 Configuring SharePoint Integration
Unfortunately, configuring Reporting Services for SharePoint integration mode is not an au-
tomated process. In this section, I will walk you through the steps of installing SharePoint and
configuring Reporting Services for SharePoint integration. When you complete this section,
you will have implemented a Reports SharePoint site, similar to the one shown in Figure 17.9.
Later on, you will use the predefined Shared Documents library in the Reports site to deploy
report server content. The following steps assume clean installations of Windows SharePoint
Services and SQL Server 2008 on a single server running Windows Server 2003.

17.2.1 Performing Initial Installation
During the initial setup process, you will install SQL Server 2008 and Windows SharePoint
Services 3.0. I suggest you set up SQL Server 2008 first to let SharePoint use it for hosting its
database. This will avoid the SQL Server 2005 Express Edition instance that the SharePoint
basic setup would install.

Figure 17.9 The
Shared Documents
document library in the
Reports site hosts the
report content.

 Installing prerequisites
WSS requires Internet Information Services and .NET Framework 3.0, which you need to in-
stall prior to running the WSS setup.

INTEGRATING WITH SHAREPOINT 613

1. Run the Manage Your Server tool found in the Administrative Tools program group of Win-
dows Server 2003. Click the Add or Remove a Role button and configure the server as an Ap-
plication Server with IIS and ASP.NET.

2. Install SQL Server 2008. SharePoint integration is supported with Standard, Developer, and
Enterprise editions of SQL Server 2008. Choose the Install the SharePoint Mode Default Con-
figuration setup option on the Report Services Configuration page. Step-by-step instructions
for installing SQL Server 2008 are provided in chapter 2.

The Install the SharePoint Mode Default Configuration option creates a report server database
in SharePoint integration mode and disables Report Manager. However, the report server will
not be operational after Setup completes. You still need to install WSS and the Reporting Ser-
vices Add-in, and configure SharePoint integration before you can use the new installation. If
you are reconfiguring an existing report server from native to SharePoint integration mode,
use the Reporting Services Configuration Manager to create a new report server database in
SharePoint integration mode.

 Installing Windows SharePoint Services
I recommend you run the WSS setup in Advanced mode to avoid installing a SQL Server 2005
Express Edition instance to host the SharePoint database. Not only will this prevent you from
scaling up and out SharePoint but it will compete for resources with the SQL Server 2008 in-
stance.

1. Download Windows SharePoint Services 3.0 (see Resources) and run SharePoint.exe.
2. Choose the Advanced installation option.
3. On the Server Type step, select the Web Front End option. Do not choose the Stand-alone

option because it performs the same setup steps as the Basic setup. Click Install Now to install
the SharePoint components.

4. After the initial setup completes, the setup program gives you an option to run the SharePoint
Products and Technologies Configuration Wizard to complete the configuration. Leave this
option selected and click the Close button to run the wizard.

NOTE If you install Reporting Services on a separate server than SharePoint, you need to install the WSS object
model on that server so Reporting Services can communicate with SharePoint. You can do so by running the Share-
Point setup program and choosing the Web Front End option. After the setup is done, you need to run the SharePoint
Products and Technologies Configuration Wizard to join the web front end to the appropriate SharePoint farm. Howev-
er, you don't need to keep SharePoint running on the report server. You can disable the web Front end service via
Central Admin Operations Services on Server (under Topology and Services section). Click Stop for the started
Windows SharePoint Services Web Application service.

 Running the Configuration Wizard
The Configuration Wizard has several steps that let you configure the SharePoint installation.

1. In the Connect to a Server Farm step, choose the No, I Want to Create a New Server Farm
option.

2. In the Specify Configuration Database Settings step, specify the connection to the SQL Server
that will host the SharePoint configuration database. For example, to host the SharePoint con-
figuration database on the local SQL Server 2008 instance, enter localhost in the Database
Server field.

CHAPTER 17 614

The default name of the SharePoint configuration database is SharePoint_Config. You need to
also specify the credentials of a Windows account, which WSS will use to connect to the data-
base. Use a domain account (domain\login) or local Windows account (machinename\login) if
the database is hosted on the same server.

3. Accept the default values in the remaining steps of the wizard.
4. If all is well, the Configuration Wizard will display a Configuration Successful summary page.

Click Finish to close the wizard and open the SharePoint Central Administration application.

 Creating a web application and site collection
At this point, you should have a working SharePoint Central Administration web application.
Now, it’s time to create a SharePoint web application that will host the SharePoint portal. You
can create a new IIS web application or use an existing one, such as the Default Web Site.

DEFINITION A site collection is a set of SharePoint sites in the same web application that have the same owner and
share administration settings. Each site collection contains a top-level site and can contain one or more subsites.

1. In the SharePoint Central Administration application, click the Application Management tab.
2. Click the Create or Extend Web Application link found under the SharePoint Web Applica-

tion Management section.
3. In the Create or Extend Web Application page, click the Create a New Web Application link.
4. In the Create New Web Application page, you can create a new IIS web application or use an

existing one, such as the Default Web Site. Assuming that you want to reuse the existing De-
fault Web Site, choose the Use an Existing IIS Web Site option.

5. In the Application Pool section, choose Create New Application Pool. Select the Predefined
option for Select a Security Account for This Application Pool. Make sure that the Network
Service account is selected the drop-down list below. Click OK.

SharePoint configures the Default Web Site but it doesn't create a SharePoint site it. Share-
Point creates also a new SQL Server database (WSS_Content) to host the content, such as
documents and reports. If all is well, the Application Created page will open automatically.

6. Click the Create Site Collection link on the Application Created page.
7. In the Create Site Collection page, enter Adventure Works Portal in the Title field.
8. In the Primary Site Collection Administrator section, enter a Windows account (do-

main\login), such as your domain account, in the Username field. Click the Check Names but-
ton to the right to verify the account. Click OK button.

SharePoint creates a new site collection based on the Team Site template in the web applica-
tion you've just created. In addition, SharePoint creates a top-level site in the site collection.
The Top-Level Site Successfully Created page should open automatically. When it does, you
will see a link to the top-level site (for example, http://<servername>). Before you click the
link, reset IIS.

9. Click Start Run issreset to reset IIS.
10. On the SharePoint Central Administration page, click the top-level side link. You should see

the Adventure Works Portal home page. There should be only one (Home) tab.

You may get an Access Denied error when you navigate to the top-level site. One reason for
this may be that Windows integrated security is not enabled on the IIS web site. Check the

INTEGRATING WITH SHAREPOINT 615

application security settings in IIS and make sure that Windows authentication is the only
enabled option. If http://<servername>/default.aspx works but http://<servername>/ gives you
Access Denied, the most likely reason is that the virtual folders of the web applications run in
different IIS application pools. To fix this, start IIS Manager, open the properties of the site
and each of the virtual folders under it one at the time. If any of the virtual folders is confi-
gured for a different application pool, click the Create button to create an application, change
the application pool, and click the Remove button to remove the application.

 Creating a Reports site
You can use the top-level site to host report content so this configuration step is optional. Let's
create a Reports subsite so the user can access the reports by clicking on the Reports tab (see
Figure 17.9 for an illustration of the end result).

1. In the Adventure Works Portal, expand the Site Actions drop-down menu on the top right
corner and select Create.

2. In the Create page, click the Sites and Workspaces link found under the Web Pages section.
3. In the New SharePoint Site page, enter Reports as the site title and reportsite in the URL name

field so the Reports site URL is http://<servername>/reportsite.

WARNING When choosing the site URL, make sure it doesn't conflict with the Reporting Services URLs. For example,
a site URL of http://<servername>/reports will conflict with the Report Manager URL although Report Manager is not
available in SharePoint integration mode. Consequently, you will get a Reporting Services error when navigating to the
site. To avoid this, use different URLs or use the Reporting Services Configuration Manager to change (or unregister)
the Reporting Services URLs.

4. In the Select a Template drop-down list (Template Selection section), make sure that the Team
Site template is selected. Click the Create button to create the Reports site.

At this point, the Adventure Works portal should match Figure 17.9 with the exception that
the Shared Documents library in the Reports site is empty.

17.2.2 Configuring Reporting Services Integration Settings
Welcome to part two of setting up SharePoint integration. Before we can deploy report con-
tent, we need to configure report server integration settings in SharePoint Central Administra-
tion and in the SharePoint portal. Steps include installing the Reporting Services Add-in,
configuring the Reporting Services features in Central Administration, and registering the Re-
porting Services content types.

 Installing the Reporting Services Add-in
Recall that the Reporting Services Add-in provides the management pages and the Report-
Viewer web part. You need to install the add-in on the SharePoint server. You must be a
SharePoint Web farm administrator and Site Collection administrator to install the Reporting
Services Add-in. Ideally, the person who installs SharePoint should install the add-in.

1. Download the Microsoft SQL Server 2008 Reporting Services Add-in for Microsoft SharePoint
Technologies from the latest SQL Server 2008 Feature Pack page. Make sure to choose the
appropriate version (32-bit or 64-bit) based on the server hardware.

2. Double-click SharePointRS.msi to begin the installation.

CHAPTER 17 616

When you install the add-in, it enables Reporting Services integration on all site collections in
the SharePoint application. However, if the user installing the add-in is not a Site Collection
administrator on any of the site collections in the farm, then Reporting Services is installed in
a deactivated state. In this case, the administrator needs to activate the feature to enable Re-
porting Services integration in that site.

3. To activate the feature, expand the Site Actions drop-down menu of the top-level site, and
select Site Settings.

4. In the Site Settings page, click the Site Collection Features link under the Site Collection Ad-
ministration section.

5. In the Site Collection Features page, if the Report Server Integration Feature is deactivated,
click the Activate button.

 Configuring Reporting Services integration
Configuring Reporting Services integration in SharePoint involves specifying the report server
URL, security mode, and server defaults.

1. Open the SharePoint 3.0 Central Administration web application and select the Application
Management tab.

There should be a new Reporting Services section, as shown in Figure 17.10. If this section is
missing, the Reporting Services Add-in is not installed. Configure the Reporting Services inte-
gration options in the order shown.

2. Click the Grant Database Access link to open the Grant Database Access page.

TIP I recommend you examine the add-in log file after the add-in setup completes to verify its state. You'll find the log
file (RS_SP_<N>.log) in your temp folder, such as \Documents and Settings\<login>\Local Settings\Temp. Specifically,
check that all activation tasks have completed successfully and that there are no errors.

Figure 17.10 Use the Application Management page to configure the Reporting Services integration settings.

INTEGRATING WITH SHAREPOINT 617

In the Grant Database Access page, SharePoint grants the report server service account access
to the SharePoint databases. A database login and permissions are created for each Reporting
Services service account.

3. Enter the name of the server that hosts Reporting Services. If Reporting Services is installed on
a named instance, select the Named Instance option, and enter the instance name. Click OK.

4. In the Enter Credentials dialog box that follows, specify the credentials of a Windows account
in the format domain\login to connect to the report server and retrieve the report server ser-
vice account. Enter the credentials of an account that is a member of the local Administrators
group on the report server. If you use a local account with a single-server deployment, use the
servername\login format, such as millennia02\administrator. Click OK to close the dialog box
and OK again to return to the Application Management page.

5. Click the Manage Integration Settings link.
6. In the Reporting Services Integration page, specify the Report Server Web service URL (for

example, http://<servername>/ReportServer) and the security mode (such as Windows Au-
thentication or Trusted Account). Since SharePoint communicates with the report server in-
ternally, specify the machine NetBIOS name even if SharePoint is Internet-facing. If you
unsure what the Web service URL is, open the Reporting Services Configuration Manager and
select the Web Service URL tab. Click OK.

7. Click the Set Server Defaults link and review the Reporting Services default configuration
options, such as report history settings, execution timeout, and so on. Make changes if needed
and click OK.

 Adding Reporting Services content types
Now, we need to register the Reporting Services content types for report definitions (.rdl), da-
ta sources (.rsds) and Report Builder models (.smdl) files in the document library where the
report content will be deployed. Only site administrators or users with Full Control rights can
register content types.

Figure 17.11 Register
the Reporting Services
content types from the
Document Library Set-
tings menu.

1. Open the Adventure Works portal by navigating to http://<servername>/default.aspx.
2. Select the Reports tab and click the Shared Documents menu link in the Quick Launch menu

to access the Shared Documents document library.

CHAPTER 17 618

3. Expand the Settings drop-down menu and select Document Library Settings menu, as shown
in Figure 17.11.

4. Under General Settings on the Customize Shared Documents page, click Advanced settings to
open the Document Library Advanced Settings page.

5. In the Content Types section, select Yes to allow management of content types, and click OK.
6. On the Customize Shared Documents page, click the Add From Existing Site Content Types

link in the Content Types section.
7. In the Add Content Types page, select the Report Server Content Types item in the drop-

down list.

8. In the Available Site Content Types list, select all items, as shown in Figure 17.12, and click
Add to add them to the Content Types to Add list on the right. Click OK.

Figure 17.12 Use the
Add Content Type page
to register the Reporting
Services content types.

9. On the Reports site, review the security settings (Site Actions Site Settings Users and
Permissions section People and Groups) and assign Windows users and groups to the
SharePoint standard groups to grant them the appropriate access rights to the report catalog.
For example, assign report administrators to the SharePoint standard Owners group and re-
port contributors to the Members group.

That’s it! At this point, Reporting Services is configured for SharePoint full integration and you
are ready to perform reporting tasks.

17.3 Managing Report Content
The major advantage of configuring Reporting Services for SharePoint full integration is that
you can perform all reporting tasks inside the SharePoint environment, including managing
report content and viewing reports. Moreover, you can leverage additional document man-

TIP If you don't see the Reporting Services content types, it could be because the Report Server Integration Feature
is deactivated. Follow the steps in the Installing the Reporting Services Add-in section to activate the Report Server
Integration feature.

INTEGRATING WITH SHAREPOINT 619

agement tasks that native mode doesn’t support, such as document approval and version con-
trol. Next, I'll walk you through the steps for carrying out some of these tasks.

17.3.1 Uploading Reports
As it stands, the Shared Documents document library in the Reports site is empty. In Share-
Point integration mode, Reporting Services supports several ways for uploading report con-
tent, including using BIDS for automatic deployment, manually uploading report files, and
automating deployment by writing code.

Figure 17.13 Use
the Project Properties
dialog box to confi-
gure deployment.

 Uploading report content from BIDS
By far the easiest way to upload report content is to use the BIDS deployment features. Let's
use BIDS to upload the Adventure Works sample reports to the Shared Documents library.

1. Open the AdventureWorks Sample Reports project, which is included with the book source
code, in BIDS.

2. In Solution Explorer, right-click on the AdventureWorks Sample Reports project node and
choose Properties.

3. In the Properties dialog box, configure the deployment properties, as shown in Figure 17.13
and click OK.

Table 17.3 lists the changes that you need to make to the deployment properties.

Table 17.3 Deployment properties for deploying the AdventureWorks report samples

Property Value

TargetDataSources http://<servername>/reportsite/Shared Documents/Data Sources

TargetReportFolder http://<servername>/reportsite/Shared Documents/AdventureWorks Sample Reports

TargetServerURL http://<servername>/

These properties specify the target folders for the data source and report definitions in the
project. We will deploy the data source definitions to the Data Sources folder and report defi-
nitions to the AdventureWorks Sample Reports folder.

CHAPTER 17 620

NOTE An unfortunate bug was introduced late in the SQL Server 2008 development cycle that prevents you dep-
loying a folder whose name includes a space, such as Data Sources. When you attempt to do this, you'll get "Error
rsInvalidItemName: The name of the item 'Data%20Sources' is not valid. The name must be less than 128 charac-
ters long. The name must not start with slash; other restrictions apply." However, if the folder already exists, deploy-
ment is successful. Unfortunately, due to time constraints this bug didn't get fixed in the final release. As a
workaround, don't use spaces in the target folders, such as use DataSources instead of Data Sources.

Note that when you deploy to SharePoint, you need to specify full URLs as opposed to relative
paths. On deploy, BIDS updates references to external resources, such as references to shared
data sources and images, in the report definition to use absolute paths. In SharePoint integra-
tion mode, the TargetServerURL setting specifies the URL of the SharePoint site to which
you'll deploy the reports.

REAL LIFE I had to configure once a SharePoint site for Internet access and Windows security where end users were
authenticated using local Windows accounts created on the server. Since Reporting Services 2008 only supports
access from SharePoint URLs in the default zone, we had to change the public URL of the default zone (SharePoint 3.0
Central Administration Operations Alternate Access Mappings) to the web server Internet URL, such as
http://www.adventure-works.com/. This wasn't enough, however, because reports were failing with rsItemNotFound
errors although the report URLs seemed perfectly normal. We solved this predicament by changing the <servername>
in the TargetDataSources and TargetReportFolder settings to include the server Internet address, such as
http://www.adventure-works.com/Report Library/Shared Documents/Data Sources for the TargetDataSource setting,
and redeploying the report definitions.

4. In Solution Explorer, right-click on the project node and select Deploy.
5. Open the Adventure Works Portal SharePoint site. Click the Reports tab and then the Shared

Documents menu link.

The Shared Documents library now includes the AdventureWorks Sample Reports and Data
Sources folders.

6. Click the AdventureWorks Sample Reports folder link to verify that the report files have been
uploaded successfully.

 Uploading report content manually
You can also upload report content manually. Next, you will create a new folder and upload
two reports that you'll use to create a dashboard page later on. Start by creating a new folder.

Figure 17.14 Use the
New menu to create fold-
ers, Report Builder models
and reports.

INTEGRATING WITH SHAREPOINT 621

1. In Shared Documents library of the Reports site, expand the New drop-down menu, as shown
in Figure 17.14.

Observe that the New menu lets you initiate several reporting actions, including auto-
generating a new Report Builder 1.0 model from a data source definition, creating a Report
Builder 1.0 report, setting up a new data source, and creating a new folder.

2. Select the Folder submenu to create a new folder.
3. In the New Folder page, name the folder AMRS and click OK.
4. Click the AMRS folder link to navigate to the AMRS folder.
5. Expand the Upload drop-down menu and click Upload Multiple Documents.
6. In the Update Documents page, navigate to the source code for this chapter and select the

Chart.rdl and Gauge.rdl files in the Reports folder and click OK. When prompted, confirm the
upload process.

The Chart and Gauge reports connect to the Adventure Works Analysis Services cube to re-
trieve data. Follow the instructions in the book front matter to install the AdventureWorks
cube on the SharePoint server. Next, you'll create a data source that points to the cube.

7. Navigate to the Data Sources folder. Expand the New menu and click Report Data Source.
8. In the Data Source Properties page, name the data source AdventureWorksAS2008. Notice that

the document extension for data sources in SharePoint integration mode is *.rsds as opposed
to *.rds (native mode).

9. Expand the Data Source Type drop-down and select Microsoft SQL Server Analysis Services.
10. Enter the following connection string in the Connection String field and click OK.

Data Source=(local); Initial Catalog="Adventure Works DW 2008"

 Managing report data sources
If you attempt to view the Chart and Gauge reports at this point, you will get an error because
their data source properties do not contain valid SharePoint URLs to the AdventureWork-
sAS2008 shared data source that you've just created. Follow these steps to update these re-
ports to reference the AdventureWorksAS2008 data source in the Data Sources folder.

1. In the AMRS folder, point the mouse to the Chart report and expand the report drop-down
menu, as shown in Figure 17.15.

Notice that that report drop-down menu lets you initiate report management tasks, such as
managing the report subscriptions, parameters, and data sources.

2. In the drop-down menu, click Manage Data Sources.
3. Note that the Manage Data Sources page shows an exclamation point because the report data

source is not configured. Click the AdventureWorksAS2008 data source link.
4. In the next page, enter http://<servername>/reportsite/Shared Documents/Data Sources/Adventure-

WorksAS2008.rsds and click OK. Alternatively, click the … button next to the Data Source
Link field. In the Select an Item page, navigate to the Data Sources folder and select the Ad-
ventureWorksAS2008 data source.

5. Click OK to return to the Manage Data Sources page and click Close to return to the AMRS
folder.

CHAPTER 17 622

6. Follow similar steps to configure the Gauge report to reference the AdventureWorksAS2008
shared data source.

 Uploading report content programmatically
You may need to automate deploying report content to SharePoint. Unfortunately, Microsoft
currently doesn't provide a utility that supports deployment to a server running in SharePoint
integration mode. However, you can create a custom application that integrates with the Re-
port Server Web service to automate management tasks. The ReportingSetup utility included
in the book source code demonstrates how you upload report content to a SharePoint library.
It creates a folder under the Shared Documents library and uploads the Company Sales and
Product Catalog Adventure Works sample reports to this folder. Make the following changes
before running the utility:

1. Open the app.config configuration file and update the ReportingSe-
tup_WSS_ReportingService2006 and RootFolder settings to reflect your setup.

2. Open the report definitions (.rdl files) in the \bin\debug folder and update the data source
reference to reflect the SharePoint path to the AdventureWorks data source. Again, you must
enter the full URL address since SharePoint doesn’t support relative paths. You don't need to
update the DataSourceID node. This is what my report definition looks like after the change:
<DataSource Name="AdventureWorks">
 <rd:DataSourceID>25d3314c-0d4f-49cc-9c22-10194e825490</rd:DataSourceID>
 <DataSourceReference>http://millennia02/ReportSite/Shared Documents/Test/AdventureWorks.rsds
 </DataSourceReference>
</DataSource>

ReportingSetup is implemented as a Windows Forms application. When you run it, it will ask
you for the name of the target folder (Test by default) and will let you overwrite the Web ser-
vice endpoint if needed. When you click the Create button, the application invokes the Up-
loadContent method, whose abbreviated code is shown below.

Figure 17.15 The report
drop-down menu lets you
manage the report settings.

TIP If you need to automate updating the data source references in the report definitions, you can do so programmati-
cally. For example, you can load the definitions in XmlDom or use the RDL Object Model, as I demonstrated in chapter 7.

INTEGRATING WITH SHAREPOINT 623

private string[] _reports = Directory.GetFiles(Application.StartupPath, "*.rdl");
. . .
private void UploadContent() {

 // Folders
 CreateFolder(_folder, String.Format("{0}/", _rootFolder));

 //Datasource
 CreateSQLDataSource("AdventureWorks", String.Format("{0}/{1}/", _rootFolder, _folder));
 CreateASDataSource("AdventureWorksAS", String.Format("{0}/{1}/", _rootFolder, _folder));

 //Custom Reports
 if (_reports.Length > 0)
 {
 foreach (string customReport in _reports)
 CreateReport(customReport, String.Format("{0}/{1}/", _rootFolder, _folder));
 }
}

The code starts by creating a folder to host the report content. Then, the method calls the
CreateSQLDataSource and CreateASDataSource helper methods to create the AdventureWorks
and AdventureWorksAS data sources. Next, UploadContent checks if there are any report de-
finitions in the application startup folder. For each report definition, UploadContent calls the
CreateReport helper method. CreateReport (not shown) loads the report definition as a byte
array and calls the CreateReport API to upload the report. The application also includes a
CreateResource method for uploading resource files, such as images.

17.3.2 Viewing Reports
Similar to Report Manager, you can use SharePoint to view reports.

 Requesting live reports
Follow these steps to view the Chart report:

1. Navigate to the AMRS folder.
2. Click the Chart report link.

SharePoint makes a call to the report server. The report server synchronizes the report defini-
tion, generates the report, and sends the report payload back to SharePoint. SharePoint dis-
plays the report on a web page that uses the Report Viewer web part, which I will discuss in
more detail in section 17.4. Figure 17.16 shows the generated report.

The toolbar supports common reporting tasks, such as refreshing the report, page naviga-
tion, searching text on the report, and zooming. The Actions drop-down menu lets you in-
itiate additional report actions, such as opening the report with the Report Builder 1.0 client
(if this is a Report Builder 1.0 report), subscribing to the report, printing it, and exporting the
report to one of the supported export formats.

 Working with report parameters
Report parameters are exposed in the Parameters pane. The end user can collapse the pane by
clicking its left bar (with the triangle symbol) to free more real estate for displaying the report.
As with Report Manager, SharePoint doesn't let you customize the toolbar or Parameters pane.

1. The Chart report accepts a sales territory country as a parameter. Expand the Sales Territory
Country drop-down list and select another country.

2. Click the Apply button to generate the report with the new parameter value.

CHAPTER 17 624

17.3.3 Working with SharePoint Document Management Features
SharePoint full integration lets you leverage SharePoint-specific features for document man-
agement, such as version control, document properties, alerts, and others. Two interesting
features that I will demonstrate next are content approval and version control.

Suppose that new reports published to the Adventure Works Portal require management
approval before they are available for public viewing. You can configure the site versioning
settings to meet this requirement. When a new report definition is uploaded, it will be as-
signed a pending status, in which case it is visible only to its creator and to users who have
permission to manage lists, such as members of the Owners group. Once the report is ap-
proved, it is assigned an Approved status, making it visible to anyone with permission to view
the list or library.

NOTE You can address more complicated process requirements by using the SharePoint workflow support. For
example, Microsoft Office SharePoint Server 2007 comes with a predefined workflow for document approval. Win-
dows SharePoint Services includes only a simple three-state workflow that is designed to track the status of a docu-
ment. You can author custom workflows using SharePoint Designer or Visual Studio. For more information about the
SharePoint workflow features, read the whitepaper Understanding Workflow in Windows SharePoint Services and the
2007 Microsoft Office System (see Resources).

 Configuring versioning settings
To enable content approval for the Shared Documents library in the Reports site:

1. If the Shared Documents library is not already open, open the Reports site and click the
Shared Documents link in the Quick Launch menu.

2. Expand the Settings drop-down menu and click Document Library Settings.
3. In the Customize Shared Documents page, click the Versioning Settings link in the General

Settings section.
4. In the Document Library Versioning Settings page, select Yes in the Content Approval section.

Figure 17.16 The Report-
Viewer web part displays
reports and lets you per-
form common reporting
actions, such as printing
and exporting the report.

INTEGRATING WITH SHAREPOINT 625

5. To keep track of report changes, in the Document Version History section, select the Create
Major and Minor (Draft) Versions option.

6. In the Draft Item Security, make sure that the Only Users Who Can Approve Items (And The
Author of The Item) option is turned on. Click OK.

 Working with document control
Let's test the effect of the versioning control settings you've just made.

1. In the Shared Documents library, navigate to the AMRS folder.

Notice that the Shared Documents view now includes a new Approval Status column and all
existing documents have been assigned an Approved status.

2. Upload a report definition file. You can use one of the sample Adventure Works reports, such
as Company Sales.

Figure 17.17 Once
you enable content
approval, new docu-
ments are submitted as
drafts and are not im-
mediately accessible.

Observe that the new report is assigned a Draft status, as shown in Figure 17.17.
3. Optionally, log in as a user who belongs to the SharePoint Members group and notice that the

user cannot see the Company Sales report. An authorized user needs to approve the report
before making it available to other users.

4. Point the mouse to the Company Sales report, expand the document drop-down menu, and
click View Properties.

The document properties page, which is shown in Figure 17.18, lets you perform various
document management tasks, such as managing the document permissions, viewing the doc-

Figure 17.18 An authorized user needs to approve a draft document to make it publicly available.

CHAPTER 17 626

ument versioning history, subscribing to alert notifications when the document is updated,
and approving or rejecting a draft.

5. Click Approve/reject Item.
6. In the next page, select the Pending option in the Approval Status section, and click OK.

In the Shared Documents view, note that the Company Sales report is now in Pending status.
In the next step, a user with approval rights can review and approve or reject the document.

7. Point the mouse to the Company Sales report and expand the document drop-down menu.
Note that there is a new Approve/reject submenu.

8. Click Approve/reject.

You will see the approval page again when it opens automatically, but this time it includes an
Approved option in the Approval Status section.

9. Select the Approved option and click OK.

Note that the Company Sales report is now in Approved status.
10. Point the mouse to the report and click Version History from the document drop-down menu.

You will see a Version Saved for Company Sales.rdl page which shows the detailed version
history of the report, including the version number, the submittal date, and the approval sta-
tus. If you subsequently upload the same report and the Add as a New Version to Existing
Files option is enabled in the Upload Document page, SharePoint will keep the old version
and add the new report as a new version. The new version of the report will be assigned a
Draft status again until someone approves it. More importantly, the administrator can review
the version history to restore a previous version if needed.

17.4 Implementing Web Part Pages
Your ability to design effective solutions for your organization’s business intelligence needs
will depend in part on how you leverage web parts in your SharePoint application. In this sec-
tion, we will look at how to create a web part page that displays several report views side-by-
side. Deploying reports side-by-side can help business users better understand their data.
Consider a dashboard page that shows a chart report displaying the overall sales alongside a
gauge report that shows a KPI value.

Microsoft provides a Report Viewer web part that lets you embed reports on a SharePoint
page. This section includes three examples that demonstrate how to use the Report Viewer
web part. The first two examples use the standard capabilities of Windows SharePoint Services
for building web part pages. The third example leverages the filtering features of Microsoft
Office SharePoint Server to synchronize content of multiple web parts.

17.4.1 Implementing Dashboard Pages
By now, you've learned how to author standard and ad hoc operational reports that help in-
formation workers gain insights about their business. In this first example, you’ll see how ef-
fective it can be to combine these reports on a single dashboard page to better fulfill your
business intelligence needs.

INTEGRATING WITH SHAREPOINT 627

 Understanding digital dashboards
Before we start, let's make sure we understand what a digital dashboard is. Here is how Wiki-
pedia defines it: "A digital dashboard, also known as an enterprise dashboard or executive
dashboard, is a business management tool used to visually ascertain the status (or "health") of
a business enterprise via key business indicators. Digital dashboards use visual, at-a-glance
displays of data pulled from disparate business systems to provide warnings, action notices,
next steps, and summaries of business conditions."

The Corporate Performance page, which is shown in Figure 17.19, demonstrates an example
of a dashboard page. The Sales by Territory and Year chart report shows the Adventure Works
gross sales, reseller sales, and Internet sales. The Product Gross Profit Margin report displays
the Product Gross Profit Margin KPI value and its goal. In this case, the KPI value is about 7%
and it is slightly below the goal (the 10-30% range). As you can imagine, dashboard pages like
this can be tremendously useful in helping Adventure Works managers identify trends in
company business just by glancing at this page.

 Creating the Corporate Performance page
The Corporate Performance dashboard page uses the chart.rdl and gauge.rdl reports that
you've already deployed to your SharePoint site. These reports pull data from the Adventure
Works Analysis Services cube. Constructing a dashboard page that uses these reports is
straightforward. Start by creating a new web part page. You might recall how to do this from
earlier steps where you used a page to test the Report Explorer and Report Viewer version 2.0
web parts.

1. In the Reports site, expand the Site Actions drop-down menu and click Create.
2. In the Create page, click Web Part Page under the Web Pages section.

Figure 17.19 The Corporate Performance dashboard page displays two reports side by side.

CHAPTER 17 628

3. In the Name section, enter CorporatePerformance as the page name.
4. Leave the rest of the settings at their default values and click Create.

SharePoint creates an empty web part page consisting of several zones and opens the page in
Edit mode. Next, we will use the Report Viewer web part to embed the reports on the page.

 Working with the Report Viewer web part
The Report Viewer web part is used for full-page report viewing and embedded reporting. It
wraps the Visual Studio Web Forms ReportViewer control and handles report rendering calls
to the report server.

1. In the Left Column web zone, click the Add a Web Part link.
2. In the Add Web Parts dialog box, which is shown in Figure 17.20, scroll down to the Miscel-

laneous section and select the SQL Server Reporting Services Report Viewer web part. Again,
make sure you do not confuse this web part with the Report Viewer version 2.0 web part.

3. Click Add to add the Report Viewer web part to the page.
4. In the Report Viewer web part, click the Click Here to Open the Tool Pane link or expand the

web part Edit drop-down menu in the top right corner and select Modify Shared Web Part.

NOTE Except for the properties exposed in the tool pane, the Report Viewer web part doesn't support further customi-
zation. For example, you cannot extend the report pane to validate the report parameters.

5. In the Tool pane, change the Report Viewer properties, as Table 17.4 shows.
6. Click Apply to save your changes. The Report Viewer web part displays the Sales by Territory

and Year report.

Figure 17.20 Use the
Report Viewer web part
for embedded reporting.

INTEGRATING WITH SHAREPOINT 629

Table 17.4 Report Viewer properties for the chart report

Category Property Setting Description

Report Report http://<servername>/reportsite/Shared
Documents/AMRS/chart.rdl

The report URL.

View Auto-Generate Web Part Title Unchecked Auto-generates the web part title.

 Prompt Area Collapsed Controls the appearance of the para-
meter pane.

Parameters Title Sales by Territory and Year The web part title.

 Height 600 pixels The web part height.

7. Repeat steps 1-5 to add a another instance of the Report Viewer web part in the Right Column
web zone and hook it to the gauge.rdl report. When configuring the web part, set the report
URL to http://<servername>/reportsite/Shared Documents/AMRS/gauge.rdl and the title to
Product Gross Profit Margin.

That's it! With a few clicks, you implemented a dashboard page that contains two Reporting
Services reports that convey insightful information about company performance.

Figure 17.21 The Report Explorer page lets you navigate the report catalog and view reports.

CHAPTER 17 630

17.4.2 Implementing Report Navigation
The Report Viewer web part implements IRowConsumer and IFilterValues interfaces to plug
in the SharePoint connectable web parts infrastructure. The IRowConsumer interface allows
the Report Viewer web part to receive information about the selected report from a web part
that implements the IRowProvider interface, such as the Shared Documents web part. If you
target MOSS, the IFilterValues interface lets you use the MOSS filter web parts to synchronize
the content of all Report Viewer web parts on the page. In this next section, I will demonstrate
how you can implement a Report Explorer page that lets the user navigate the report catalog
and view reports.

 Understanding the Report Explorer page
The Report Explorer page that you are about to create (see Figure 17.21) is similar to the
WebParts20 page that you authored in section 17.1.2. It lets the end user navigate the report
catalog and click a report to view it on a SharePoint site. It uses the default Shared Documents
web part to list the reports that you will display in the Report Explorer page.

Because you configured SharePoint and Reporting Services integration, you automatically
get all of the report-specific interactive features that are available for report definition (.rdl)
files when you access the report in a document library on the Report Explorer page. For ex-
ample, as shown in Figure 17.21, you can expand the report drop-down list to manage the
report.

The Report Explorer page leverages the Report Viewer version 3.0 web part for report
viewing. The Report Viewer web part is connected to the Shared Documents library. When
the user selects a report, the Shared Documents library passes information about the selected
report to the Report Viewer web part, which renders the report.

NOTE Due to an unfortunate bug with SharePoint, the connection between the Shared Documents library web part
and Report Viewer doesn't work if the document library has folders and the user navigates to folders to view reports.
The page refreshes but the report is not shown in the Report Viewer web part.

 Implementing the Report Explorer page
Implementing the Report Explorer page is straightforward; all it takes is adding and connect-
ing two web parts.

1. Create a new web part page and name it Report Explorer.
2. Click the Add Web Part link in the Header zone.
3. In the Add Web Parts dialog box, select the Shared Documents web part found under the Lists

and Libraries section.
4. In the Configuration Pane of the Shared Documents web part, expand the Toolbar Type drop-

down list and select Full Toolbar.
5. Click the Add Web Part link in the Footer zone and add the SQL Server Reporting Services

Report Viewer web part.

Next, you need to connect the Shared Documents web part to the Report Viewer web part.
6. Expand the Edit drop-down list of the Shared Documents web part and click Connections

Provide Row To Report Viewer.

Once the connection is established, the Shared Documents web part will show radio buttons
next to each report item to let the user select the item.

INTEGRATING WITH SHAREPOINT 631

17.4.3 Working with Filter Web Parts
As useful as it is, the Corporate Performance page, which you authored in section 17.4.1, has
one shortcoming. Both reports take a sales territory country as a parameter. Consequently, the
user has to change the parameter in each part to see the results for another country. The En-
terprise Edition of Microsoft Office SharePoint Server includes filter web parts that let you fil-
ter the content of connected web parts simultaneously. You can set the filter on the page by
selecting a value from a list of values that you obtained from an Analysis Services cube, a list of
static values, or a date filter.

Let's improve the Corporate Performance page by leveraging the MOSS filtering capabilities.
Figure 17.22 shows the new version of the page.

The Sales Territory web part in the header zone of the page is a SQL Server Analysis Services
Filter web part which is connected to the Adventure Works cube. I set its default value to
United States. The user can click on the filter button to open the Sales Filter Value(s) dialog
box, which displays the available territories. Once the end user makes a selection and clicks
OK, the page will refresh and the web parts will show data for the selected country.

 Creating an Office Data Connection file
Since our report draws data from an Analysis Services cube, we will use the SQL Server Analy-
sis Services Filter web part to obtain the parameter values from the Adventure Works cube. As
a prerequisite for using this filter part, we need to specify an Office Data Connection (.odc) file
to connect to the Adventure Works cube. The easiest way to create an Office Data Connection
file is through Microsoft Excel 2007.

TIP When the MOSS filter web parts are not enough, you can implement custom filter web parts. For example, you
may need to populate the filter list from a relational data source or validate the user selection before passing the value
to a report parameter. The MOSS SDK (see Resources) includes a sample that demonstrates how you can implement a
filter provider web part.

Figure 17.22 MOSS includes filter web parts to let you synchronize web part content.

CHAPTER 17 632

1. In Microsoft Excel 2007, click the Data tab.
2. Click the From Other Source button in the Get External Data ribbon group and select From

Analysis Services, as shown in Figure 17.23, to open the Data Connection Wizard.

3. Use the Data Connection Wizard to configure a connection to the Adventure Works cube.
4. By default, the wizard will save the .odc file in the My Documents\My Data Sources folder.

You can change the location in the Save Data Connection File and Finish step.
5. In the Adventure Works MOSS portal, go to the Report Center (Reports tab), and click the

Data Sources link found under the Resources section in the Quick Launch menu.
6. Upload the Office Data Connection file you've just created.

 Configuring the Filter web part
Once the Office Data Connection file is in place, you are ready to use the SQL Server Analysis
Services filter web part.

1. Open the Corporate Performance page in Edit mode.
2. Click the Add Web Part link in the Header zone.
3. In the Add Web Parts dialog box, scroll down to the Filters section and select the SQL Server

Analysis Services filter web part.
4. Click the Open the Tool Pane link inside the filter web part.
5. Configure the filter web part as shown in Table 17.5.

Table 17.5 Report Viewer properties for the filter web part

Category Property Setting Description

Filter Filter Name Sales Territory The filter name to identify the filter.

 Office Data Connection File /Reports/Data Connections/Adventure
Works.odc

The path to the .odc file.

 Dimension Sales Territory The cube dimension.

 Hierarchy Sales Territory Country The web part title.

 Require User to Choose a Value Checked When checked, forces the user to select a
value.

 Default Value [Sales Territory].[Sales Territory Coun-
try].&[United States]

The default filter value.

Appearance Title Sales Territory The filter title to display on the page.

Figure 17.23 Use Microsoft
Excel 2007 to create an Office
Database Connection file.

INTEGRATING WITH SHAREPOINT 633

Once you specify the path to the Office Data Connection file, the filter part will connect to the
cube and retrieve the cube metadata to help you set up the Dimension and Hierarchy proper-
ties. The Sales Territory filter should look like the one in Figure 17.24.

Figure 17.24 The Sales Territory filter before it is connected.

 Connecting the web parts
The filter web part is not useful if it is not connected to another web part. Follow these steps
to connect the Report Viewer web parts to the Sales Territory filter.

1. Expand the Edit drop-down menu of the Sales by Territory and Year web part.

2. Select Connections Get Report Parameters From Filter: Sales Territory menu, as shown
in Figure 17.25. Alternatively, expand the Edit drop-down menu of the Sales Territory filter
web part and choose Connections Send Filter Values To Sales by Territory and Year.

SharePoint displays the Configure Connections dialog box, as shown in Figure 17.26. Com-
patible web parts that support connections can discover each other at design time. This is why
the Report Viewer web part, which is implemented as a filter consumer, discovers the filter
web part, which is implemented as a filter provider.

Because the Sales by Territory and Year report has a single parameter, the Configure Connec-
tion dialog box defaults to this parameter. If it includes multiple parameters, you can expand
the Filter Parameter drop-down and select which parameter you want to connect to the filter
web part.

Figure 17.25 Connect the Report Viewer web part to the Sales Territory filter web part.

Figure 17.26 Compatible
web parts discover each
other at design time.

CHAPTER 17 634

3. Click Finish to finalize the connection.

To let you know that it is connected, the Sales Territory filter displays the following text:
Sending values to: Sales Territory and Year

In addition, the Report Viewer web part hides the Prompt area because its parameter obtains
its values from the filter.

4. Repeat steps 1-3 to connect the Product Gross Profit Margin web part to the Sales Territory
filter web part.

5. Change the value of the Sales Territory filter web part.

The Corporate Performance dashboard page refreshes and the reports detect and use the new
parameter values. If you want to disconnect the filter, use Connections Get Report Parame-
ters From Filter: Sales Territory menu again. In the Configure Connection dialog box, click
Remove Connection button.

17.5 Summary
SharePoint is Microsoft’s premium tool for document management and collaboration. A com-
mon business intelligence need is integrating Reporting Services with SharePoint. Reporting
Services supports two integration options to meet different deployment and functionality re-
quirements. The partial integration option lets you quickly configure SharePoint for report
navigation and viewing, but is more difficult to manage. Full integration supports all Share-
Point document management features but requires configuring the report server in SharePoint
integration mode.

You can use the Report Viewer web part to embed reports on SharePoint pages. I showed
you how to assemble dashboard pages from existing reports that display vital company per-
formance metrics, such as KPIs. If you target Microsoft Office SharePoint Server, you can leve-
rage its filtering capabilities to synchronize the content of multiple web parts.

17.6 Resources
Download Windows SharePoint Services 3.0 with Service Pack 1

(http://tinyurl.com/2bjvpr)—The Windows SharePoint Services download page.
Understanding Workflow in Windows SharePoint Services and MOSS

(http://tinyurl.com/2qxvnv)—Learn the basics of the Windows Workflow Founda-
tion and how this technology has been integrated into both Windows SharePoint
Services and the 2007 Office System.

The Microsoft Office SharePoint Server 2007 SDK
(http://tinyurl.com/36n8fc)—The Microsoft Office SharePoint Server 2007 SDK
contains conceptual overviews and code samples to guide you in developing solu-
tions based on Microsoft Office SharePoint Server 2007.

635

 Extensibility
With Reporting Services, you are not limited to a fixed set of features. Its modularized and
extensible architecture lets developers plug in custom modules in the form of extensions to
accommodate future growth. This part of the book discusses the implementation details of
several custom extensions that enhance the report server capabilities

First, you'll learn how to implement custom data extensions to extend the Reporting Ser-
vices data architecture. The sample custom dataset extension lets you bind an ADO.NET data-
set to a server report—a scenario not natively supported by Reporting Services.

Out of the box, the report server is configured for Windows security. However, some re-
porting solutions, such as Internet-facing applications, may rule out Windows security and
Active Directory. Fortunately, you can replace the Windows-based security model with a cus-
tom security extension. The sample security extension demonstrates how you authenticate
users from a database profile store and authorize them using custom security rules.

Out of the box, Reporting Services can deliver subscribed reports to e-mail recipients,
Windows folders, and SharePoint document libraries. However, you can write a custom deli-
very extension to send the report to other destinations if needed. To practice this extensibility
scenario, you'll implement a Web service delivery extension that sends reports to a Web ser-
vice.

You can also extend the data visualization capabilities of Reporting Services by implement-
ing custom report items. The Progress Tracker sample demonstrates how you can convert a
.NET Windows Forms control into a report item to render progress indicators on reports.

Finally, report definition customization extensions are a new extensibility mechanism with
Reporting Services 2008. They let you change report definitions dynamically based on factors
such as report parameters and the identity of the interactive user.

PP AA RR TT

637

CChhaapptteerr 1188

Extending Data Access

18.1 Understanding Custom Data Processing Extensions 637
18.2 Using Custom Dataset Extensions with Reports 640
18.3 Implementing Custom Data Processing Extensions 645

18.4 Deploying and Debugging 651
18.5 Summary 655
18.6 Resources 655

Since its first release, Reporting Services has supported a plethora of data sources. Out of the
box, its data modules (called data extensions) let you build reports from SQL Server relational
databases, Analysis Services cubes, Oracle databases, and any other database that comes with
an OLE DB or ODBC provider. But what if you want to build a report from a data source that
isn't a database or doesn’t have a provider? For example, suppose your business requirements
include binding a server report to an ADO.NET dataset. Thanks to the Reporting Services ex-
tensible architecture, you can meet advanced data integration requirements by implementing a
custom data processing extension.

This chapter shows you how to take advantage of the unique extensibility model of Re-
porting Services by building a custom data processing extension that uses an ADO.NET data-
set as a report data source. To help users set up the dataset definition at design time, you will
learn how to implement a custom query designer that runs in Report Designer. Finally, I will
show you how to deploy and debug a custom data processing extension. You will need Visual
Studio 2008 to work with the source code for this chapter.

18.1 Understanding Custom Data Processing Extensions
A data processing extension in Reporting Services is a module that the report server uses to
retrieve report data at run time. It implements specific interfaces and returns a flattened rowset
that is merged into the report layout before it is rendered in a visual format. Depending on the
data source type you are using, the data processing extension might even optimize the query
before sending it to the database server.

A custom data processing extension is a .NET module that pushes the report server data
access capabilities in new directions. You might create a custom data processing extension to
access additional data source types that are not supported off the shelf, or to build-in data
conversion or manipulation functionality before passing the data back to the report.

A custom data processing extension must follow certain rules and implement a few pro-
gramming interfaces. At design time, the report designer calls these interfaces to understand
the data structure, such as what parameters it supports and what fields are provided in the
dataset. At run time, the report server interacts with the data processing extension to retrieve
the custom dataset and bind it to the report.

CHAPTER 18 638

18.1.1 Choosing a Data Integration Approach
Implementing a custom data processing extension requires solid experience in .NET and inter-
face programming. Before you decide to invest in creating a custom data processing extension,
it's worth exploring other data integration options for accessing non-standard data sources
that require less effort. Table 18.1 summarizes these options, the effort required for their im-
plementation, and recommended usage scenarios.

Table 18.1 Data integration options for non-standard data sources

Approach Effort When to use

ReportViewer Controls
(local mode)

Low Generating a local report and binding it to an ADO.NET dataset or a
collection-based object.

XML Data Provider Low Reporting from ADO.NET datasets or XML documents from URL-
addressable resources, such as Web services.

CLR stored procedure Medium Preparing a dataset in a SQL Server 2005+ database.

Custom data processing extension High Reporting from custom data sources.

 ReportViewer controls
The first option to consider is the ReportViewer controls that ship with Visual Studio. You can
embed the ReportViewer controls in a Windows form or Web page. Both ReportViewer Win-
dows Forms and Web server controls provide equivalent functionality; they host a rendered
report directly in a custom application that you write. You can configure these controls for
local report processing where the application is responsible for supplying the report data.

In local-processing mode, the application binds a local report to various collection-based
objects, including ADO.NET regular or typed datasets. If you need to distribute your reports
as a part of your application and you don't need to deploy them to the report server, the Re-
portViewer controls may be the way to go. I discussed the ReportViewer controls in chapter
15. You can refer to that chapter if you think this approach best fits your needs.

 XML data provider
Reporting Services includes an XML data provider that supports using XML documents as a
data source. Consider using the XML data provider if you need to integrate your report with
URL-addressable providers that return XML documents. For example, your report might con-
nect to a Web service that passes back an XML document or an ADO.NET dataset that is seria-
lized to XML. I demonstrated this scenario in chapter 4 where I showed you how to use the
XML data provider to invoke a Web service and use the returned ADO.NET dataset as a data
source.

 CLR stored procedures
A third possibility is to prepare the dataset in the database. For example, if your application
targets SQL Server 2005 or later, you could implement a CLR stored procedure to build the
dataset. Consider this option when you need to extract data from many table objects but want
to avoid multiple roundtrips from the application to the database. Chapter 4 demonstrates this
integration scenario as well.

EXTENDING DATA ACCESS 639

 Custom data processing extension
Finally, you can consider implementing a custom data processing extension. This approach
gives you the most flexibility, but requires the most effort. The rest of this chapter is all about
understanding and implementing this data integration option. As with the other Reporting
Services extensibility features, custom data processing extensions are supported only with
Standard and Enterprise editions. Report Builder 2.0 doesn't support custom data processing
extensions with local mode processing.

18.1.2 Introducing the Dataset Custom Data Processing Extension
Why should you use a custom data processing extension? As I mentioned earlier, you might
want to create a custom data processing extension to report on a data source that isn’t sup-
ported out of the box or you require additional processing on the data before it is merged into
the report layout. As shipped, Reporting Services doesn’t support binding a server report to an
ADO.NET dataset. Yet many integration scenarios require a custom application to pre-process
the data before handing it off to a report. For example, you might need a custom application
that retrieves a dataset from the middle tier, updates the data based on some business rules,
and passes the dataset to a server report. This is exactly the scenario my Dataset data
processing extension is designed to handle.

Building this data processing extension is useful on many levels. In addition to picking up
the skills necessary for implementing, debugging, and deploying the extension, you will learn
how to create and deploy a custom query builder that runs in Report Designer.

 Understanding design goals and limitations
Custom data processing extensions can be complex. When I started on the Dataset data
processing sample, I tried to strike a reasonable balance between features and simplicity. To
that end, the Dataset sample has the following high-level design objectives:
 It supports both serialized and file-based ADO.NET datasets. In the first case, the applica-

tion serializes the dataset to XML and passes it as a report parameter. In the latter case, the
application passes the full path to the dataset file to the report. A file-based ADO.NET da-
taset is useful at design time when you need to work with the dataset definition.

 It includes a custom query designer to help the report author configure the data
processing extension at design time.

 It lets the report author select an arbitrary table in a multi-table dataset. Having multiple
tables could be useful when you need multiple report datasets from the same ADO.NET
dataset.

 It maps the dataset XML schema to fields in the report dataset and preserves the dataset
field types. This lets the report author use the familiar drag-and-drop technique to lay out
the report.

The implementation of the Dataset extension is also subject to the following limitations:
 Uploading large datasets from the application to the report server may impact server per-

formance.
 ADO.NET data relations and joining dataset tables are not supported. However, you can

enhance the Dataset sample to support this scenario or tailor it to meet other data integra-
tion needs.

CHAPTER 18 640

 Due to its query parameter size limitation, the URL access option for requesting dataset-
bound reports is impractical for this sample. If you require URL access to a report, your
application should integrate with the Report Server Web service to pass the serialized
ADO.NET dataset via SOAP. That said, URL addressability is certainly possible in a data
processing extension similar to the Datasets sample if you work with file-based datasets
where the application passes the file path only.

Let's now see how the Dataset data processing extensions fits into the report server architec-
ture.

Figure 18.1 The figure
shows the high-level integra-
tion view for using the Dataset
custom data processing ex-
tension to bind an ADO.NET
dataset to a report.

Understanding Data Processing Integration
Figure 18.1 shows a typical integration scenario that leverages the Dataset data processing ex-
tension. The client application, either Windows Forms or web-based, is responsible for pre-
paring the ADO.NET dataset. The client serializes the dataset to XML and passes it as a
parameter to a report that is configured to use the Dataset extension.

While processing the report, the report server discovers that the report uses the Dataset
extension and sends to it the serialized dataset. The Dataset extension de-serializes the dataset
back to an ADO.NET dataset and exposes it as an SSRS-compatible object that implements the
required interfaces. Finally, the report server navigates the dataset in a forward-only fashion
and populates the report with data.

18.2 Using Custom Dataset Extensions with Reports
Before delving into the implementation details, let's see the Dataset extension in action. First, I
will show you how to use it at design time for report authoring. Next, you will see how client
applications can bind application datasets to reports that use the Dataset extension.

If you want to skip the implementation steps, you will find in the book source code a Re-
ports project that includes a TestDS report that you can use to test the Dataset extension. I
also included WinTestHarness and WebTestHarness projects that demonstrate how Windows
Forms and ASP.NET client applications can generate reports from ADO.NET datasets.

18.2.1 Using the Extension at Design Time
After installing and registering the Dataset extensions, the process of authoring a report that
uses it is the same as using any of the standard data providers. This includes setting up a data
source, a command statement, and a report dataset definition. Once the dataset definition is
ready, you can drag and drop fields to lay out the report.

EXTENDING DATA ACCESS 641

 Preparing the ADO.NET dataset file
At run time, the application passes the ADO.NET dataset to a report parameter. At design
time, however, you cannot pass an ADO.NET dataset to the Report Designer. Setting a default
value of the report parameter is not practical either. Instead, save your dataset to a file and
point the Dataset extension to the file location. You can save the schema of a regular or typed
ADO.NET dataset programmatically, as follows:
System.Data.DataSet ds = GetData(); // get ADO.NET dataset from somewhere
ds.WriteXmlSchema(@"c:\DatasetSalesOrder.xsd"); // saves only the schema to disk

First, you need to obtain an ADO.NET dataset that will have the same schema as the applica-
tion dataset that supplies the report data. Then, you call the dataset's WriteXmlSchema me-
thod to save the dataset as a disk file. Having only the schema is sufficient to prepare the
report dataset definition and lay out the report. However, the report won't show any data
when you preview it. Therefore, I recommend you include both the dataset schema and data
in the file, as follows:
System.Data.DataSet ds = GetData(); // get ADO.NET dataset from somewhere
ds.WriteXml(@"C:\DatasetSalesOrder.xml", System.Data.XmlWriteMode.WriteSchema); //saves schema and data

The WriteXml method with the WriteSchema option serializes both the data and the schema.
In the book source, you will find a sample file (DatasetSalesOrder.xml), which you can use to
test the TestDS report. It includes an extract from the Adventure Works sales order data.

Figure 18.2 If the Dataset
extension is deployed and regis-
tered properly, it will appear in
the Type drop-down list.

 Setting up the report dataset
Once you have a dataset file, you are ready to author a report that uses the Dataset extension.
Start authoring the report by setting up a data source. The next steps assume that you will use
the BIDS Report Designer.

1. Create a new report in Report Designer.
2. In the Report Data window, expand the New button and click New Data Source.
3. In the Data Source Properties step, expand the Type drop-down list and select the Dataset

Extension, as shown in Figure 18.2. If you don't see the Dataset Extension in the list, it is not
registered with the Report Designer. Go to section 18.4.1 and verify the deployment steps.

CHAPTER 18 642

4. The Dataset extension doesn't connect to a data source because the application passes the data
to the report at run time. This is why we leave the connection string field empty. Switch to the
Credentials tab and verify that the Use Windows Authentication (Integrated Security) option is
selected. Click OK to create the data source.

NOTE Since the Dataset extension doesn't establish a connection, the credential settings are irrelevant. However, if you
select the No Credentials options, the report server will attempt to authenticate using the unattended execution account. If
you haven't set up the unattended execution account, the server report will fail at run time. Therefore, if your extension
uses the No Credentials option, remind yourself to set up the unattended execution account before you run the server
report. You can use the Reporting Services Configuration Manager to configure the unattended execution account.

5. In the Report Data window, right-click DataSource1 and click Add Dataset. Click the Query
Designer button.

If you have registered the Dataset Query Designer that's included in the Dataset extension, you
will see its user interface, as shown in Figure 18.3. Otherwise, the generic query designer will
be shown.

Figure 18.3 You can imple-
ment a custom query designer
to help end users work with
your custom data processing
extension in Report Designer.

Just like the SQL Server and Analysis Services data providers, your custom data processing
extension can include a custom query designer to help the end user define the dataset query at
design time. If you are creating a simple data processing extension that doesn't require a cus-
tom query designer, you can use the Microsoft-provided generic query designer.

The Dataset extension includes a custom Dataset Query Designer that lets you specify the
path to the dataset file and the name of the dataset table that will be used for reporting. As
with the standard query designers, you can execute the query by pressing the Run (!) button
on the query designer toolbar.

6. Click the Browse button or the Open toolbar button to specify the location of the DatasetSale-
sOrder.xml dataset file.

7. In the Table Name text box, enter the name of the dataset table. You can enter Nothing to let
the Dataset extension use the first table. Or, you can enter SalesOrderHeader because the first
table in the DatasetSalesOrder dataset is called SalesOrderHeader.

EXTENDING DATA ACCESS 643

8. Click Run (!) on the toolbar to execute the query and retrieve data. The data processing exten-
sion de-serializes the DataSetOrder.xml file to an ADO.NET dataset object and shows its data
in the Results grid.

9. Click the Edit As Text toolbar button to switch to the generic query designer and see the
command text. Note that the Dataset Query Designer has generated the following command:
C:\DatasetSalesOrder.xml|Nothing

NOTE As noted, the Dataset sample supports both an instance of an ADO.NET dataset and a path to a dataset file.
This complicates the command text somewhat because in the latter case the command must include both the file path
and the table name. To make the things easier, I came up with the convention FilePath|TableName for the command
text when a dataset file is used as a data source. The custom extension parses the command text to extract these two
identifiers.

10. Click Run (!) to test the dataset again.
11. Click the Edit As Text toolbar button to switch back to the Dataset Query Designer. As long as

the command text follows the FilePath|TableName format, you can make changes in both de-
signers and your changes will be preserved when you toggle between them.

12. Click OK to return to the Dataset Properties dialog. Click OK to create the report dataset.
13. If the Report Data window is not visible, press Ctrl+Alt+D to open it.

The Report Data window should show the dataset. The dataset should have four fields:
SalesOrderID, CustomerID, PurchaseOrderNumber, and OrderDate.

Figure 18.4 At run time, the client appli-
cation passes the application dataset to
the hidden DataSource parameter.

 Setting up report parameters
As noted, at run time, the client application passes the ADO.NET dataset as a report parame-
ter. The Dataset Extension notifies the query designer that it supports a DataSource parameter.
Consequently, the Report Designer should have created a DataSource report-level parameter
and linked it to the query DataSource parameter. If this is not the case, follow these steps to
create a DataSource parameter that will accept the run-time dataset.

1. In the Report Data window, right-click on the Parameters node and choose Add Parameter.
2. Create a DataSource parameter, as shown in Figure 18.4.

CHAPTER 18 644

3. Check the Hidden checkbox to hide the parameter from the end user.
4. Optionally, specify a default parameter value. Switch to the Default Values tab and select the

Specify Values option. Click the Add button and enter the file path to the dataset file, such as
C:\DatasetSalesOrder.xml|Nothing.

Having a default parameter value is useful if you want to test the report in the Report Manager
and use a dataset file as the report data source. The next step is very important. To pass the
dataset to the data processing extension successfully, you must link the report-level Data-
Source parameter to a query parameter. This step is required because only query parameters
can be passed to a custom data extension.

5. In the Report Data window, double-click DataSet1 to open the Dataset Properties dialog box.
6. Select the Parameters tab.
7. If there are no parameters defined, press the Add button and enter @DataSource as a parame-

ter name, as shown in Figure 18.5.

Figure 18.5 Link the report pa-
rameter to a query parameter so
the report server can pass the
report parameter value to the data
processing extension at run time.

8. Expand the Parameter Value drop-down and select the [@DataSource] report-level parameter.

If you press the fx button next to the parameter, you will see that the [@DataSource] expres-
sion placeholder represents the expression =Parameters!DataSource.Value. When the report is
processed, the report server passes the value of the DataSource report-level parameter to the
DataSource query-level parameter, which is passed subsequently to the Datasets data
processing extension.

From here, proceed with report layout as usual. For example, to create a table report, you
drag and drop dataset fields to it. Once you are satisfied with the results, deploy the report to
the report server.

18.2.2 Understanding Runtime Interaction
Once the report is deployed to the server, a custom application can feed the report with an
ADO.NET dataset. The source code that accompanies the book includes Windows Forms
(WinTestHarness) and ASP.NET (WebTestHarness) projects that demonstrate how custom
applications can use the Datasets sample. The test projects leverage the ReportViewer controls
to generate the TestDS report. If, for some reason, you cannot use the ReportViewer controls
in your application, you can call the ReportExecutionService.Render method (see Resources),
which is what the controls do behind the scenes.

EXTENDING DATA ACCESS 645

 Rendering the report
Thanks to the fact that the ReportViewer controls simplify access to the Report Server Web
service, generating the TestDS report is straightforward.
private void RunRemote() {
 reportViewer.ProcessingMode = Microsoft.Reporting.WinForms.ProcessingMode.Remote;
 reportViewer.ServerReport.ReportServerUrl = new Uri(txtReportServer.Text);
 reportViewer.ServerReport.ReportPath = "/AMRS/TestDS";
 // Bind the dataset
 SetParameters();
 reportViewer.RefreshReport();
}

The code configures the ReportViewer for remote mode since we will be requesting a server
report. Then, the code sets the ReportServerUrl property, such as
http://localhost/ReportServer, and the ReportPath property to the full path of the server report.

 Binding the dataset
Next, the code calls SetParameters to pass the dataset as a report parameter.
private void SetParameters() {
 ReportParameter[] parameters = new ReportParameter[1];
 EntitySalesOrder entitySalesOrder = new EntitySalesOrder();
 sqlDataAdapter.Fill(entitySalesOrder);
 parameters[0] = new ReportParameter("DataSource", entitySalesOrder.GetXml());
 reportViewer.ServerReport.SetParameters(parameters);
}

For testing purposes, the code loads the ADO.NET dataset from a file. In real life, as long as it
conforms to the dataset schema used by the report, the dataset can come from anywhere, in-
cluding a business logic layer. Next, the code creates a new DataSource parameter. The code
obtains the XML payload of the dataset by calling the GetXml method and passes it to the Da-
taSource parameter. Finally, the code calls the RefreshReport method of ReportViewer to
submit the report request and render the report.

18.3 Implementing Custom Data Processing Extensions
Now that you've seen the Dataset data processing extension in action, let's take a closer look at
the implementation. First, I will walk you through the code of the data processing module.
Then, I will discuss the internals of the custom query designer. You can find the Dataset
source code in the CustomDataProcessingExtension project that comes with this book.

18.3.1 Understanding the Classes and Interfaces
Microsoft provides a sample data processing extension called FsiDataExtension (see Re-
sources) that shows you how to use the data processing interfaces. After working with this
sample, I found that creating my own custom extension to be straightforward. In a nutshell,
the process involves coding several classes that implement standard interfaces provided by
Reporting Services.

These interfaces are defined in the Microsoft.ReportingServices.Interfaces assembly located
in the \Program Files\Microsoft SQL Server\100\SDK\Assemblies folder. Your custom data
processing project needs to reference this assembly. You will also need to reference the Micro-
soft.ReportingServices.QueryDesigners assembly in the \Program Files\Microsoft SQL Serv-

CHAPTER 18 646

er\100\Tools\Binn\VSShell\Common7\IDE folder. Table 18.2 lists the standard data processing
extension classes and interfaces and shows whether the Dataset extension uses them.

Table 18.2 A custom dataset extension has several classes that implement standard interfaces

Class Interfaces Purpose Used in the sample

DsConnectionWrapper IDbConnection, IDbConnec-
tionExtension, IExtension

Establishes a database connection.

DsTransaction IDbTransaction Enlists the database commands in a the data
source transaction.

DsCommand IDbCommand,
IDbCommandAnalysis

Handles the report query statement.

DsDataParameter IDataParameter Represents a query parameter.

DsDataParameterCollection IDataParameterCollection Represents a collection of the query parameters.

DsDataReader IDataReader Handles the access to the dataset data.

If you have implemented a custom .NET data provider, you will find the Reporting Services
and ADO.NET classes and interfaces very similar. Based on your data requirements, you may
find that most of these classes require either minimal or no code. For example, because the
sample Dataset extension doesn't establish a database connection, it doesn't use the DSCon-
nectionWrapper class.

 Understanding runtime interaction
To understand the implementation details, you first need to understand how the report server
interacts with the data processing extension at run time. As Figure 18.6 shows, the report
server first asks the data processing extension to open a connection to the data source, passing

Figure 18.6 At run time, Reporting Services invokes the custom data processing extension interfaces to
configure the extension and retrieve data.

EXTENDING DATA ACCESS 647

the connection string. Next, the report server calls IDbConnection.CreateCommand to obtain
a reference to a command object that it uses to send the query.

The report server then calls the IDbCommand.CreateParameter method as many times as
needed to create all query parameters. The custom data processing extension class that
represents a query parameter must implement the IDataParameter interface. This allows the
report server to configure the parameter and add it to an object that implements IDataParame-
terCollection.

After populating the parameter collection, the report server calls the IDataRead-
er.ExecuteReader method of the Command object, which is responsible for retrieving data
from the data source and exposing the data as an object that implements IDataReader inter-
face. For each field in the report dataset, the report server calls the IDataReader interface's Ge-
tOrdinal method to get the positional index of that field in the reader field collection. Later,
the report server will ask for the value of the field by its positional index.

After matching the fields of the report dataset with the fields of the data processing exten-
sion DataReader, the report server begins retrieving data in a forward-only fashion by calling
IDataReader.Read until it reaches the end of the rowset. The reader field values are retrieved
via calls to the IDataReader.GetValue method.

Now that you know about the data processing sequence of events, let’s drill down into the
implementation details.

 Handling connections
As noted, the Dataset extension doesn’t connect to a data source because it gets everything it
needs from the query parameter as a serialized dataset or a path to file. But if you build an ex-
tension that needs to connect to a data source, you must implement the IDbConnection inter-
face. The most important method on this interface is IDbConnection.Open. Before calling this
method, the report server will pass the data source properties that were set at design time to
the IDbConnection properties, including the connection string, which you can get from Con-
nectionString property.

The IDbConnectionExtension interface defines methods for authenticating the user to the
data source. For example, it passes the user name and password that the report author has
entered in the data source properties. The IExtension interface specifies two methods: SetCon-
figuration and LocalizedName. The report server calls SetConfiguration to pass the extension
configuration section as defined in the report server configuration file (rsreportserver.config).
For example, the administrator can create a configuration section that specifies the default lo-
cation of the dataset file. Before the report server gives control to the data processing exten-
sion, it gives the extension a chance to configure itself by passing the configuration section as
an XML fragment. The Dataset extension doesn't need configuration settings.

The LocalizedName method should return the localized name of the extension based on
the thread culture. The report server shows this name in Report Designer when you configure
the report data source and in Report Manager.

 Implementing a command object
If you have done any ADO.NET programming, you know that you need to create a command
object to retrieve data. Similarly, the DsCommand class represents the data processing exten-
sion command object. It stores the actual command statement. Recall that the command
statement of the Dataset extension must be in the format FilePath|TableName. At design time,
the command statement includes everything the extension needs to retrieve the data from the
dataset file. Therefore, the DsCommand object doesn't define any parameters.

CHAPTER 18 648

If your custom data processing extension needs to support design-time parameters, con-
sider implementing the IDbCommandAnalysis.GetParameters method. For example, if the
parameters are defined as placeholders inside the query text, GetParameters would parse the
query text and return a parameter collection. In our case, the GetParameters method simply
verifies the syntax of the statement, and raises an error if it doesn't follow the File-
Path|TableName format.

TIP You can help the Report Designer discover the query parameters at design time so it can prompt the user for their
values. To support this feature, implement the IDbCommandAnalysis interface in the Command object. This interface
exposes a single method called GetParameters. When you click on the Exclamation toolbar button to run the report
query, the Report Designer probes the extension to find out if it implements this interface, and if so, calls the GetPara-
meters method. This method is responsible for parsing the query string set at design time and returning a collection with
the parameter placeholders.

The DsCommand object is responsible for preparing and returning a DataReader object that
implements the IDataReader interface. The ExecuteReader method handles this.
public IDataReader ExecuteReader()
{
 if (m_parameters.Count == 0 ||
((DsDataParameter)m_parameters[0]).Value.ToString().IndexOf(Util.PARAM_DELIMITER) > -1)
 SetParametersFromCommandString();
 DsDataReader reader=new DsDataReader(m_connection,this.CommandTextWithoutParameter,m_parameters);
 reader.LoadDataset();
 return reader;
}

When the report server needs data, it calls the ExecuteReader method. First, the ExecuteRead-
er method verifies the parameters. Depending on the context in which the method is called,
this step will be addressed in one of these ways:
 No parameters—At design time, there will be no parameters because the command text

provides everything the extension needs. The Dataset extension extracts the file path and
table name from the command text.

 One parameter that contains the file path—At design time, the Dataset Query Designer
passes this parameter when the user executes the query. The Dataset extension doesn't
need to parse the command text.

 One parameter in the format FilePath|TableName—At run time, if you run the report in
Report Manager, there will be one parameter in the format FilePath|TableName. The Data-
set extension extracts the file path and table name from the command text.

 One parameter that contains an instance of the ADO.NET dataset. At run time, the custom
application will pass the dataset instance to the DataSource parameter.

Next, ExecuteReader instantiates a new DsDataReader object and passes the connection string,
command text, and parameters. Finally, ExecuteReader calls the LoadDataset of the reader
object to prepare the dataset and returns the reader object to the report server.

 Implementing DataReader
The DataReader object is the workhorse of the data processing extension. It is responsible for
preparing the report dataset and providing forward record navigation. The most interesting
method is LoadDataset.

EXTENDING DATA ACCESS 649

internal void LoadDataset() {
 string dataSource = null;
 DsDataParameter parameter = m_parameters.GetByName(Util.DATA_SOURCE) as DsDataParameter;
 dataSource = parameter.Value.ToString();
 m_dataset = GetDataSet(dataSource);
 if (m_cmdText.Trim().ToLower()=="nothing")
 m_datatable = m_dataset.Tables[0];
 else
 m_datatable = m_dataset.Tables[m_cmdText];
 m_ie = m_datatable.Rows.GetEnumerator();
}
private DataSet GetDataSet(string dataSource) {
 DataSet dataset = new DataSet();
 if (dataSource.IndexOf("<") >=0) {
 StringReader reader = new StringReader(dataSource);
 dataset.ReadXml(reader);
 }
 else {
 FileIOPermission permission = new FileIOPermission(FileIOPermissionAccess.Read, dataSource);
 permission.Assert();
 dataset.ReadXml(dataSource);
 }
 return dataset;
}

First, LoadDataset gets the value of the DataSource parameter and passes it to the GetDataSet
helper function. GetDataSet uses a simple algorithm to check what the parameter contains. If
the value of the DataSource parameter starts with "<", GetDataSet assumes that DataSource
contains a serialized ADO.NET dataset, in which case it deserializes the parameter value back
to an ADO.NET dataset.

Otherwise, GetDataSet assumes that the parameter value specifies the path to the dataset
file. Note that I am specifically demanding a read Code Access Security (CAS) permission to
the physical file. Regardless of the fact that you will configure the extension assembly for full
access, CAS is layered on top of operating system security and you need to demand the re-
quired permission in order for the call to succeed.

The rest of the DsDataReader code implements the IDataReader standard property and
methods, such as methods for providing a forward-only enumerator (Read method), returning
the field count (FieldCount property), getting a field value (GetValue method), and so on.

18.3.2 Implementing the Dataset Query Designer
Reporting Services lets you build in custom query designers to support any custom data
processing extensions that you provide. Similar to a custom extension, a custom query design-
er is a .NET module that implements a standard interface. Unlike a custom extension, a cus-
tom query designer has a visible interface. At design time, the report author uses the user
interface to define the data processing command statement.

Query designers can provide complex graphical interfaces that abstract the technicalities
of the targeted data sources. Take for example the SQL Server and Analysis Services graphical
query designers, which you are already familiar with. In short, consider implementing a cus-
tom query designer when the built-in generic query designer is not enough.

 Understanding IQueryDesigner interface
A custom query designer must implement the IQueryDesigner interface, which is currently
not documented. Table 18.3 lists the methods of the IQueryDesigner interface.

CHAPTER 18 650

Table 18.3 The IQueryDesigner methods

Method Purpose Used in the sample

ServiceProvider property Lets the custom query designer access the services provided by the Report
Designer host.

Connection property Passes the connection string to the query designer.

Command property Passes and returns the command text.

InitializeQueryDesigner method Lets the query designer inform the Report Designer if it has initialized suc-
cessfully.

QueryDesigner property Returns a reference to the UI control.

Toolbar property Returns a reference to the query designer toolbar.

EnableAltDesignerChanged event Provides a communication mechanism between the custom query designer
and the generic query designer, such as enabling or disable the toolbar
buttons.

OnActivateView Lets the query designer update its UI before activating it.

OnDeactivateView Gives the query designer a chance to perform tasks before the Report De-
signer deactivates it.

Let's see how the Dataset Query Designer uses the IQueryDesigner interface.

 Understanding design-time Interaction
A custom query designer is used only at design time. You access the custom query designer by
right-clicking the dataset in the Report Data window and choosing Edit Query. The Report
Designer determines which query designer to load. If a custom query designer is registered in
the Report Designer configuration file and the rd:UseGenericDesigner property of the Query
element in the report definition is False (or the rd:UseGenericDesigner property is not
present), the Report Designer will attempt to load the custom query designer.

Next, the Report Designer calls the ServiceProvider property to pass a reference to the Re-
port Designer host. The custom query designer can use the ServiceProvider property to get
access to the services provided the Report Designer host. The Dataset Query Designer doesn't
use any of the services. The Report Designer passes a reference to the DsConnection object
that the Dataset extension implements. A custom query designer can use this object to obtain
the connection string if it needs to connect to the data source. Next, the Report Designer calls
the Command property and passes a reference to the DsCommand object. The Dataset Query
Designer retrieves the command text, parses it to obtain the file path and the dataset table
name, and passes this information to the user interface.

Then, the Report Designer asks the custom query designer if it has initialized itself suc-
cessfully by calling the InitializeQueryDesigner property. As optimistic as it is, the Dataset
Query Designer doesn't perform any internal checks and always confirms a successful initializ-
tion. The Report Designer follows by calling the QueryDesigner property to obtain a reference
to the user interface. Your custom data processing extension can pass back a reference to any
Windows Forms control. Since the user interface will be hosted inside the Report Designer,
the Dataset Query Designer returns a reference to the panel control on the QueryDesignerUI
form.

EXTENDING DATA ACCESS 651

 Implementing a custom toolbar
Next, the Report Designer invokes the Toolbar property to check if there are any items to add
to the Report Designer toolbar. The standard toolbar of the Report Designer provides the Edit
as Text and Import toolbar buttons. The Edit as Text toolbar button lets you switch to the ge-
neric query designer. The Import toolbar button lets you import query statements from exter-
nal *.sql or *.rdl files.

Your custom query designer can add additional buttons if needed. The Dataset Query De-
signer prepares a custom toolbar with Open and Execute buttons (see again Figure 18.3) and
hooks their ButtonClick events to event handlers inside the Dataset Query Designer. The user
can press the Open button to select a dataset file and the Execute button to run the dataset
query. When the user presses the Execute button, the QueryDesignerUI form calls the Execu-
teCommand method.
public void ExecuteCommand(IDbCommand command) {
 IDataReader reader = null;
 command.CommandText = this.TableName;
 ((DsDataParameterCollection)command.Parameters).Clear();
 command.Parameters.Add(new DsDataParameter(Util.DATA_SOURCE, txtPath.Text));
 reader = command.ExecuteReader(CommandBehavior.SingleResult);
 System.Data.DataTable dataTable = new System.Data.DataTable();

 for (int i = 0; i < reader.FieldCount; i++) {
 string fieldName = reader.GetName(i);
 dataTable.Columns.Add(fieldName);
 }

 while (reader.Read()) {
 System.Data.DataRow dataRow = dataTable.NewRow();
 for (int i = 0; i < reader.FieldCount; i++) {
 dataRow[i] = reader.GetValue(i);
 }
 dataTable.Rows.Add(dataRow);
 }
 dataGrid1.DataSource = dataTable;
}

ExecuteCommand passes the table name to CommandText property of the DsCommand ob-
ject. It also passes the dataset file path as a parameter to the DsCommand object. It calls its
ExecuteReader method to obtain a reader to the report dataset. It navigates through the reader
and populates the Results grid.

When the user closes the Dataset Query Designer or clicks the Refresh Fields or the Ge-
neric Query Designer buttons, the Report Designer calls the get accessor of the CommandText
property to obtain the new command text. Subsequently, the Dataset Query Designer obtains
the file path and table name values from the QueryDesignerUI form, prepares the command
text in the format FilePath|TableName and passes it back to the Report Designer. You can
switch to the generic query designer to see the command text that the Dataset Query Designer
has generated.

18.4 Deploying and Debugging
Before using the Dataset extension, you need to deploy it. At design time, you need to register
the Dataset extension with Report Designer. You also need to deploy the data processing ex-
tension binaries to the designer folder. Once you have tested the extension, you can deploy it
to the report server for production use.

CHAPTER 18 652

Configuring the extension involves modifying several configuration files. For your conven-
ience, I included my version of the affected configuration files in the Config folder, but do not
just replace your configuration files with mine. Instead, use them as reference to make
changes in the files in your installation.

18.4.1 Design-time Deployment
At design time, the data processing extension is used by the Report Designer.

 Registering the extension
Follow these steps to deploy and register the extension with the BIDS Report Designer.

1. Copy the extension binaries, Prologika.CustomDataProcessingExtension.dll and Prologi-
ka.CustomDataProcessingExtension.pdb to the Report Designer folder.

The BIDS Report Designer default folder is \Program Files\Microsoft Visual Studio
9.0\Common7\IDE\PrivateAssemblies.

TIP To automate the deployment from Visual Studio, I’ve created a post-build script (see Build Events tab on the project
properties of the CustomDataProcessingExtension project) that copies the custom data processing assemblies to the
BIDS Report Designer folder and report server bin folder when you build the project.

2. In the same folder, open the RSReportDesigner.config file and locate the <Data> element.
3. Add the following line after the last <Extension> element in the <Data> section.

<Extension Name="DATASET" Type="Prologika.RS.Extensibility.CustomDataProcessingExtension.DsConnectionWrapper,
Prologika.CustomDataProcessingExtension"/>

4. To register the custom query designer, add the following line after the last <Extension> ele-
ment in the <Designers> section.
<Extension Name="DATASET" Type="Prologika.RS.Extensibility.CustomDataProcessingExtension.DatasetQueryDesigner,
Prologika.CustomDataProcessingExtension"/>

 Granting security rights
The next configuration step involves granting the custom dataset extension FullTrust rights.

1. Open the Report Designer preview policy configuration file (rspreviewpolicy.config). The
default location of this file is C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\-
PrivateAssemblies.

2. Add the following CodeGroup element after the last CodeGroup element:
<CodeGroup class="UnionCodeGroup" version="1" Name="CustomDataExtensionCodeGroup"
 Description="Code group for the Custom Data Extension" PermissionSetName="FullTrust">
 <IMembershipCondition class="UrlMembershipCondition" version="1"
 Url="C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\PrivateAssemblies\
 Prologika.CustomDataProcessingExtension.dll"/>
</CodeGroup>

3. If you use the BIDS Report Designer and the Visual Studio IDE is open, restart it and reflect
the configuration changes.

At this point, the Report Designer configuration is complete. You should be able to create a
data source using the Dataset extension.

EXTENDING DATA ACCESS 653

18.4.2 Report Server Deployment
At run time, the report server interacts with the data processing extension. Here is how to con-
figure the Dataset extension with the report server.

 Registering the extension
As with Report Designer deployment, you need to deploy and register the extension in the
report server configuration file.

1. Deploy the extension binaries, Prologika.CustomDataProcessingExtension.dll and Prologi-
ka.CustomDataProcessingExtension.pdb to the report server binary folder \Program
Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Services\ReportServer\bin.

2. Open the rsreportserver.config file from the \Program Files\Microsoft SQL Server\MSRS10.-
MSSQLSERVER\Reporting Services\ReportServer folder.

3. Locate the <Data> element and register the extension just like you did with the Report De-
signer configuration file.

 Granting security rights
Next, you need elevate the Code Access Security rights so the extension can execute success-
fully.

1. To grant the code the necessary security permissions, open the rssrvpolicy.config in the same
folder.

2. Add the following CodeGroup element after the last code group:
<CodeGroup class="UnionCodeGroup" version="1" Name="CustomDataExtensionCodeGroup"
 Description="Code group for the Dataset CDPE" PermissionSetName="FullTrust">
 <IMembershipCondition class="UrlMembershipCondition" version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting
 Services\ReportServer\bin\Prologika.CustomDataProcessingExtension.dll "/>
</CodeGroup>

You don’t need to restart the report server after making this change because it will automati-
cally restart itself when it detects a change to its configuration files. After these steps, you
should be able to successfully run a server report that uses the Dataset extension.

18.4.3 Debugging Custom Data Processing Extensions
You can debug the custom data processing extension code both at design time when you test
the extension with the Report Designer report, and at run time when the extension is used by
a server report.

 Design-time debugging
Follow these steps to step through the custom code in Visual Studio at design time.

1. Open the CustomDataProcessingExtension project in Visual Studio. Open the project proper-
ties and set up the Debug tab, as shown in Figure 18.7.

Specifically, assuming that you want to use the BIDS Report Designer, select the Start External
Program option and enter the path to the Report Designer executable, which is by default
\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\devenv.exe.

CHAPTER 18 654

Figure 18.7 Use the Start External Program option to debug from a report that uses the Dataset extension.

2. In the Command Line Arguments field, enter the path to a report project that uses the exten-
sion, such as C:\Users\teo\Books\RS2008\Code\ch18\Reports\TestDS.rptproj.

3. In Visual Studio Solution Explorer, set the CustomDataProcessingExtension project as a star-
tup project.

4. Place breakpoints in the code as needed and hit F5 to start debugging.

Depending on how you configured the Debug properties, Visual Studio will launch Report
Designer in a separate instance of Visual Studio.

5. Execute the dataset query.

At this point, execution should hit your breakpoint and you should be able to step through
the code of the Dataset extension.

 Runtime debugging
You may need to debug your custom extension at run time. For example, you might want to
determine what parameters a custom application passes to the report. Follow these steps to
debug the extension at run time.

1. Deploy the latest binaries to the report server binary folder.
2. Open the CDPE project in Visual Studio and set breakpoints in the source code as needed.
3. Go to Debug Attach to Process main menu.
4. In the Attach to Process dialog, check the Show Processes From All Users and Show Processes

in All Sessions checkboxes found toward the bottom of the window.
5. In the Available Processes grid, locate the ReportingServicesService.exe process and select it.
6. Press the Attach button to attach to the Reporting Services Windows service.
7. Request the report from your custom application.

EXTENDING DATA ACCESS 655

TIP By default, the Reporting Services service will time out the debugging session after 150 seconds. To prevent this
from happening, add a new registry key "UnderDebugger" (DWORD) with the value 1 under HKLM\Software\Microsoft\-
Microsoft SQL Server\100\Reporting Services parent key (create the Reporting Services key if it doesn't exist). Restart
the Reporting Services service (ReportingServicesService.exe) and attach to it as described before. Now, your debug-
ging session shouldn’t time out. Please note that this setting disables the management thread that ensures the Windows
service is up and running correctly. For this reason, while you can leave this setting permanently to 1 on your develop-
ment machine, set it to 0 on your production server or delete it.

Once the report server starts processing the report, it will pass the control to your custom ex-
tension and you should be able to break into the Dataset extension code.

18.5 Summary
In this chapter, you've seen how to extend the Reporting Services data architecture by writing
a custom data processing extension. You can use the Dataset extension to build reports that
use data from ADO.NET datasets. Consider using this extension when your application re-
quirements include binding an ADO.NET dataset to a server report – a scenario which is not
currently supported by Reporting Services. You can provide a custom query designer with
your custom extension to help the report author use the dataset to create the report layout.

To use a custom data processing extension in Report Designer, you must deploy it to the
Report Designer folder before you can author reports that use it. Once you have tested the
extension, you must deploy and register it with the report server. You can use Visual Studio to
debug the extension both at design time and run time.

18.6 Resources
Microsoft File Share Data Processing Extension Sample

(http://tinyurl.com/2vs69p)— Microsoft has provided the File Share Data Processing
Extension sample.

ReportExecutionService.Render API
(http://tinyurl.com/2zjp5x)—You can call the Render API to generate a report if
your application cannot use the ReportViewer controls.

656

CChhaapptteerr 1199

Customizing Security

19.1 Introducing Custom Security 656
19.2 Implementing Custom Security Extensions 660
19.3 Implementing Role Membership 672
19.4 Integrating Custom Security 677

19.5 Troubleshooting Custom Security 679
19.6 Summary 683
19.7 Resources 683

You can use Reporting Services to make data easily accessible both on your company intranet
and on the Internet. Internet reporting brings additional challenges, the first and foremost be-
ing security. Out of the box, Reporting Services authenticates and authorizes end users with
Windows security. However, Windows security is usually not practical when delivering re-
ports to external users. Nor will it help you if you are trying to report-enable an Internet-
facing application that uses a different, non-Windows security model.

In this chapter, I will show you how to customize report server security by replacing the
Reporting Services Windows security model with a custom security extension. First, you’ll
learn the ropes of implementing a custom security extension. Then, you’ll enhance it by add-
ing role membership features to simplify maintenance. This chapter also demonstrates how to
leverage custom security to report-enable Internet-facing web application. Finally, I will show
you how to deploy, debug, and troubleshoot a custom security extension. You will need Visu-
al Studio 2008 to work with the source code for this chapter.

19.1 Introducing Custom Security
By default, Reporting Services is configured to use Windows security, where the user is au-
thenticated and authorized based on his or her Windows identity. For example, if Bob has
logged in to the adventure-works domain as adventure-works\bob, the report server will au-
thentication and authorize Bob based on the security policies the report administrator has set
up in the report catalog for adventure-works\bob. Windows security is good because Bob
doesn't need to explicitly log in to the report server because Windows transparently passes his
credentials to the report server. In addition, Windows maintains Bob's password, not you.

19.1.1 When to Use Custom Security
Windows security works great for intranet applications where the report server and the end
users are usually in the same or in a trusted domain, and you are using the Active Directory
infrastructure that is already in place. However, sometimes Windows security may not be a
practical option.

 Scenarios for using custom security
Here some scenarios that may rule out Windows security:

CUSTOMIZING SECURITY 657

 Internet reporting—Windows-based security almost never works for Internet-facing re-
porting solutions. Creating and maintaining thousands of Windows user accounts can
overwhelm the network administrator.

 Integrating with custom security service—Your organization may have an existing security
solution already in place. Operational requirements may dictate integrating Reporting Ser-
vices with the custom security infrastructure.

 Anonymous access—Reporting Services 2008 doesn't natively support Anonymous access.
For an added level of security and to discourage you from using it, Anonymous access has
been intentionally made difficult to set up in this release. If you really need Anonymous
access, you must implement custom security that does no authentication and authoriza-
tion.

What should you do when you cannot use Windows security? The good news is that you can
replace the default Windows security model with a custom security solution when Windows
security gets in the way. On the downside, customizing Reporting Services security is a rather
invasive procedure that requires a significant implementation effort, so consider it as a last
resort.

 How does custom security work
Recall that the report server has a modular architecture where custom modules, called exten-
sions, can be plugged in to extend the report server functionality. Custom security extensions
provide the practical means by which you authenticate and authorize non-Windows users. If
the user requests a resource and has not been previously authenticated, the user is redirected
to a logon form that the developer has created beforehand. This is why Reporting Services cus-
tom security is also known as Forms Authentication.

Custom security gives you complete control over the authentication and authorization
process. Once the logon form collects the user credentials, you can authenticate and authorize
the user anyway you want. For example, you can authenticate the user against a user profile
table in a database. Upon successful user authentication, Reporting Services issues an authen-
tication ticket to the user in a form of a session cookie. The report server verifies this authenti-
cation ticket with each subsequent request. Developers, familiar with the ASP.NET Forms
Authentication model, will undoubtedly find the Reporting Services custom security very
similar. In fact, they both share the same plumbing infrastructure.

NOTE The report server cannot be configured for a mixed authentication mode. In other words, you cannot set up
Reporting Services to support both Windows and custom security modes. Once you re-configure the server for cus-
tom security, you can't use Windows-based security even for administrator-level access. Unlike the other extension
types, such as data and delivery extensions, you can have only one custom security extension deployed to the server.
Since changing the security mode is a rather invasive procedure, make sure you back up the report server configura-
tion files in case you decide to switch back to Windows security.

Custom security is available with Workgroup, Standard, Enterprise, and Developer editions of
SQL Server 2008. You cannot use custom security with a report server that is configured for
SharePoint integration mode because SharePoint provides its own Forms Authentication me-
chanism.

CHAPTER 19 658

19.1.2 Understanding Custom Security Extensions
To customize Reporting Services security, you need to implement a custom security extension.
As it turns out, custom security extension is a collective name for two modules, also called
extensions. Specifically, the custom security extension must include one authentication exten-
sion and one authorization extension.

 Understanding authentication and authorization
The authentication extension handles user authentication (that is, verifying who the user is).
During the authentication stage, the custom security extension determines the user’s identity
by obtaining it from a trusted authority, such as a user profile store. A successful outcome of
this phase is an authentication ticket in the form of a session cookie that the report server
sends to the client.

Authorization occurs after authentication. The authorization extension is responsible for
authorizing the user (that is, determining what the user can do). For example, if the user has
submitted a report request, during the authorization phase your custom security extension
must verify whether the user has the rights to do so. The authorization policies that the report
server uses to determine user rights are defined through role assignments that you create in
Report Manager. When the user interacts with the report server, your authorization extension
evaluates the role assignments and grants or revokes user access.

 Understanding security interfaces
From an implementation standpoint, a custom security extension is a .NET module that im-
plements two standard interfaces provided by Reporting Services. The authentication exten-
sion implements the IAuthenticationExtension interface, while the authorization extension
implements the IAuthorizationExtension interface. These interfaces are defined in the Micro-
soft.ReportingServices.Interfaces assembly located in the \Program Files\Microsoft SQL Serv-
er\100\SDK\Assemblies\ folder. Table 19.1 shows the interface methods and their purpose.

Table 19.1 Reporting Services provides IAuthenticationExtension and IAuthorizationExtension interfaces

Interface Methods Description

IAuthenticationExtension GetUserInfo Returns the user identity.

 LogonUser Authenticates the user as a result of calling LogonUser API.

 IsValidPrincipalName Validates the user name.

IAuthorizationExtension CheckAccess method overloads Handles user authorization based on the attempted action by user.

 CreateSecurityDescriptor Returns a security descriptor associated with a report catalog item.

 GetPermissions Returns the user permissions for an item in the report catalog.

In addition, since both IAuthenticationExtension and IAuthorizationExtension interfaces inhe-
rit from the generic IExtension interface, you need to implement the IExtension methods so
your custom security extension can be successfully registered with the report server. The IEx-
tension interface defines only two methods: SetConfiguration and Localized Name. The report
server calls SetConfiguration to pass the extension configuration section as defined in the re-
port server configuration file (rsreportserver.config).

CUSTOMIZING SECURITY 659

For example, the administrator can create a configuration section that includes the admin-
istrator credentials and the connection string to the user profile store. Specifying these settings
in the configuration file makes this information available to the extension when the server
starts up, before the report server calls the extension methods.

The LocalizedName method should return the localized name of a custom extension based
on the thread culture of the interactive user. However, since the custom security extension
name doesn't appear in either Report Designer or Report Manager, this method can simply
return null.

19.1.3 Understanding Runtime Interaction
Figure 19.1 shows the sequence of events between the client and a report server that is confi-
gured to use a custom security extension. The client could be any application that can call
Web services, such as Report Manager or a custom .NET application.

Figure 19.1 The custom
security extension is
responsible for authenti-
cating and authorizing all
requests to the report
server.

 Authentication phase
During the authentication phase, the client application is responsible for collecting user cre-
dentials and passing them to the custom security extension for authentication.

1. The client application displays a logon form to prompt the user for credentials. In the case of
ASP.NET applications, ASP.NET Forms Authentication can be used to redirect the user to the
login form automatically if the user has not yet been authenticated.

What follows next is an exchange of information that either results in a successful authentica-
tion operation or an access denied error. Each step in the process is numbered in the diagram
and explained below.

2. Once the user credentials are collected, the application invokes the Reporting Services Logo-
nUser API to log the user to Reporting Services. This corresponds to step (1) in the diagram.

3. Next, the report server asks the custom security extension to authenticate the user by calling
your implementation of IAuthenticationExtension.LogonUser. This is step (2). How the cus-
tom security extension authenticates the user is of no concern to the report server. Typically,
with a large number of users, a database store will be used to store user profile data and cre-
dentials.

4. If the custom security extension authenticates the user successfully, the report server issues (3)
a ticket in the form of a session cookie, which the report server expects to find in subsequent
calls from the client. When a browser is used as a client, the session cookie will be automati-

CHAPTER 19 660

cally passed back with all subsequent requests. When other types of clients are used, you will
need to add an extra step to store and pass the cookie to the report server.

TIP If the client is a web application that uses ASP.NET Forms Authentication, it is possible to bypass the LogonUser
call and reuse the authentication ticket by following the instructions in the Forms Authentication Across Applications article
(see Resources). This is the approach I followed in the Adventure Works Web Reporter demo, which I discuss in section
19.4.

 Authorization phase
Although Figure 19.1 assumes a request for viewing a report, any type of action against the
report catalog must pass the authorization checks. For example, if the client is Report Manag-
er, each time the user initiates a new management task, the report server will call down to the
authorization extension to let it authorize the task.

1. The client submits a report request either by URL or SOAP.
2. The report server asks the custom security extension to authorize the user request by calling

the appropriate IAuthorizationExtension.CheckAccess overload method.
3. If the request is successfully authorized, the report server generates the report and sends it

back to the client. Otherwise, the report server rejects the request.

Now that you have a good understanding about how Reporting Services custom security
works, let’s look at how to implement a custom security extension.

19.2 Implementing Custom Security Extensions
Developers who are already familiar with interface-based programming should find creating a
custom security extension to be fairly straightforward. My implementation is based on the Mi-
crosoft Security Extension sample (see Resources) that is included in the Reporting Services
product samples. Although originally written for Reporting Services 2000, I highly recom-
mend you also review the whitepaper Using Forms Authentication in Reporting Services (see
Resources) by Microsoft for additional insights about Reporting Services custom security.

Figure 19.2 The Cus-
tomer Orders report ob-
tains the customer identify
from User!UserID and
shows the orders submit-
ted by the customer.

CUSTOMIZING SECURITY 661

The chapter source code includes three projects: CustomSecurity, Reports, and Web. The cus-
tom security extension is implemented in the CustomSecurity project. The Reports project
contains a sample report, Customer Orders, which you can use to test the custom security
extension. The Web project is a web application that demonstrates how a custom application
can integrate with a report server configured for custom security. The custom security exten-
sion sample requires a few schema and data changes to the AdventureWorks2008 database.
You will find the script files in the Database folder.

19.2.1 Introducing the Adventure Works Web Reporter
To add a realistic touch to the code sample, imagine that Adventure Works would like to en-
hance their Adventure Works Web Internet portal by letting its customers generate reports
online. As typical with many popular online stores, one of the first reports requested is the
Customer Orders report that shows the order history for a given customer, as shown in Figure
19.2.

 Understanding security requirements
Before integrating custom security with the Adventure Works Web portal, we will use Report
Manager to test the custom security extension for report management and delivery, as follows:

1. The administrator logs in to Report Manager and grants end users rights to browse reports.
For the purpose of this demo, the administrator credentials are specified in the RSReportServ-
er.config file. Alternatively, your real-life extension can authenticate the administrator by other
means, such as by querying a database.

2. Once security is set up, we can use Report Manager to test report delivery on behalf of a cus-
tomer. If the customer has not yet been authenticated, Report Manager displays a logon form
to collect the customer credentials.

3. As it stands, the AdventureWorks2008 database doesn't associate a login identifier with a
customer. As a workaround, we will use the BusinessEntityID column from the Person.Person
table as a user name and the PasswordSalt column from the Person.Password table as a pass-
word.

4. Report Manager calls the LogonUser API to let the custom security extension authenticate the
user.

5. The custom security extension authenticates the user by passing the login credentials to the
AdventureWorks2008 database.

6. If the user authenticates successfully, the user can view the Customer Orders report.

 Understanding the Customer Orders report
Let's take a moment to discuss the internals of the Customer Orders report. This report is
ideally suited for security testing because it leverages the user identity and it uses interactive
report features that call back to the report server. Recall from chapter X that User!UserID is
the standard User collection provided by Reporting Services, and UserID is the user who re-
quested the report. Because custom security extensions can return the identity of the interac-
tive user, the Customer Orders report can use the User!UserID property, so you don't have to
pass the user name as a report parameter.

In our case, the User!UserID property returns the customer identifier that the user enters
in the login page to log in to the Report Manager. The Report Manager passes this identifier to

CHAPTER 19 662

the first argument of the LogonUser API. For testing purposes, the customer identifier is dis-
played on the top of the report (for example, Customer Orders for 11000). If you open the
parameter properties of the report dataset, you will see the following expression for the
@CustomerID query-level parameter:
=Iif(IsNumeric(User!UserID), User!UserID, -1)

This expression checks if the user identity is numeric. This will be the case if a customer is
requesting the report. The report server passes the customer identifier to the WHERE clause of
the report query to retrieve the orders for that customer only. In contrast, if either the admin-
istrator or a Windows domain user (such as when the report is tested in BIDS) requests the
report, User!UserID would probably return a text value that specifies the user account. In cas-
es where the expression detects a text value, the expression returns -1 as a customer identifier
and the query brings back no rows.

The report also leverages some of the interactive features supported by Reporting Services.
Specifically, the report lets the end user drill down a given order by clicking on the plus sign
to expand it and see the order items.

Let's now drill into the implementation details to understand how custom security extensions
handle user authentication and authorization.

19.2.2 Implementing the Authentication Extension
Recall that the authentication extension needs to implement the IAuthentication interface,
which includes the GetUserInfo, LogonUser, and IsValidPrincipalName methods. In addition,
you will probably need to implement IExtension.SetConfiguration to load some configuration
settings from the report server configuration file, such as connection strings and administrator
credentials.

 Implementing SetConfiguration
When configuring the custom security extension, you need to specify a connection string to
the Adventure Works database. Since our extension reads the administrator credentials from
the configuration file, you need to specify also the administrator credentials. If the user cre-
dentials match the administrator credentials, the security extension grants the user full rights
to the report server. The SetConfiguration method reads the configuration settings and stores
them in class members:
public void SetConfiguration(String configuration) {
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(configuration);
 if (doc.DocumentElement.Name == "AdminConfiguration")
 {
 foreach (XmlNode child in doc.DocumentElement.ChildNodes) {
 switch (child.Name)
 {
 case CONNECTION_STRING: m_connectionstring = child.InnerText; break;
 case ADMIN_USER_NAME: m_adminUserName = child.InnerText; break;
 case ADMIN_USER_PWD: m_adminPassword = child.InnerText; break;
 default: throw new Exception("Unrecognized configuration element.");
 }
 }
 }
 else
 throw new Exception("Loading config data.");
}

CUSTOMIZING SECURITY 663

The report server passes the configuration settings verbatim as they are stored in the report
server configuration file (that is, as an XML fragment). SetConfiguration loads the settings in
an XmlDocument object. Next, SetConfiguration iterates through the settings and stores them
in class members for future use.

 Implementing LogonUser
The LogonUser method is responsible for verifying the user credentials. The report server calls
the IAuthentication.LogonUser method after the client application calls the LogonUser API.
The report server passes the user credentials to the first two arguments of LogonUser. You
may wonder about the purpose of the third argument—authority. It is an open-ended argu-
ment that you can use to pass additional information that might be necessary for authenticat-
ing a user. For example, suppose the customer identifier is not unique across all customers
and you have to use an additional identifier, such as the company name, to uniquely identify a
customer. In this case, you can pass the company name to the third argument.
public bool LogonUser(string userName, string password, string authority)
{
 if ((0 == String.Compare(userName,m_adminUserName,true,CultureInfo.CurrentCulture)) &&
 (password == m_adminPassword))
 return true;
 else
 return AuthenticationUtilities.IsValidUser(userName, password, m_connectionstring);
}

First, LogonUser checks if the interactive user is an administrator by comparing the input cre-
dentials with the administrator's credentials specified in report server configuration file. If the
user is an administrator, no further validation is necessary. Otherwise, LogonUser verifies the
credentials by calling the IsValidUser helper method. In real life, you can authenticate the user
against a database profile store, Active Directory, or whatever trusted authority makes sense.
In our case, IsValidUser calls a stored procedure (uspValidateUser) that attempts to find a
matching customer in the AdventureWorks2008 database. Returning true from LogonUser
tells the report server that the user is authentic. The report server responds by issuing an au-
thentication ticket to the user.

 Implementing IsValidPrincipalName
The report server calls the IsValidPrincipalName method when the administrator defines a
new role assignment in Report Manager, such as granting a customer Browser rights to a given
folder. The report server passes the user name and asks the custom security extension to verify
it.
public bool IsValidPrincipalName(string principalName)
{
 return AuthenticationUtilities.IsValidPrincipalName(principalName, m_connectionstring);
}

My implementation of IsValidPrincipalName executes the uspIsValidPrincipalName stored
procedures. This stored procedure queries the table Person.Person in the Adventure-
Works2008 database to find out if a record with that customer identifier exists. Please note
that the purpose of the IsValidPrincipalName method is only to verify that a user with such an
identifier exists; it doesn't authenticate the user. This is similar to verifying the user identity or
group name when the Reporting Services Windows-based security is used. The actual user
authentication is performed in the LogonUser method.

CHAPTER 19 664

 Implementing GetUserInfo
The purpose of this method is to return a human-readable user name that will be displayed in
Report Manager. For example, you can use this method to translate a system-generated cus-
tomer identifier to the customer name. The report server invokes GetUserInfo for each re-
quest. Therefore, I recommend you implement some sort of caching if you decide to translate
the user identity.
public void GetUserInfo(out IIdentity userIdentity, out IntPtr userId) {
 if (HttpContext.Current != null && HttpContext.Current.User != null)
 userIdentity = HttpContext.Current.User.Identity;
 else
 userIdentity = null;

 userId = IntPtr.Zero;
}

My implementation of GetUserInfo doesn't translate the user identity. As a result, Report Man-
ager shows the customer identifier in the Security pages.

19.2.3 Implementing Authorization Extension
Once the user is authenticated successfully, the report server will call your custom authoriza-
tion extension for each action performed by the user, where actions might consist of navigat-
ing the report catalog, viewing reports, creating new reports, and so on. The authorization
extension is responsible for validating the necessary security rules and approving or denying
the user action.

 Implementing CheckAccess
Upon receiving an incoming request, the report server first validates the authentication cookie.
Next, it proceeds by asking your custom security extension to authorize the user request by
calling one or several CheckAccess method overloads. Which CheckAccess overload that is
actually called will depend on the type of the action attempted. For example, if the user re-
quests a report, the report server calls the following CheckAccess overload:
public bool CheckAccess(string userName, IntPtr userToken, byte[] secDesc, ReportOperation requiredOperation)

All CheckAccess overload methods have the same signature except for the last enumeration
argument, which specifies the type of action that is being attempted. For this reason, I re-
factored the authorization logic in a helper function called CheckOperations. First, the code in
this function determines whether the user name matches the administrator name. If it does,
access is granted to the user regardless of the requested operation. If not, the CheckOperations
proceeds by inspecting the security policy defined for this user.

Note that the report server doesn't pass the user password to CheckAccess because at this
point authentication has already succeeded. As long as the authentication ticket is present and
valid, the report server considers the user authentic. This eliminates the need for authenticat-
ing the user with each request.

The report server may decide to call a single CheckAccess overload several times. For ex-
ample, when the user requests a report, the report server first calls a CheckAccess overload to
determine whether the user has permission to the given report (requiredOperation is Read-
Properties). The report server then calls the same overload to determine whether the user has
rights to execute the report (requiredOperation is ExecuteAndView). The authorization exten-
sion tells the report server if the user is permitted to perform the requested action. If the user

CUSTOMIZING SECURITY 665

is not authorized, the report server denies access and throws a Not Authorized Error excep-
tion.

Unfortunately, the report server doesn’t pass the report catalog item to CheckAccess, such
as the report name, when the user views a report. Yet, you may need to know what item the
user is trying to access in order to implement more granular security policies. Currently, the
only way to "get" the item is to parse the request payload, as follows:
System.Web.HttpContext.Current.Request request = System.Web.HttpContext.Current.Request;
 if (request.Headers["SOAPAction"] == null) {
 // GET request; request.Url contains the report path
 }
 else {
 // POST request
 stream = request.InputStream;
 byte[] requestBody = new byte[stream.Length];
 stream.Read(requestBody, 0, requestBody.Length);
 request.InputStream.Position = 0L;
 string request = Encoding.ASCII.GetString(requestBody);
 // parse the request POST payload to get the item path
 }

The authorization extension determines if the user is authorized to perform a given action by
inspecting the security policy set up for this user. When the report server calls CheckAccess, it
also passes the security policy defined for the catalog item as a byte array under the secDesc
argument. For example, suppose the user has requested the Customer Orders report and you
have authorized four users to view the report.

After the authorization extension deserializes the security descriptor, the access control list
collection contains four elements, one for each user. Each user element has additional collec-
tions that contain the permissions defined for all supported operations (for example, Folder-
Operation, ReportOperation, and so on). The report server simply tells you “Here is the item
security policy that you have defined in Report Manager (or programmatically) for this user.
Now tell me if I should let the user perform this action?”

Developers will probably appreciate the flexibility that the Reporting Services custom se-
curity framework provides. At its simplest implementation, authorization logic just needs to
enumerate through the access control list in an attempt to find a match for the logged on user.
At the same time, it supports more involved authorization scenarios. For example, section
19.3 demonstrates how to modify the authorization extension to support role membership.

 Implementing GetPermissions
Another implementation detail that deserves more attention is the IAuthorizationExten-
sion.GetPermissions method. The report server calls this method when the GetPermissions
SOAP API is invoked. For example, if the user opens Report Manager and navigates through
the folder structure, the Report Manager calls the GetPermissions SOAP API to determine
whether the user has the required permissions to view or change catalog items. When custom
security is used, the report server redirects the call to your implementation of IAuthorizatio-
nExtension.GetPermissions.

The report server passes the role-based security policy as defined in the report catalog. In
its simplest form, the GetPermissions implementation filters out the permissions defined for
the given user and returns them to the report server. More complicated authorization re-
quirements may call for validating additional business rules to determine if the role-based se-
curity policy set up for this user should be honored or not.

CHAPTER 19 666

19.2.4 Implementing Logon Pages
When the report server is configured for Windows security, the user doesn't need to log in
explicitly because the application can obtain the user identity from Active Directory. However,
with custom security, the user must enter login credentials. As a part of coding the custom
security extension, you need to implement two ASP.NET logon pages to collect the login cre-
dentials in Report Manager and the report server.

NOTE The Microsoft-provided report designers support custom security and don't need custom logon forms. For ex-
ample, when you deploy a report to the server, the report designers will discover that the server is configured for cus-
tom security and prompt the user to enter login credentials.

Implementing the Report Manager Logon page
The sample custom security extension includes a UILogon.aspx page to collect a user login
before opening the Report Manager home page. If the user has not been authenticated or the
authentication ticket has expired, Report Manager redirects the user to this page, which is
shown in Figure 19.3.

Figure 19.3 If the user has not logged on
to the server, Report Manager redirects the
user to the UILogon.aspx page.

The user enters login credentials and clicks the Logon button.
protected void BtnLogon_Click(object sender, System.EventArgs e)
{
 ReportServerProxy server = new ReportServerProxy();

 // Get the server name and instance from the report server web.config file
 string reportServer = ConfigurationManager.AppSettings["ReportServer"];
 string instanceName = ConfigurationManager.AppSettings["ReportServerInstance"];

 // Get the server URL from the report server using WMI
 server.Url = AuthenticationUtilities.GetReportServerUrl(reportServer, instanceName);
 server.LogonUser(TxtUser.Text, TxtPwd.Text, null);
}

Behind the scenes, the BtnLogon_Click event gets the server name of the machine where the
report server is installed and the SQL Server 2008 instance name from the Report Manager
web.config file. Then, the code calls the GetReportServerUrl to obtain the report server URL.
GetReportServerUrl (code not shown) uses the Reporting Services Windows Management In-
strumentation (WMI) provider to query the report server configuration file. Finally, the UILo-
gon page calls the Reporting Services LogonUser API to log on the user to the report server.
The report server delegates the call to the LogonUser method in the custom authentication
extension.

When a client application invokes a Web service, the client cookie collection is not auto-
matically sent with the call. To delegate the Report server authentication ticket to the report
server, the client application (Report Manager in this case) must override the Web service
proxy. Although not shown in code, the ReportServerProxy class inherits from the auto-
generated proxy class and overrides its GetWebRequest and GetWebResponse methods. The
GetWebRequest method forwards the cookie to the report server, while the GetWebResponse
method delegates the cookie to the browser.

CUSTOMIZING SECURITY 667

Implementing the Report Server Logon page
Recall that you can access the report catalog by navigating directly to the report server URL,
such as http://localhost/reportserver. The Logon.aspx page collects the login credentials when
this happens. Its implementation is very similar to the Report Manager logon page (UILo-
gon.aspx) albeit much simpler.
private void ServerBtnLogon_Click(object sender, System.EventArgs e) {
 bool passwordVerified = false;
 if ((0 == String.Compare(TxtUser.Text, "admin", true, CultureInfo.CurrentCulture)) && (TxtPwd.Text == "admin"))
 passwordVerified = true;

 if (passwordVerified)
 {
 FormsAuthentication.RedirectFromLoginPage(TxtUser.Text, false);
 }
 else
 {
 Response.Redirect("logon.aspx");
 }
}

My implementation of the Logon.aspx lets only administrators access the report server direct-
ly. For the sake of simplicity, I compare the user credentials with the administrator creden-
tials. Note that the report server logon page doesn't need to call the LogonUser API. If the user
authenticates successfully, the logon page lets the user continue by calling FormsAuthentica-
tion.RedirectFromLoginPage. As a result, the report server bypasses the authentication stage
and proceeds with the authorization process.

WARNING If you change the assembly name if the web project or the namespace in the UILogon page code behind
file , open the UILogon and Logon pages in design mode and update the @Page directive on the top of each page. If
you don't, neither Report Manager nor the report server will be able to load the pages at run time.

19.2.5 Deploying Custom Security Extensions
Once you implement the custom security extension, you need to deploy it to the report server.
Deploying a custom security extension requires many configuration steps. Missing a step will
very likely result in a non-operational report server or Report Manager. To help you configure
custom security, I provided copies of my configuration files in the Config folder of the book
source code. However, do not just replace your files with mine! Instead, use them for refer-
ence only. Before you start, make sure to back up the report server configuration files (rsre-
portserver.config, web.config, and rssrvpolicy.config) and the Report Manager configuration
files (web.config and rsmgrpolicy.config).

 General deployment considerations
The most common scenario for using custom security is Internet report delivery. In general,
Internet reporting requires installing the report server on an Internet-facing server. If you are
planning to use Report Manager for report delivery, you need to make it accessible for Internet
access as well. Plan to configure Report Manager and report server for Secure Sockets Layer
(SSL) to secure data over the wire. Another deployment option is to make only the Report
Manager accessible over Internet and install the report server on the private LAN and behind a
firewall. However, the following features will not work with this deployment scenario:

CHAPTER 19 668

 Report drillthrough in Web archive (MHTML), Excel, and HTML3.2 formats will fail to
connect.

 Links in e-mail subscriptions will not work.
 Report Builder will not be available.

For more considerations about configuring the report server for Internet access, read chapter 2
and the Configuring a Report Server for Internet Access topic in SQL Server Books Online.

 Deploying to the report server
Follow these steps to deploy the custom security extension to the report server.

1. Copy the Prologika.CustomSecurityExtension.dll and Prologika.CustomSecurityExtension.dll
to the \Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Servic-
es\ReportServer\bin report server binary folder.

2. Copy the Logon.aspx page to the report server folder at \Program Files\Microsoft SQL Serv-
er\MSRS10.MSSQLSERVER\Reporting Services\ReportServer.

3. Open the report server configuration file, rsreportserver.config, in your favorite editor.
4. Locate the Extensions element and the Security and Authentication elements under it and

replace them as follows:
<Security>
 <Extension Name="Forms"
 Type="Prologika.RS.Extensibility.CustomSecurityExtension.AuthorizationExtension,
 Prologika.CustomSecurityExtension">
 <Configuration>
 </Configuration>
 </Extension>
</Security>
 <Authentication>
 <Extension Name="Forms" ype="Prologika.RS.Extensibility.CustomSecurityExtension.AuthenticationExtension,
 Prologika.CustomSecurityExtension">
 <Configuration>
 <AdminConfiguration>
 <ConnectionString>Data Source=.;Initial Catalog=AdventureWorks2008;
 Integrated Security=SSPI</ConnectionString>
 <AdminLogin>Admin</AdminLogin>
 <AdminPassword>admin</AdminPassword>
 </AdminConfiguration>
 </Configuration>
 </Extension>
 </Authentication>

5. In the rsreportserver.config file, locate the AuthenticationTypes element and update it as fol-
lows:
<Authentication>
 <AuthenticationTypes>
 <Custom/>
 </AuthenticationTypes>
 <EnableAuthPersistence>true</EnableAuthPersistence>
</Authentication>

6. Open the rssrvpolicy.config file and add the following code group to grant full trust code
access security rights to the extension assembly:
<CodeGroup class ="UnionCodeGroup" version ="1" PermissionSetName ="FullTrust" Name="CustomSecurity"
 Description="Code group for the custom security extension">
 <IMembershipCondition class ="UrlMembershipCondition" version ="1"
 Url ="C:\Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting
 Services\ReportServer\bin\Prologika.CustomSecurityExtension.dll" />
</CodeGroup >

CUSTOMIZING SECURITY 669

7. Open the report server web configuration file, web.config, and make the following changes:
<system.web> <!-for reference only-->
 <authentication mode="Forms">
 <forms loginUrl="logon.aspx" name="sqlAuthCookie" timeout="60" slidingExpiration="true" path="/">
 </forms>
 </authentication>
 <authorization>
 <deny users="?" />
 </authorization>

Here, we change the report server authentication mode to Forms, specify the login page and
the cookie details. Change the cookie timeout (in minutes) as needed.

8. Finally, set the identity setting to False as follows:
<identity impersonate="false"/>

 Deploying to Report Manager
Follow these steps to deploy the custom security extension to Report Manager:

1. Copy Prologika.RS.Extensibility.CustomSecurityExtension.dll and Prologi-
ka.RS.Extensibility.CustomSecurityExtension.pdb to the Report Manager binary folder at
\Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Servic-
es\ReportManager\Bin.

2. Copy the UILogon.aspx page to the \Program Files\Microsoft SQL Server\MSRS10.-
MSSQLSERVER\Reporting Services\ReportManager\Pages folder.

3. Open the Report Manager web.config file and change the identity setting to False:
<identity impersonate="false"/>

4. Locate the appSettings element and add the following application settings to it.
<add key="ReportServer" value="<server>"/>
<add key="ReportServerInstance" value="<Instance Name>"/>

The UILogon.aspx passes these settings to the WMI provider to obtain the report server URL.
Set the ReportServer setting to the machine name where the report server is installed. Set the
ReportServerInstance setting to the name of the SQL Server instance, such as MSSQLSERVER
if the SQL Server is installed on the default instance.

5. Open the Report Manager policy file, rsmgrpolicy.config, located in the \Program
Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Services\ReportManager folder.
Locate the MyComputer code group and change the PermissionSetName attribute from Ex-
ecution to FullTrust as follows:
<CodeGroup class="FirstMatchCodeGroup" version="1" PermissionSetName="FullTrust"
 Description="This code group grants MyComputer code Execution permission. ">
 <IMembershipCondition class="ZoneMembershipCondition" version="1" Zone="MyComputer" />

6. Open rsreportserver.config located in the \Program Files\Microsoft SQL Serv-
er\MSRS10.MSSQLSERVER\Reporting Services\ReportServer folder. Find the UI element and
change it as follows:
<UI>
 <CustomAuthenticationUI>
 < loginUrl>/Pages/UILogon.aspx</loginUrl>
 <UseSSL>False</UseSSL>
 < /CustomAuthenticationUI>
 <ReportServerUrl>http://<server>/ReportServer</ReportServerUrl>
 <PageCountMode>Estimate</PageCountMode>
</UI>

CHAPTER 19 670

Set UseSSL to True if the report server is configured to use SSL. The server name in the Re-
portServerUrl setting is important because the authentication ticket will be bound to this
name. Therefore, if you use localhost, you will only be able to access Report Manager by using
localhost in the Report Manager URL, such as http://localhost/reports. I recommend you speci-
fy the machine name instead of localhost and always use the machine name in the Report
Manager and report server URLs to avoid delegation issues with cookies.

7. Use the Windows Services applet or Reporting Services Configuration Manager and restart the
SQL Server Reporting Services service.

 Additional deployment steps
Based on your custom security extension requirements and implementation, you may need
additional deployment steps to finalize the extension configuration and tighten security. The
following list suggests extra steps that can be appropriate for some deployments:

1. Change the connection string in RSReportServer.config (ConnectionString setting) to point to
your user profile database.

2. Change the administrator credentials, AdminLogin and AdminPassword to something less
guessable.

3. Check the file permissions on the RSReportServer.config file to verify that only local adminis-
trators have permission to open it.

4. If end users won't use Report Manager for report delivery, consider moving Report Manager to
an intranet server in a private LAN so it is not accessible by web users. This deployment sce-
nario is discussed in more details in chapter 2.

5. Definitely consider using SSL to secure the connection to the report server. Once the server
certificate is installed, change the SecureConnectionLevel setting in the rsreportserver.config
to level 2.

6. This is a step specific for the custom security extension sample. Execute the ddl.sql script in
the Database folder to the AdventureWorks2008 database to create the stored procedures.

7. This is a step specific for the custom security extension sample. Since the connection string
uses Windows Integrated security to connect to the AdventureWorks2008 database, grant the
login that the Reporting Services service runs under read permissions to the Adventure-
Works2008 database. You can obtain the account from the Reporting Services Configuration
Manager (Service Account tab).

8. This is a step specific for the custom security extension sample. Deploy the sample Reports
project to the desired report server folder. By default, the project will be deployed to the
AMRS folder.

Now that the custom security extension is deployed, let's take it for a ride.

19.2.6 Working with the Custom Security Extension
To quickly test that custom security is working, navigate to the report server URL, such as
http://<server>/ReportServer. If all is well, the report server should redirect you to the Lo-
gon.aspx page. Enter admin as a user name and password. The report server should show the
report catalog folders. If this is not the case or you confronted with an error message, don't

CUSTOMIZING SECURITY 671

panic. Go through the deployment steps in section 19.2.5 and make sure that you haven't
skipped a step. In addition, review the troubleshooting and debugging tips in this section.

 Setting up security policies
By default, only the administrator can log in to the report server. To let end users access the
report catalog, you need to grant them the necessary rights in Report Manager. Follow these
steps to grant Adventure Works customers rights to view the Customer Orders report.

1. Open the Report Manager application by navigating to the Report Manager URL, such as
http://<server>/reports. To avoid delegation issues with the authentication ticket, make sure to
use the same URL as the one you specified in the ReportServerUrl setting in the RSReportServ-
er.config file.

2. Report Manager should show the UILogon.aspx page (see again Figure 19.3). Enter admin as a
user name and password and click the Logon button.

Figure 19.4 Use Report Manager
to define for every user a role
assignment that grants Browser
rights to the Home folder.

To make things easier, we will grant users Browser rights to the root Home folder as they will
propagate to all subfolders. In real life, consider more granular security policies.

3. Select the Properties tab to access the Security page for the Home folder.
4. Click the New Role Assignment button to open the New Role Assignment page, as shown in

Figure 19.4.
5. In the Group or User Name field, enter the customer identifier, such as 11000. You can open

the Sales.vIndividualCustomer view in the AdventureWorks2008 database to see the customer
details. Use the CustomerID column for the user name.

6. Check the Browser role and click OK.
7. Repeat the last two steps to add a few more customers.

Each time you add a new customer, the report server calls your implementation of IAuthenti-
cationExtension.IsValidPrincipalName to verify the user name.

 Verifying user access
Once the Adventure Works customers have been granted access, they can request reports.
Let's log in as one of the users you've just set up and verify that the user can run the Customer
Orders report.

1. Open a new instance (not a new tab) of Internet Explorer and navigate to the Report Manager
application.

CHAPTER 19 672

2. In the UILogon.aspx page, enter the customer identifier for user name, such as 11000. Use the
following query to obtain the customer password.
SELECT P.BusinessEntityID as CustomerID, PW.PasswordSalt as Password
FROM Person.Person AS P INNER JOIN
 Person.Password AS PW ON P.BusinessEntityID = PW.BusinessEntityID
WHERE (P.BusinessEntityID = 11000)

3. Navigate to the AMRS folder and click the Customer Orders report. If all is well, you should
see the report in Figure 19.4.

If you don't see the Customer Orders report, open the Reports project in BIDS and deploy the
project to the report server.

19.3 Implementing Role Membership
As useful as it is, our custom security implementation has one caveat. It requires you to set up
individual security polices for each user, which isn’t very practical for Web applications that
support thousands of users. Thankfully, application roles provide a practical means for you to
group users with identical permissions—in the same manner that Windows groups simplify
maintaining Windows-based security.

19.3.1 Understanding Role Membership
In practice, your application may already support assigning users to application-defined roles.
For example, if your organization is doing business with several companies, you might already
have company-specific login for the employees of those companies that require access to your
extranet site. If you have a set of existing login accounts, you can simplify security mainten-
ance by assigning report server permissions on a per company basis using application roles. In
this example, your application roles will be scoped at the company level.

To bring a touch of reality to this code sample, assume that Adventure Works has intro-
duced several levels of customer membership based on the customer order volume, such as
Platinum, Gold, and Silver. Please note that it is entirely up to the developer to determine the
actual implementation and semantics of the application roles. The business rules behind the
role membership are of no importance to the role-based implementation. Adding another level
of flexibility, this role-based membership implementation supports assigning users to multiple
roles. The granted permissions are additive as well, which means that the user receives a su-
perset of the permissions assigned to all the roles the user belongs to, plus the individual per-
missions assigned explicitly to the user.

Here are the high-level implementation goals for this custom role-based authentication:
 Support for assigning users to multiple roles.
 Allow the report administrator set up both individual- and role-based security policies.
 Authorize the user by granting a superset of individual- and role-based permissions as-

signed to the user.
 Improve performance by caching the user role in the ASP.NET cache object.

Now, let's see what it will take to enhance the sample custom security extension to support
role membership.

CUSTOMIZING SECURITY 673

19.3.2 Implementing Database Schema
As it stands, the Adventure Works database schema doesn’t include support for role member-
ship. That is why you’ll need to add two additional tables: Security.CustomerRole and Securi-
ty.Role, as shown in Figure 19.5.

Figure 19.5 Add the
CustomerRole and Role
tables to support role
membership.

The table Role stores the application roles, while the table CustomerRole defines the roles to
which a given customer belongs. Remember, a customer may belong to more than one role.
There are two scripts in the Database folder of the book source code. The ddl.sql script creates
the new tables and stored procedures required for supporting role membership. The data.sql
script populates the new tables with some sample data. The report server doesn’t impose any
restrictions on the role membership schema, so feel free to enhance the schema to meet your
requirements, like supporting nested roles, subsets of permissions, and so on.

19.3.3 Implementing Role Authentication
Extending the custom security extension to support role authentication and authorization is
easy. First, we need to enhance the authentication extension to support role names as valid
principal names. Second, we need to change the authorization extension to evaluate not only
the user permissions but the permissions assigned to the roles to which the user belongs.

 Validating the principal name
Recall that the report server calls IsValidPrincipalName each time you change or add a security
policy. Before the new security policy is created, the report server calls IsValidPrincipalName
in your custom extension to validate the principal name. However, the report server doesn’t
validate the semantics of the principal name, such as whether it is for a role or an individual
user. In fact, the report server itself has no built-in support for handling role assignments.

This custom security extension is responsible for enforcing the role membership authenti-
cation and authorization rules. Once the security extension acknowledges that the principal
name is valid by returning true from the IsValidPrincipalName call, the report server simply
proceeds by recording the changes to the security policy in the report catalog. Therefore, to
validate the principal name, change the uspIsValidPrincipalName stored procedure to handle
both possibilities: an individual user or an application-defined role.
ALTER PROCEDURE [Security].[uspIsValidPrincipalName]
(
 @PrincipalName nvarchar(50)
)
AS
IF ISNUMERIC(@principalName) = 1
 SELECT BusinessEntityID FROM Person.Person WHERE BusinessEntityID=CAST(@PrincipalName AS INT)
ELSE
 SELECT RoleID FROM Role WHERE Name = @PrincipalName

Since now the input principle name could be either a customer identifier or a role, you need
to query the appropriate table. If a match is found, IAuthenticationExten-

CHAPTER 19 674

sion.IsValidPrincipalName returns true and the report server happily records the policy
change.

Interestingly, even if you change a single policy, the report server validates all security pol-
icies assigned for this item. For example, suppose you create a new policy assignment to grant
a user Browser rights to a given folder. The report server calls IsValidPrincipalName as many
times as the number of policies assigned for this folder. That is because the report server re-
builds the entire security descriptor for every item each time it is changed.

 Creating role assignments
Once you've changed the uspIsValidPrincipalName stored procedure, you can use Report
Manager to define role-based security policies. Follow these steps to grant members of the
Gold role rights to view all reports.

1. Open the Report Manager application by navigating to the Report Manager URL, such as
http://<server>/reports.

2. Report Manager should show the UILogon.aspx page. Enter admin as a user name and pass-
word and click the Logon button.

3. Select the Properties tab to access the Security page for the Home folder.
4. Click the New Role Assignment button to open the New Role Assignment page.
5. In the Group or User Name field, enter Gold to grant members of the Gold role rights to view

reports.
6. Check the Browser role and click OK.

The report server calls IAuthentication.IsValidPrincipalName for each role assignment to verify
the principal name. If all is well, the Report Manager will create the Gold role assignment suc-
cessfully and your Security page should match the one shown in Figure 19.6.

Figure 19.6 Use Report Man-
ager to define both user and role
security policies.

19.3.4 Implementing Role Authorization
When the report server receives a request for a given action against the report catalog, it asks
the security extension to authorize the request by calling one or more CheckAccess methods
in the custom authorization extension. The report server passes the principal name (the cus-
tomer identifier in this case) and the security policy descriptor associated with the given report
catalog item to IAuthorizationExtension.CheckAccess so the custom extension can evaluate
the security policy and authorize or deny the operation. The report server doesn’t know or
care if the security policy is an individual- or role-based policy. Therefore, the security de-
scriptor may contain both individual and role-based polices.

CUSTOMIZING SECURITY 675

 Enhancing CheckAccess
Implementing role-based authorization requires not only checking whether the user has been
assigned explicit rights to the report catalog item, but also if the user belongs to roles that are
permitted to perform the requested action. Fortunately, this enhancement to the CheckOpera-
tions helper function is easy.
private bool CheckOperations(string principalName, AceCollection acl, object requiredOperation)
{
 if (IsUserAuthorized(principalName, acl, requiredOperation)) return true;

 // No individual policy established. Check user role membership
 string[] roles = this.GetPrincipalRoles(principalName);

 if (roles != null) {
 foreach (string role in roles)
 {
 if (IsUserAuthorized(role, acl, requiredOperation)) return true;
 }
 }
 return false;
}

First, the code checks whether the user has an individual security policy assigned. For exam-
ple, glancing back to Figure 19.6, if customer 11000 requests a report, IsUserAuthorized re-
turns true because this user has explicit rights to view reports. However, this wouldn’t be the
case for customer 11003 because this customer doesn’t have an explicit security policy de-
fined. However, 11003 may have been assigned to a role that has the required rights. To verify
customer role membership permissions, the code retrieves the roles associated with the cus-
tomer by calling the GetPrincipalRoles helper method. Next, the code iterates through the
roles in an attempt to find a role permitted to perform the action.

 Caching roles
You’ll need to decide up front at what point your custom security extension retrieves the user
roles. Of course, this has to happen before the user request is authorized. One approach is to
retrieve the roles in each CheckAccess overload. However, this can generate excessive database
traffic since a single action against the report catalog may result in several CheckAccess calls.
Instead, consider retrieving the roles on demand for each user and caching them in the
ASP.NET cache object. The GetPrincipalRoles method demonstrates this technique.
private string[] GetPrincipalRoles(string principalName) {
 // attempt to retrieve roles from cache
 string[] roles = HttpContext.Current.Cache[principalName] as string[];

 if (roles == null)
 {
 // get user roles
 DataSet dsRoles = Util.GetUserRoles(principalName);
 if (dsRoles.Tables[0].Rows.Count > 0)
 {
 roles = new string[dsRoles.Tables[0].Rows.Count];
 for (int i = 0; i < dsRoles.Tables[0].Rows.Count; i++)
 {
 roles[i] = dsRoles.Tables[0].Rows[i][0].ToString();
 }
 // cache the user roles
 HttpContext.Current.Cache.Insert(principalName, roles);
 }
 }
 return roles;
}

CHAPTER 19 676

First, the code attempts to load the roles from the cache. If the user roles are not yet cached,
the code retrieves them by calling the GetUserRoles helper function. Next, the code loads the
roles in a string array and caches it in the ASP.NET cache object. Since the report server appli-
cation domain is hosted by ASP.NET, I use HttpContext.Current to access the ASP.NET cache
object.

NOTE Because this example does not specify explicit cache expiration, the cached roles will remain in the cache for
the lifetime of the report server application domain. If your application serves many concurrent users and you are wor-
ried about excessive memory consumption, you may want to consider implementing a cache expiration policy.

You may wonder why I am not retrieving and caching the user roles in the LogonUser me-
thod. Recall that the LogonUser is called once for each user. In a web farm environment, this
means that the LogonUser will be invoked only on the server that handles the authentication
request. Consequently, the other servers will never be able to access and evaluate the role pol-
icies. Since the custom authorization extension is called with each request, it retrieves and
caches roles on each server.

 Enhancing GetPermissions
The report server also calls IAuthorizationExtension.GetPermissions when the GetPermission
SOAP API is invoked. For example, Report Manager needs to know if the user has the rights to
browse a given folder so it can hide or show that folder. Report Manager calls GetPermission
in order to update the user interface based on the user’s security policy. Use the following
code to make IAuthorizationExtension.GetPermissions role-aware:
public StringCollection GetPermissions(string userName, IntPtr userToken, SecurityItemType itemType, byte[] secDesc)
 {
 StringCollection permissions = new StringCollection();
 if (0 == String.Compare(userName, m_adminUserName, true, CultureInfo.CurrentCulture))
 {
 foreach (CatalogOperation oper in m_CatOperNames.Keys)
 {
 if (!permissions.Contains((string)m_CatOperNames[oper])) permissions.Add((string)m_CatOperNames[oper]);
 }
 }
 // add the rest of the permissions to administrator. . .
 else
 {
 AceCollection acl = DeserializeAcl(secDesc);
 // get permission for the individual user
 GetPermissions (userName, acl, permissions);
 // add also the permissions assigned to the user roles
 string[] roles = HttpContext.Current.Cache[userName] as string[];
 if (roles != null)
 {
 foreach (string role in roles) GetPermissions(role, acl, permissions);
 }
 }
}

First, the code checks if the user is an administrator. If this is the case, the code grants the user
unrestricted access by returning all permissions. Otherwise, the code calls the GetPermissions
helper method twice to return the union of the individual permissions assigned to the user
and the permissions assigned to the role. To test a role, start Report Manager, log in as cus-
tomer 11003, and view the Customer Orders report. Although you haven't granted individual
rights to 11003, the customer can view the report because the data.slq script assigns this cus-
tomer to the Gold role.

CUSTOMIZING SECURITY 677

19.4 Integrating Custom Security
Now that we've successfully tested custom security with Report Manager, let's integrate it with
the Adventure Works Web portal. The web portal leverages the ASP.NET Forms Authentica-
tion infrastructure to authenticate and authorize the user. As part of this integration effort, let's
also migrate the Customer Orders report to the Adventure Works portal integrate the report
with the application security model.

19.4.1 Custom Security vs. Trusted Subsystem
Before showing you how to integrate custom security with client applications, I would like to
remind you that custom security is not the only option. For example, another common ap-
proach for enforcing restricted access from the application to the report server is trusted subsys-
tem.

 Understanding trusted subsystem
With the trusted subsystem approach, the ReportViewer control submits all requests to the
report server under a single “trusted” Windows account, as shown in Figure 19.7. Separately,
the application authenticates and authorizes users using ASP.NET Forms Authentication or
another authentication method. As such, the Report Viewer assumes that only authenticated,
authorized users are able to request a report in the first place. When the user does request a
report, the application submits the report request under a "trusted" account that is used for all
requests sent to the report server.

Figure 19.7 With the
trusted subsystem, the
calls to the report server
go under a single trusted
account.

By default, the application will pass the Windows identity it runs under as the trusted ac-
count. This will be the ASP.NET process identity (IIS 5.0) or the application pool identity (IIS
6.0). For example, if the application runs under IIS 6 or above (Vista or Windows 2003 and
above), you can change the identity of the IIS application pool to which the application is as-
signed to a domain account. With IIS 5.0 (Windows XP or Windows 2000) you can change
the ASP.NET process identity in the ASP.NET machine.config. Alternatively, with IIS 5.0, you
can change the IIS application protection mode to High and use Component Services to set
the identity of the COM+ Application.

 Trusted Subsystem pros and cons
The advantage of the trusted subsystem approach is that it is fairly easy to set up. The applica-
tion authenticates and authorizes access to the report server. If the user is authorized, the ap-
plication runs the report under the trusted account on behalf of the user.

On the downside, when trusted subsystem is used, the report server sees all requests com-
ing under the same account as though they came from the same user. In other words, the re-
port server won’t be able to differentiate among users. As a result, the users cannot use the My

CHAPTER 19 678

Reports feature. In addition, the report author cannot configure data source connections to
use Windows integrated security, or use the User!UserID expression to filter data based on the
user’s identity. If you need the user’s identity in your reports, I recommend you use custom
security. I purposely exclude passing the customer identifier as a parameter to the report since
this approach has security risks.

19.4.2 Integrating Custom Security
Implementing custom security in web applications is not something you haven't seen already.
That's because Report Manager is in itself a web application. Before the user can view a report,
your web application needs to log in the user similar to what you've seen already with the Re-
port Manager UILogon.aspx page. However, integrating custom security with a web applica-
tion that uses ASP.NET Forms Authentication can be even easier. That's because with the
proper configuration, the report server and the web application can share the same authentica-
tion ticket. The Web project that is included in the book source code demonstrates this scena-
rio.

 Configuring Forms Authentication
To share the authentication ticket, be sure to use the same Forms Authentication settings in
the web.config files of the application and report server as follows:
<forms loginUrl="logon.aspx" name=".ASPXAUTH" timeout="600" slidingExpiration="true" path="/"></forms>
<machineKey
validationKey="36AB5B499984F8AA309BC02E4C00E7DBD4DBF575561F1846639016F80CE99D0DF4B597C7949C07BD89
559D319C843BC7C2006B438D1B125FF6DE7A686092D782"
decryptionKey="CD8BCADC2EF8DF8ACA256FE1DF681E7DB2254526DE94D9EB"
validation='SHA1'/>

First, make sure that the name of the authentication ticket (cookie) is the same. By default, the
name of the Forms Authentication cookie is .ASPXAUTH. You can use whatever name you
want as long as you use the same name in both web.config files. Second, make sure that both
applications use the same machine key settings for encrypting the cookie. By default, ASP.NET
generates different machine keys for different ASP.NET applications.

If you want all applications on the server to share the same key, change the machine key
settings in the machine.config.comments file which is located in the
\Windows\Microsoft.NET\Framework\<version>\CONFIG folder. Or, if you want only the
report server and the web application to share the same machine key, add the machineKey
setting to their web.config files. If you have a web farm of report servers, they need to have the
same machine key in order for custom security to work. For more information about the ma-
chineKey setting, read the articles How to Configure MachineKey in ASP.NET 2.0 and Forms
Authentication Across Applications (see Resources).

 Configuring the ReportViewer Web Server control
If you use the ReportViewer control for report delivery, remember to set up its ReportServer-
Credentials property to support custom security. If you skip this step, you will get the follow-
ing rather obscure error message when you attempt to view a report:
<title>Object moved</title></head><body> <h2>Object moved to
here

CUSTOMIZING SECURITY 679

The reason for this error is that, by default, ReportViewer doesn't pass the authentication tick-
et to the report server. As a result, the report server redirects to the Login page. To avoid this
issue, configure the ReportServerCredentials property as follows:
reportViewer.ServerReport.ReportServerUrl = new Uri(ConfigurationManager.AppSettings["serverUrl"]);
reportViewer.ServerReport.ReportPath = "/AMRS/Customer Orders";
reportViewer.ServerReport.ReportServerCredentials = new MyReportServerCredentials();

public class MyReportServerCredentials : IReportServerCredentials {
 public MyReportServerCredentials() { }
 public WindowsIdentity ImpersonationUser {
 get {return null;}
 }
 public ICredentials NetworkCredentials {
 get { return null;}
 }
public bool GetFormsCredentials(out Cookie authCookie, out string user, out string password, out string authority) {
 user = password = authority = null;
 HttpCookie cookie = HttpContext.Current.Request.Cookies[".ASPXAUTH"];
 if (cookie == null) HttpContext.Current.Response.Redirect("login.aspx");

 Cookie netCookie = new Cookie(cookie.Name, cookie.Value);
 if (cookie.Domain == null)
 netCookie.Domain = ttpContext.Current.Request.ServerVariables["SERVER_NAME"].ToUpper();
 netCookie.Expires = cookie.Expires;
 netCookie.Path = cookie.Path;
 netCookie.Secure = cookie.Secure;
 authCookie = netCookie;
 return true;
 }
} // MyReportServerCredentials

You need to set the ReportServerCredentials property to an instance of a class that implements
IReportServerCredentials. Since the report server is configured for custom security, you need
to implement the GetFormsCredentials method only. Behind the scenes, the ReportViewer
Web server control caches the IReportServerCredentials results. It invokes GetFormsCreden-
tials when the control is initialized. Then, the control invokes the LogonUser API and caches
the authentication ticket. Subsequent report requests, such as navigating a page or using the
interactive features in a report, reuse the cached authentication ticket.

When the custom application uses ASP.NET Forms Authentication, the implementation of
GetFormsCredentials is simple. First, the code sets the user, password, and authority output
arguments to null because we will use the authentication ticket returned by the ASP.NET
Forms Authentication infrastructure. Alternatively, if you prefer to work with user credentials,
you could set the authCookie argument to null and use the user credentials for authentication.
However, working with the user credentials may present a security risk so it should be
avoided whenever possible.

Next, the code assumes that the user has already logged in to the application and the
ASP.NET Forms authentication ticket has been generated. If this is not the case, the code redi-
rects the user to the login page. If the cookie is present, the only task left is to translate the
cookie to System.Net.Cookie and pass it back to the ReportViewer control.

19.5 Troubleshooting Custom Security
Getting a custom security extension to work as intended could be more challenging than im-
plementing it. First, there could be bugs in the code, which you can eliminate by debugging

CHAPTER 19 680

the extension. External factors, such as browser security and cookie delegation issues, can
cause some grief as well.

19.5.1 Debugging the Custom Security Extension
When testing your custom security extension, you may need to step through the code. Follow
these steps to debug the security extension:

1. Open the Report Manager application in a browser.

2. In Visual Studio, go to the Debug Attach to Process menu and check the Show Processes
from All Users and Show Processes in All Sessions checkboxes.

3. In the Available Processes, locate the ReportingServicesService.exe process and click the At-
tach button.

4. Set breakpoints in the security extension as needed. For example to troubleshoot user authen-
tication, set a breakpoint inside the LogonUser method.

5. Log on in to Report Manager using the credentials of the user you want to test.

As you navigate through the report catalog, the code breakpoints will be hit.

TIP Debugging the custom security extension from a web application is even easier. Add both the web application and
security extension projects to the same VS.NET solution. Set the web application as a startup project. Press F5 to debug
the solution.

19.5.2 Troubleshooting Tips
Here are some tips which may save you hours of debugging and head scratching when troub-
leshooting custom security. To start with, I can’t emphasize this fact enough: just like
ASP.NET Forms Authentication, Reporting Services custom security is cookie-based. If the
browser doesn’t pass the cookie back to the report server, the user will be redirected to the
Logon page. What follows is a list of the most common reasons the browser fails to pass the
cookie back and how to avoid or work around them.

 Using localhost
Using localhost to launch the client tricks the browser into believing that the report server and
your Web applications are on different domains. Instead, when testing custom security locally,
specify the machine name , such as http://<mymachinename>/adventureworks/default.aspx) as
opposed to http://localhost/adventureworks/default.aspx.

 Restrictive browser policies
Sometimes, the authentication cookie is not transmitted back because the browser privacy
settings are configured to block cookies. This may sound like a no-brainer, but you will be
surprised how often folks forget to glance at the browser status bar to see if the authentication
cookie simply can’t get through. If this is the case, assign the report server Web site to the
Trusted Sites zone.

 Cross-domain security issues
Suppose you have installed the report server and the Web application on two different do-
mains. For example, the report server machine belongs to the www.abc.com domain, while

CUSTOMIZING SECURITY 681

the Web application is on the www.xyz.com domain. For security reasons, Internet Explorer
doesn’t permit cross-domain cookies, so the authentication cookie won’t be sent to the report
server.

The no-brainer workaround for this problem is to move the applications to the same do-
main. You’ll also need to change the TranslateCookie method in the overloaded proxy class
and set the cookie Domain property to your domain (.xyz.com in this example). Please note
that both applications can be physically located on two separate servers as long as both ma-
chines belong to the same domain.

If adding both computers to the same domain is not an option, another workaround is to
invoke the LogonUser API on the report server machine. For example, once the custom appli-
cation authenticates the user, it can redirect to an ASP.NET page residing on the report server
machine, which in turn calls LogonUser. As a result, the authentication cookie is scoped to the
domain to which the report server belongs.

Of course, you still need decide how the Web application will pass the user credentials to
the report server. This may present a security risk because a hacker may intercept the request
to the report server, so take extra steps to ensure that security is not compromised. For exam-
ple, you could use IP address filtering and restrict access to the ASP.NET page that contains IP
address of the Web application server.

 Cookie configuration
Reporting Services uses the same syntax to set the authentication cookie as ASP.NET Forms
Authentication. For example, if you find out that the authentication cookie expires too soon
and you get an Object Moved error, you may want to increase the cookie timeout. If the report
server is deployed in a web farm environment, the cookie configuration settings of the cluster
machines may not match. Check all instances of the report server web.config configuration
files and make sure that you use identical cookie settings. Please see the Forms Authentication
across Applications link in the Resources section.

If Report Manager integrates with a third-party or a custom authentication service that is-
sues its own authentication cookie and you need to pass the cookie to the report server, you
need to configure Report Manager to relay the cookie. By default, the Report Manager sends
only the report server authentication cookie (the one that you specify in the Forms element).
To configure Report Manager to relay additional cookies, open the rsreportserver.config file,
locate the <UI> element and add a PassThroughCookies collection that specifies the name of
the custom cookies, as follows:
<UI>
 <CustomAuthenticationUI>
 <CustomAuthenticationUI>
 <loginUrl>/Pages/UILogon.aspx</loginUrl>
 <UseSSL>False</UseSSL>
 </CustomAuthenticationUI>
 <ReportServerUrl>http://nw8000/ReportServer</ReportServerUrl>
 <PassThroughCookies>
 <PassThroughCookie>cookiename1</PassThroughCookie>
 <PassThroughCookie>cookiename2</PassThroughCookie>
 < /PassThroughCookies>
 </CustomAuthenticationUI>
 ...
</UI>

 Issues with non-browser clients
While the browser automatically sends the cookie to the report server, you are on your own
when integrating Windows Forms clients and other types of applications with a report server

CHAPTER 19 682

that is configured for Forms Authentication. Basically, you need to store the authentication
cookie after the LogonUser call and send it back with each subsequent request. Although orig-
inally written for Reporting Services 2000, my Forms Authentication Tester sample (see Re-
sources) can help you understand the implementation details.

 In search for cookies
When you’re through troubleshooting custom security, it’s time to verify that the cookie is
successfully sent by the client application. By now, it should be clear to you that the Holy
Grail of custom security is successful cookie management. But suppose that after following the
above troubleshooting tips, the browser still redirects to the login page. The most likely reason
for this behavior is that the browser doesn't send the cookie to the report server.

Figure 19.8 You can use
the ieHTTPHeaders tool to
verify that the browser
sends the authentication
ticket to the server.

Therefore, it is essential to verify that the authentication cookie has been sent back to the re-
port server. You can do this using a tracing utility, such as ieHttpHeaders (see Resources). It
intercepts the traffic between the browser and server and displays the HTTP headers on the
screen. The steps below explain how to use ieHTTPHeaders to verify that the authentication
cookie has been successfully transmitted.

1. Download and install ieHTTPHeaders.

2. Open Internet Explorer and enable ieHTTPHeaders by going to the Tools Toolbars Ex-
plorer Bar ieHTTPHeaders.

3. Request the default.aspx page in the Web project. The ieHttpHeaders pane will show the
HTTP headers sent to the server, including the cookies, as shown in Figure 19.8.

If the authentication cookie is not included in the client request, custom security will fail be-
cause the report server will not be able to find the authentication ticket.

CUSTOMIZING SECURITY 683

 Script synchronization issues
Another reason for authentication failure is when the request to the report server is submitted
before the browser retrieves the authentication cookie. This one got me really bad when im-
plementing custom security in one of my projects. It turned out that, for some reason, the de-
veloper didn’t want to use the ReportViewer control to render the report. Instead, the
developer had decided to use a client-side JavaScript function that sets the browser win-
dow.location property to the report URL.

 Eventually, I traced this down to a synchronization issue. The browser would submit the
request before the page was fully loaded. The resolution in such a case is to use ReportViewer
or make sure that your client-side script is called from the browser window.onload event.

19.6 Summary
In this chapter, you've seen how to extend the Reporting Services security architecture by
writing a custom security extension. Consider custom security when the default Windows se-
curity is not an option, such as when report-enabling an Internet-facing application and you
want to pass the user identity to the report server.

A custom security extension includes a custom authentication extension and a custom au-
thorization extension. The custom authentication extension is responsible for authenticating
the user. The custom authorization extension grants access based on the security policies that
the administrator has set up in Report Manager. To simplify the effort required to set up many
individual polices, consider adding role membership features to your custom security exten-
sion.

19.7 Resources
Microsoft Security Extension Sample

(http://tinyurl.com/33lhoy)— The Microsoft Custom Security sample demonstrates
how to implement a custom security extension.

Using Forms Authentication in Reporting Services
(http://tinyurl.com/3xvkvg)— Although written for Reporting Services 2000, this
whitepaper is a great resource for learning the internals of custom security.

How To: Configure MachineKey in ASP.NET 2.0
(http://tinyurl.com/3coh67)— This How To explains the <machineKey> element in
the Web.config file and shows how to configure the <machineKey> element.

Forms Authentication across Applications
(http://tinyurl.com/397ntu)— By using these instructions, you can use reuse the
ASP.NET Forms Authentication ticket in the report server.

Forms Authentication Tester
(http://tinyurl.com/2wkkvs)— Shows how you can integrate a Windows Forms ap-
plication with Reporting Services custom security.

IEHTTPHeaders
(http://tinyurl.com/yyg3eh)— ieHTTPHeaders is an explorer bar for Microsoft In-
ternet Explorer that will display the HTTP Headers sent and received by Internet
Explorer and can be used for debugging cookies.

684

CChhaapptteerr 2200

Extending Report Delivery

20.1 Understanding Custom Subscription Delivery 684
20.2 Implementing Custom Report Delivery 691
20.3 Deploying Custom Delivery Extensions 696

20.4 Summary 699
20.5 Resources 699

Recall that Reporting Services supports on-demand and subscription report delivery. The lat-
ter option lets users subscribe to reports to automate the report delivery process. Out of the
box, Reporting Services supports subscription delivery to e-mail recipients, shared folders,
and SharePoint libraries. However, you can extend Reporting Services subscriptions by plug-
ging in custom delivery extensions that send reports to other destinations.

This chapter teaches you how to implement a custom delivery extension for delivering re-
ports to a Web service. My Web Service delivery extension can send a report to an arbitrary
web method that you specify when you configure the extension. First, I will give you an over-
view of custom delivery extensions so that you have better understanding of how they work.
Then, I will walk you through the steps to implement, deploy, and debug the Web Service
delivery extension. Finally, I'll show you how to configure and use the custom delivery exten-
sion to deliver a report to a Web service. You need Visual Studio 2008 to work with the
source code for this chapter.

20.1 Understanding Custom Subscription Delivery
When a user requests a report on demand, the report server generates the report synchronous-
ly and sends the report to the user. By contrast, when the user subscribes to a report, the re-
port server generates the report asynchronously at some later date and time in response to a
notification event that is usually schedule-driven. Report subscriptions are paired with deli-
very extensions. As a part of setting up a report subscription, the user chooses one of the
available delivery extensions. The extension is responsible for rendering the report and send-
ing it to its final destination.

Recall that a report server can be configured in two different modes. Native mode de-
scribes a deployment where Reporting Services provides all functionality using only its com-
ponents. SharePoint integration mode refers to a report server that uses the content
management and collaboration features of a SharePoint product or technology deployment.
The mode in which you configure the report server determines the delivery extensions you
can use.

In native mode, Reporting Services provides e-mail and file share delivery extensions that
address the two most common delivery scenarios: sending a report to a recipient via e-mail
and saving a report as a file on a network share. In SharePoint integration mode, Reporting
Services provides an extension that can deliver a report to a SharePoint library. As useful as

EXTENDING REPORT DELIVERY 685

the standard extensions are, they are unlikely to address all delivery scenarios. For example,
an organization may want to send a report to its partner's Web service on a regular basis. If
you have a Standard or Enterprise edition of SQL Server 2008, you can customize subscrip-
tion-based report delivery to meet such integration needs.

20.1.1 Understanding Custom Delivery Extensions
You extend subscription-based report delivery by implementing a custom delivery extension.
Similar to data and security extensions, a custom delivery extension is a .NET module that
implements standard Reporting Services interfaces as defined in the \Program Files\Microsoft
SQL Server\100\SDK\Assemblies\Microsoft.ReportingServices.Interfaces.dll assembly.

 Understanding delivery interfaces
A custom delivery extension must implement the IDeliveryExtension interface. Optionally, a
custom delivery extension can include a web control that implements the ISubscriptionBa-
seUIUserControl interface to let the user configure the extension in Report Manager. You can
think of a custom delivery extension as a container of two extensions: a delivery extension that
handles report delivery and an optional web control extension that plugs into the subscription
definition pages in Report Manager. Table 20.1 shows the standard delivery interfaces, me-
thods, and their purpose.

Table 20.1 The standard delivery interfaces

Interface Methods Description

IDeliveryExtension ExtensionSettings property The report server uses the value returned by the ExtensionSettings
property to obtain the settings defined for the delivery extension.

 IsPrivilegedUser property The report server sets this Boolean property to True if the user has
Manage All Subscriptions rights.

 ReportServerInformation property The report server passes a list of the available rendering exten-
sions.

 Deliver method Delivers the subscribed report.

 ValidateUserData method Validates the extension settings specified by the user.

ISubscriptionBaseUIUserControl Description property Returns the description of the delivery extension.

 IsPrivilegedUser property Same as IDeliveryExtension.IsPrivilegedUser.

 ReportServerInformation property Same as IDeliveryExtension.ReportServerInformation.

 UserData property Gets or sets the user-specified extension settings.

In addition, similar to other extension types, a custom delivery extension must implement the
generic IExtension interface so it can be successfully registered with the report server. Recall
from chapters 18 and 19 that the IExtension interface defines only two methods: SetConfigu-
ration and Localized Name.

The SetConfiguration method is used to pass the extension configuration section as de-
fined in the report server configuration file (rsreportserver.config). Before the report server
calls the extension methods, it waits for the extension to read configuration settings that are
passed to it as an XML fragment. Within the configuration file, an administrator might specify

CHAPTER 20 686

default settings for the delivery extension. For example, as a part of configuring the Web Ser-
vice delivery extension, you will add a configuration section to the report server configuration
file that specifies default settings for the Web service endpoint and the name of the web me-
thod that handles the report delivery.

The LocalizedName method should return the localized name of a custom extension based
on the thread culture of the interactive user. Report Manager displays the localized name
when it presents a list of the available delivery extensions to the user.

 Understanding run time events
Once the report server has received a notification event, it interacts with the custom delivery
extension as shown in the sequence diagram in Figure 20.1. First, the report server calls the
IExtension.SetConfiguration method and passes the configuration section (if any) to the exten-
sion. Next, it calls IDeliveryExtension.IsPrivilegedUser to let the extension know if the user
has Manage All Subscription rights. The report server then invokes IDeliveryExtension
.ReportServerInformation to pass the list of the available rendering extensions.

Figure 20.1 At run time, the report
server interacts with the extension to
pass configuration settings and dele-
gate report delivery.

The report server proceeds next by calling the IDeliveryExtension.ExtensionSettings method
to obtain the settings defined for the extension. Finally, the report server prepares a notifica-
tion object that includes information about the report subscription and extension settings. The
report server passes the notification object to the IDeliveryExtension.Deliver method and dele-
gates the report delivery to the extension. If the subscription is a data-driven subscription, the
report server invokes the Deliver method once for each recipient.

 Understanding configuration events
A custom delivery extension can optionally provide a web control to help the end user specify
the delivery settings for the subscription in Report Manager. The web control is an ASP.NET
control that implements the ISubscriptionBaseUIUserControl and IExtension interfaces. Figure
20.2 displays a simplified sequence diagram showing the events that take place when you spe-
cify delivery settings in Report Manager.

When the user selects the delivery extension during the process of setting up a new sub-
scription, Report Manager calls IExtension.SetConfiguration method to let the control retrieve
any configuration settings specified for it in the report server configuration file. Next, Report
Manager calls ISubscriptionBaseUIUserControl.ReportServerInfo and ISubscriptionBaseUI-
UserControl.IsPrivilegedUser.

Then, Report Manager sites the web control. The web control is a container of child con-
trols, such as ASP.NET TextBox controls, that collect and validate any user settings that you

EXTENDING REPORT DELIVERY 687

might require in your custom delivery extension. During the control rendering phase, the web
control initializes and renders the child controls. Once the control is initialized, Report Man-
ager calls the ISubscriptionBaseUIUserControl.UserData method so the control can display the
default values that were retrieved from the configuration file.

Figure 20.2 Report Manager interacts with the custom delivery extension as you configure it.

Once the control is rendered, the user can overwrite the default values by selecting other op-
tions or values that you provide. When the user saves the page, Report Manager initiates a
page postback and calls IExtension.SetConfiguration, ISubscriptionBaseUIUserCon-
trol.ReportServerInfo, ISubscriptionBaseUIUserControl.IsPrivilegedUser as before. Then, Re-
port Manager calls the get accessor of ISubscriptionBaseUIUserControl.UserData to obtain and
read the new extension settings that the user has entered.

Next, Report Manager calls the IDeliveryExtension.ValidateUserData method to let your
custom extension validate the user settings. If all is well, Report Manager calls down to the
report server Web service API to store the subscription definition in the report server database
and schedule the subscription with the SQL Server Agent service.

NOTE Reporting Services uses the SQL Server Agent service for scheduling subscribed report delivery. If the SQL
Server Agent service is not running, you will get an error when saving the subscription settings in Report Manager.

20.1.2 Introducing the Web Service Delivery Extension
Now that you know how custom report delivery works at a high level, let me introduce you to
the Web Service custom delivery extension sample. As noted, you can use the Web Service
delivery extension to send any report to an arbitrary web method. The only requirement for
the web method is that it must have a single argument that will receive the XML representa-
tion of the report.

CHAPTER 20 688

Figure 20.3 Configure the
Web Service delivery extension
by specifying the Web service
endpoint and method name.

 Understanding the solution architecture
Figure 20.3 shows how the Web Service delivery extension fits into the Reporting Services
subscription delivery architecture. When the subscription schedule is triggered, the SQL Serv-
er Agent service inserts a record in the Notifications table in the report catalog. The Reporting
Services Background Processor polls the Notifications table on a regular basis. When it discov-
ers a new notification, the Background Processor prepares a notification object and forwards it
to the Web Service delivery extension.

The Web Service delivery extension obtains the report details from the notification object
and renders the report. Next, the extension gets the Web service invocation details from the
notification object and generates a dynamic in-memory proxy to communicate with the Web
service. Finally, the extension sends the exported report to the Web service and returns a deli-
very status to the report server.

 Understanding design goals and limitations
The high-level design goals for our custom delivery extension are:
 Sends the report to an arbitrary Web service—The extension should let the user specify

the target Web service. To accomplish this goal, the Web Service delivery extension gene-
rates the Web service proxy at run time.

 Provides a user interface for configuring the extension—The Web Service delivery exten-
sion provides a web control to let the end user configure and schedule the extension in
the subscription definition pages in Report Manager.

To keep the implementation as simple as possible, the Web Service delivery extension has the
following limitations.
 Exports the subscribed report to XML only—The Web service delivery extension doesn't

let the user specify an export format although it could easily be enhanced to do so. For
example, you could add a drop-down list to the web control and populate the list with the
available export formats which you can obtain by calling the ListExtensions API.

 Requires a specific web method signature—The Web Service delivery extension passes the
exported report to the first argument, which must be of a string data type. If you need to
work with different method signatures, you can easily enhance the extension to enumerate
the methods and invoke the method you require.

 Configuring the Web service delivery extension
Once you install the Web Service delivery extension (which you will do later in section 20.3),
you can use it to configure a subscription in Report Manager.

EXTENDING REPORT DELIVERY 689

1. Open Report Manager and navigate to the report to which you want to subscribe. Recall from
chapter 12 that the report data source must use stored credentials with subscription-based
report delivery.

2. Open the report properties page and select the Subscriptions tab.
3. Click the New Subscription button to create a standard subscription or the New Data Sub-

scription button for a data-driven subscription. For the sake of simplicity, the next steps as-
sume a standard subscription.

4. Expand the Delivery By drop-down list and select Web Service, as shown in Figure 20.4. If the
Web Service item doesn't show up, the Web Service delivery extension is not deployed prop-
erly. Review section 20.3 for deployment steps.

Figure 20.4 Configure
the Web Service deli-
very extension by speci-
fying the Web service
endpoint and method
name.

Report Manager pre-populates the WSDL URL and Method Name fields from the extension
configuration section in the RSReportServer.config configuration file but these can be over-
written by the user.

5. Verify that the WSDL URL field is set to http://localhost:1966/ReportService.asmx?WDDL.

TIP For testing purposes, use the ReportService Web service project that is included with the source code for this chap-
ter. It uses the ASP.NET Development Server that is configured to listen on port 1966. To verify the WSDL URL, right-click
on the ReportService.asmx file and select View in Browser. In the web page that follows, click the Service Description link
to view the WSDL definition. Scroll all the way to the end of the definition. The Web service endpoint is found under the
wsdl:service element.

6. Verify that the Method Name field is set to SendReport. If you use your own web method,
enter the name of the web method. The web method must accept a single string argument.

 Scheduling and running the subscription
To test the extension quickly, create a report-specific schedule that runs once, as follows.

1. Click the Select Schedule button.
2. In the Schedule Details section (see Figure 20.5), select the Once option.

CHAPTER 20 690

Figure 20.5 Set up a report schedule to test the Web Service delivery extension.

3. Enter a start time that is a minute or two ahead of the current time.
4. In the Start and End Dates section, click the DatePicker button and select today's date.
5. Click OK to return to the subscription configuration page. Make sure that the description

below the Before the Scheduled Report Run is Complete option (see Figure 20.4) says that the
report is scheduled to run once, with a start time of a few minutes ahead of the current time.
For example, if the current date is 6/28/2008 8:46 A.M. and you schedule the report for
6/28/2008 8:48 A.M., the schedule description should be "At 8:48 A.M. on 6/28/2008".

6. Click OK to schedule the subscription with the SQL Server Agent Service.

When the scheduled time arrives, the background processing application processes the report
and forwards it to the extension. The extension exports the report to XML and sends it to the
web method you specified.

7. On the Subscriptions tab, refresh the page in the browser to determine the subscription status.

Figure 20.6 Use the Subscriptions page to view the status of the subscription and delivery.

EXTENDING REPORT DELIVERY 691

If the subscription was successful, the Status column will show that the report is delivered to
<WSDL URL>. The Last Run column should show the date of the last run (see Figure 20.6).
Now that you know how to work with the extension, let’s drill into its implementation details.

20.2 Implementing Custom Report Delivery
Microsoft has provided a Printer Delivery Extension sample (see Resources) to demonstrate
how you can implement a custom delivery extension. The Printer delivery extension sends a
report to a network printer. Once I familiarized myself with the Microsoft sample, implement-
ing the Web Service delivery extension was very straightforward. In this section, we will dive
into the code of both the Web Service delivery extension and the web control that provides
the user interface for specifying delivery settings in Report Manager.

20.2.1 Implementing the Custom Delivery Extension
The WebServiceDeliveryProvider class in WebServiceDeliveryProvider.cs source file contains
the source code of the custom delivery extension. It implements the IExtension and IDelive-
ryExtensions interfaces used to plug into the report server subscription delivery architecture.
Let's discuss the most significant methods in the order in which they are executed by the re-
port server at run time (see again Figure 20.2 for an overview).

 Implementing SetConfiguration
As part of deploying the extension, the administrator can optionally specify default configura-
tion settings in the report server configuration file (rsreportserver.config). The Web Service
delivery extension supports two settings that can be specified in this file: the Web service URL
and the name of the web method that receives the report.
public void SetConfiguration (string configuration) {
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(configuration);

 if (doc.DocumentElement.Name == Constants.CONFIG_ROOT) {
 foreach (XmlNode child in doc.DocumentElement.ChildNodes)
 {
 switch (child.Name)
 {
 case Constants.CONFIG_WSDL: this._wsdl = child.InnerText; break;
 case Constants.CONFIG_METHOD_NAME: this._methodName = child.InnerText; break;
 }
 }
 }
}

When the report server calls IExtension.SetConfiguration method, it passes the configuration
settings verbatim as they appear in the configuration file. SetConfiguration loads the configu-
ration section in an instance of the XmlDocument class, extracts the configuration values, and
stores them in class-level members.

 Implementing IsPrivilegedUser and ReportServerInformation
Although the Web Service delivery extension doesn't use IDeliveryExtension.IsPrivilegedUser,
it must implement this property so that the report server can properly manage it. IsPrivilege-
dUser stores the Boolean value passed by the server in a class-level member and returns it
when the report server asks for it.

CHAPTER 20 692

Before delivering the report, the custom delivery extension is responsible for rendering the
report in one of the supported formats. However, the report administrator could disable a
renderer in the report server configuration file. This will cause a run time exception when the
custom delivery extension tries to export the report. This is why the report server passes a list
of the available rendering extensions to the ReportServerInformation property. ReportServe-
rInformation stores the list in a class-level member. Before the custom delivery extension
renders the report, it enumerates this list to make sure that the XML renderer is available.

 Implementing ExtensionSettings
Recall that the report server calls IDeliveryExtension.ExtensionSettings to retrieve the settings
that the delivery extension supports. Custom clients can call the GetExtensionSettings API of
the Report Server Web service to obtain the settings too.
public Setting[] ExtensionSettings {
 get {
 if (_settings == null) {
 _settings = new Setting[2];
 _settings[0] = new Setting();
 _settings[0].Name = Constants.CONFIG_WSDL;
 _settings[0].ReadOnly = false;
 _settings[0].Required = true;
 _settings[0].Value = this._wsdl;
 _settings[0].AddValidValue(Constants.CONFIG_WSDL, this._wsdl);
 _settings[1] = new Setting();
 _settings[1].Name = Constants.CONFIG_METHOD_NAME;
 _settings[1].ReadOnly = false;
 _settings[1].Required = true;
 _settings[1].Value = this._methodName;
 _settings[1].AddValidValue(Constants.CONFIG_METHOD_NAME, this._methodName);
 }
 return _settings;
 }
}

The get accessor of the ExtensionSettings property constructs a two-dimensional array for the
WSDL endpoint and web method name. It configures both settings as required and defaults
their values to the configuration values specified in the extension configuration section.

 Implementing ValidateUserData
The report server invokes IDeliveryExtension.ValidateUserData so that your extension can va-
lidate any user-defined extension settings that the user might have provided in the subscrip-
tion definition.
public Setting[] ValidateUserData(Setting[] settings) {
 foreach (Setting setting in settings) {
 if (setting.Field == null || setting.Field == "") {
 switch (setting.Name) {
 case (Constants.CONFIG_WSDL):
 if (setting.Value.Trim() == String.Empty)
 setting.Error = String.Format(String.Format("{0} is a required field.", setting.Name)); break;
 case (Constants.CONFIG_METHOD_NAME):
 if(setting.Value.Trim() == String.Empty)
 setting.Error = String.Format("WSDL is a required field.");
 break;
 default: setting.Error = String.Format("Unknown setting {0}", setting.Name); break;
 }
 }
 }
 return settings;
}

EXTENDING REPORT DELIVERY 693

ValidateUserData enumerates through the subscription settings and checks if the Field proper-
ty is null. Next, ValidateUserData checks the WSDL endpoint and web method name settings.
Since both settings are required, ValidateUserData indicates an error if the settings are empty.

Because the user specifies delivery extension settings in the subscription definition pages
in Report Manager, the validation controls in the web control will catch empty fields. This
may lead you to believe that the ValidateUserData checks are redundant. However, they are
useful for client applications that call the Report Server Web service directly. In this case,
building in programmatic validation of the delivery extension settings ensures that the settings
are correct when the user interface component is unavailable.

 Implementing report delivery
The IDeliveryExtension.Deliver method is the workhorse of the custom delivery extension. It
is responsible for rendering the report in one of the supported export formats and delivering
the report to its final destination. Let's discuss its implementation in detail.
public bool Deliver(Notification notification) {
 bool retry = false;
 if (!this.IsExtensionSupported("XML")) throw new Exception("The XML rendering extension is disabled.");
 notification.Status = "Processing web service delivery ...";
 Setting[] userSettings = notification.UserData;
 SubscriptionData subscriptionData = new SubscriptionData();
 subscriptionData.FromSettings(userSettings);
 DeliverReport(notification, subscriptionData);
 return retry;
}
private void DeliverReport(Notification notification, SubscriptionData data) {
 StringWriter stringWriter = null;
 _files = notification.Report.Render("XML", @"<DeviceInfo/>");

 if (_files[0].Data.Length > 0)
 {
 byte[] reportPayload = new byte[_files[0].Data.Length];
 _files[0].Data.Position = 0;
 _files[0].Data.Read(reportPayload, 0, reportPayload.Length);
 _files[0].Data.Flush();
 string payload = Convert.ToBase64String(reportPayload);
 StringBuilder stringBuilder = new StringBuilder();
 stringWriter = new StringWriter(stringBuilder);
 XmlTextWriter writer = new XmlTextWriter(stringWriter);
 writer.Formatting = Formatting.Indented;
 writer.WriteStartElement("Report");
 writer.WriteElementString("ReportPayload", payload);
 writer.WriteEndElement();
 string[] parameters = null;
 WebServiceProxyFactory factory = new WebServiceProxyFactory(data.WSDL);
 object proxy = factory.Build();
 Type type = proxy.GetType();
 MethodInfo method = type.GetMethod(data.methodName);
 if (method == null || (!CheckMethod(method)))
 throw new System.Exception(String.Format("Method {0} is not valid.", method));
 parameters = new string[1];
 parameters[0] = stringBuilder.ToString();
 string result = method.Invoke(proxy, parameters) as string;
 if (result.ToLower()!="success") throw new Exception(String.Format("Delivering report {0} has
 resulted in an exception.", notification.Report.Name));
 }
 else throw new Exception(String.Format("Rendering report {0} has resulted in no data.", notification.Report));
 notification.Status = String.Format("Report delivered to {0}", data.WSDL);
}

When the schedule is triggered, the report server prepares a notification object and passes it to
the Deliver method. The notification object contains information about the subscription, such
as the identity of the user who owns the subscription, information about the report, and sub-

CHAPTER 20 694

scription settings. First, the Deliver method checks whether the XML renderer is available on
the server by examining the list of rendering extensions that the report server has passed to
the ReportServerInformation property. Next, the Deliver method prepares a SubscriptionData
helper object that contains the subscription settings and calls the DeliverReport method.

The notification object contains a Report object that provides convenient access to the re-
port for which the subscription is being created. For example, rendering a report is as simple
as calling the Report.Render method. The Render method returns a RenderedOutputFile ob-
ject that contains the report payload and other properties, such as the report name, the name
of the rendering extension used to export the report, the encoding type, and the MIME type of
the report stream.

The report payload is returned as one or more streams. If you request the report in the
HTML multi-stream rendering formats, the first stream will include the report payload, while
the subsequent streams contain the report images. Single-stream rendering formats, such as
Web archive (MHTML), will always produce one stream with the images embedded in it.
Since we are rendering the report in XML, we can get the entire report from the first stream.
The DeliverReport method extracts the report payload as a byte array from the Data property
of the RenderedOutputFile object and converts it to a Base64 string so it can be safely trans-
mitted over the wire.

 Delivering to a Web service
Next, the DeliverReport method sends the report payload to the target Web service specified
by the user. However, this presents an implementation challenge because the Web service is
not known at design time and we cannot generate a Web service proxy to communicate with
it. What we need is a way to generate the proxy dynamically at run time. This "magic" hap-
pens in the WebServiceProxyFactory class, which is based on the Rodolfo Finochietti's Dy-
namic Proxy Factory sample. The Delivery method instantiates a WebServiceProxyFactory
object and passes the Web service WSDL URL to its constructor. Without discussing WebSer-
viceProxyFactory in detail, it uses the .NET Code Document Object Model (CodeDOM) to
dynamically generate the proxy assembly.

I've made two changes to the Rodolfo's sample. First, I removed the contract dependence
between the factory and the Web service so that the custom delivery extension can integrate
with an arbitrary Web service. Second, instead of saving the proxy assembly to disk, WebSer-
viceProxyFactory generates it in memory so you don't have to grant special Code Access Secu-
rity permissions to the location where the proxy assembly is generated.

Once the DeliverReport method obtains a reference to the proxy assembly from the Web-
ServiceProxyFactory.Build method, it uses the .NET reflection technology to obtain a reference
to the proxy class by calling the GetType method. If you use the ReportService Web service,
GetType returns the Reporter class. Next, DeliverReport calls GetMethod on the type to get a
reference to the user-defined method by name, such as SendReport. Then, DeliverReport
checks whether the method both exists and passes certain validation rules, such as whether it
is a public instance-based method.

If the method passes validation, DeliverReport invokes it dynamically by calling its Invoke
method. The Invoke method takes the reference to the object as a first argument and a string-
based array of the values for the method arguments. If the ReportService receives the report
payload successfully, it returns "success". DeliverReport checks the method return value, and
if all is well, sends the notification status message to indicate that the report has been delivered
successfully.

EXTENDING REPORT DELIVERY 695

20.2.2 Implementing the Web Control
Recall that a custom delivery extension can provide a user interface in the form of a web con-
trol to facilitate configuring the extension in Report Manager. The source code of the web con-
trol for the Web Service delivery extension is located in the WebServiceDeliveryUIControl.cs
source file.

The WebServiceDeliveryUIControl class inherits from the System.Web.UI.WebControls.-
WebControl class and implements the ISubscriptionBaseUIUserControl interface. The Web-
Control base class provides the required ASP.NET plumbing for initializing and rendering the
control. The ISubscriptionBaseUIUserControl interface lets the control plug into the report
server subscription delivery architecture. Let's discuss the control events in the order in which
they are executed by Report Manager (see again Figure 20.2).

 Initializing the Web control
As with the custom delivery extension, the report server calls the IExtension.SetConfiguration
method so that the web control can initialize using default values specified in the optional
configuration section. Because the WebServiceDeliveryUIControl doesn't support any configu-
ration settings, the SetConfiguration does nothing. As with the custom delivery extension, the
report server passes the list of the available rendering extensions to the ReportServerInforma-
tion property and calls the IsPrivilegedUser to indicate whether the user has Manage All Sub-
scriptions rights.

Next, Report Manager sites the control. This invokes the control Init method. In our case,
the Init method creates two text boxes and some ASP.NET validation controls to validate the
user input values before the page is submitted. Each text box control gets its default value by
calling the GetControlValue private member, which obtains the value from the ISubscription-
BaseUIUserControl.ReportServerInformation.ServerSettings property. Finally, the ReportServ-
er calls the set accessor of ISubscriptionBaseUIUserControl.UserData to pass the saved control
values.
public Setting[] UserData {
 get
 {
 SubscriptionData data = new SubscriptionData();
 data.WSDL = this._text_WSDL.Text;
 data.methodName = this._text_MethodName.Text;
 return data.ToSettingArray();
 }
 set
 {
 this._hasUserData = true;
 SubscriptionData data = new SubscriptionData();
 data.FromSettings(value);
 this._wsdl = data.WSDL;
 this._methodName = data.methodName;
 this._text_MethodName.Text = this._methodName;
 }
}

The set accessor overwrites the control values so the user sees the values that he or she saved.

 Saving the subscription settings
At this point, the subscription page is rendered in Report Manager and the user can overwrite
the extension settings or schedule the subscription. When the user clicks the Save button, the
subscription page posts back. Subsequently, Report Manager calls the get accessor of the ISub-
scriptionBaseUIUserControl.UserData property to get the user-defined values. Finally, Report

CHAPTER 20 696

Manager calls IDeliveryExtension.ValidateUserData to allow the extension to validate the new
values.

If the validation succeeds, Report Manager calls the SetSubscriptionProperties API of the
Report Server Web service to save the subscription settings in the report catalog. Next, Report
Manager creates a SQL Server Agent job and schedules the job.

20.3 Deploying Custom Delivery Extensions
Before you can set up a subscription that uses the Web Service delivery extension, you need to
deploy the custom delivery extension to the server. Specifically, you need to deploy and regis-
ter the custom delivery extension with the report server so the report server can load the ex-
tension at run time. For your convenience, I have provided my versions of the modified
configuration files in the Config folder inside the chapter source code.

20.3.1 Deploying to the Report Server
Deploying the delivery extension to the report server involves copying the extension binaries
to the report server bin folder and configuring the extension security.

 Deploying and registering the extension
Follow these steps to deploy the Web Service delivery extension to the report server.

1. Deploy the Prologika.CustomDeliveryExtension.dll and Prologika.CustomDelivery-
Extension.pdb to the report server binary folder whose default location is \Program
Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Services\ReportServer\bin.

2. Open the report server configuration file, rsreportserver.config, located in the report server
folder whose default location is \Program Files\Microsoft SQL Serv-
er\MSRS10.MSSQLSERVER\Reporting Services\ReportServer. Locate the <Delivery> element
and add a new extension section, as follows:
<Extension Name="Web Service Delivery Extension"
 Type="Prologika.RS.Extensibility.CustomDeliveryExtension.WebServiceDeliveryProvider,
 Prologika.CustomDeliveryExtension">
 <Configuration>
 <WebServiceConfiguration>
 <WSDL>http://localhost:1966/ReportService.asmx?WSDL</WSDL>
 <MethodName>SendReport</MethodName>
 </WebServiceConfiguration>
 </Configuration>
</Extension>

Change the WSDL and MethodName settings if needed.

 Configuring security
As usual when deploying custom code, you need to elevate the code access security rights for
the extension assembly.

1. Open the report server policy configuration file, rssrvpolicy.config, located in the report server
folder whose default location is \Program Files\Microsoft SQL Server\MSRS10-
.MSSQLSERVER\Reporting Services\ReportServer.

EXTENDING REPORT DELIVERY 697

2. Add a new CodeGroup element, as follows:
<CodeGroup class="UnionCodeGroup" version="1" Name="CustomDeliveryExtensionCodeGroup"
 Description="Code group for the Web Service Delivery Extension" PermissionSetName="FullTrust">
 <IMembershipCondition class="UrlMembershipCondition" version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting
 Services\ReportServer\bin\Prologika.CustomDeliveryExtension.dll"/>
</CodeGroup>

20.3.2 Deploying to Report Manager
If the extension provides a web control, you need to deploy and register the control with Re-
port Manager. Since the Web Service delivery extension provides user interface, we need to
register its web control so the user can configure the extension in Report Manager.

 Deploying and registering the extension
Follow these steps to deploy the Web Service delivery extension to Report Manager.

1. Deploy the Prologika.CustomDeliveryExtension.dll and Prologi-
ka.CustomDeliveryExtension.pdb to the Report Manager binary folder whose default location
is \Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Servic-
es\ReportManager\bin.

2. Open the report server configuration file, rsreportserver.config, located in the report server
folder whose default location is \Program Files\Microsoft SQL Serv-
er\MSRS10.MSSQLSERVER\Reporting Services\ReportServer. Locate the <DeliveryUI> element
and add a new extension section:
<Extension Name="Web Service Delivery Extension"
 Type="Prologika.RS.Extensibility.CustomDeliveryExtension.WebServiceDeliveryUIControl,
 Prologika.CustomDeliveryExtension"/>

 Configuring security
Next, you need to configure code access security for the custom delivery extension.

1. Open the Report Manager policy configuration file (rsmgrpolicy.config) and add a new Code-
Group element:
<CodeGroup class="UnionCodeGroup" version="1" Name="CustomDeliveryExtensionCodeGroup"
 Description="Code group for the Web Service Delivery Extension" PermissionSetName="FullTrust">
 <IMembershipCondition class="UrlMembershipCondition" version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Services\
 ReportManager\Bin\Prologika.CustomDeliveryExtension.dll"/>
</CodeGroup>

At this point, the Web Service delivery extension is deployed and registered with the report
server and Report Manager.

20.3.3 Debugging Custom Delivery Extensions
Thanks to the new hosting model in Reporting Services 2008, debugging a custom extension
is easy. Because the Background Processor and Report Manager are both hosted in the Repor-
tingServicesService.exe process, you only need to attach the debugger to a single process to
debug the extension and the web control.

CHAPTER 20 698

 Debugging during the configuration stage
To debug the custom delivery extension during the configuration stage:

1. Deploy the latest version of the extension binaries to the Report Manager binary folder
(\Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Servic-
es\ReportManager\Bin).

2. Open the Report Manager application in a browser.
3. Open the custom delivery extension project (CustomDeliveryExtension.csproj) in Visual Stu-

dio.

4. In Visual Studio, go to the Debug Attach to Process menu and check the Show Processes
from All Users and Show Processes in All Sessions checkboxes.

5. In the Available Processes, locate the ReportingServicesService.exe process and click the At-
tach button.

6. Set breakpoints in the custom delivery extension as needed. For example to troubleshoot the
web control initialization, set a breakpoint inside the Control_Init method.

7. In Report Manager, create a new subscription or edit an existing subscription.

At this point, the breakpoints should get hit.

 Run time debugging
To debug the extension at runtime when the report server initiates the subscribed report deli-
very:

1. Deploy the latest version of the extension binaries to the report server binary folder (\Program
Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Services\ReportServer\Bin).

2. In Visual Studio, go to the Debug Attach to Process menu and check the Show Processes
from All Users and Show Processes in All Sessions checkboxes.

3. In the Available Processes, locate the ReportingServicesService.exe process and click the At-
tach button to attach the Visual Studio debugger to it.

4. Set breakpoints in the custom delivery extension as needed. For example to debug the report
delivery, set a breakpoint inside the Deliver method.

5. Schedule the subscription to start a few minutes from the current time.

Once the schedule is triggered, the report server will start processing the subscription and you
should be able to step through the code.

 Understanding logging
Since most of the custom delivery extension activity takes place in the DeliverReport method, I
implemented a simple logging function in this method to help you troubleshoot it without
debugging. If a run time exception occurs in DeliverReport, it calls the WriteLog helper me-
thod to write the exception details to a disk file. The disk file is written to the system temp
folder and its default path is \Windows\Temp\WSDeliveryLog.txt. If the extension fails on de-
livery, you can open the WSDeliveryLog.txt file and inspect the exception stack.

EXTENDING REPORT DELIVERY 699

20.4 Summary
Out of the box, Reporting Services can deliver subscription-based reports to e-mail recipients,
shared folders, and SharePoint libraries only. However, thanks to the Reporting Services ex-
tensible architecture, you can extend Reporting Services to deliver reports to any destination
by implementing a custom delivery extension. To help you understand the nuts and bolts of
this extension type, I walked you through the implementation details of the Web Service deli-
very extension sample that uses a subscription to send a report to an arbitrary web service.

A custom delivery extension can optionally include a user interface. Consider including an
ASP.NET web control in your custom delivery extension to help the user specify delivery set-
tings in Report Manager. You can step through the custom delivery extension code at design
time and run time by attaching to the report server process. Before using the extension, you
need to deploy and register it with the report server and Report Manager.

20.5 Resources
Microsoft Printer Delivery Extension Sample

(http://tinyurl.com/29jthp)— The Printer Delivery Extension sample demonstrates
report delivery to a printer.

Rodolfo Finochietti's Dynamic Proxy Factory sample
(http://tinyurl.com/ywjqvo)— This sample demonstrates how to dynamically gener-
ate a web service proxy.

700

CChhaapptteerr 2211

Implementing Custom Report Items

21.1 Understanding Custom Report Items 700
21.2 Implementing Custom Report Items 706
21.3 Working with Progress Tracker 718

21.4 Understanding Custom Data Regions 722
21.5 Summary 724
21.6 Resources 724

The new Reporting Services charts and gauges can take you far when it comes to presenting
data in a visually compelling way, but even with the latest enhancements there is still room for
the occasional requirement that simply cannot be met with the built-in controls. For example,
suppose a user needs to convey information graphically using a chart type that Reporting Ser-
vices does not support? Fortunately, you can extend the Reporting Services data visualization
capabilities by implementing your own custom controls in the form of custom report items.

In this chapter, I will introduce you to this exciting extensibility area of Reporting Services
that lets you transcend the limitations of traditional text-based reporting. I will walk you
through the steps of implementing a custom report item that displays a progress indicator.
Finally, I will show you how to deploy and test the custom report item and use it on a report.

21.1 Understanding Custom Report Items
A custom report item is a Microsoft .NET component that extends Reporting Services presen-
tation capabilities. Once implemented, a custom report item can be used just like any native
report item. For example, you can drag a custom report item to the report layout and then
bind it to a report dataset to display a field value graphically. As you can imagine, custom re-
port items redefine the concept of a standard report and open a new world of possibilities for
visualizing data on reports.

DEFINITION A custom report item is a Microsoft .NET component that extends Reporting Services presentation capa-
bilities. A custom report item can render only static, image-based content.

21.1.1 What is a Custom Report Item?
As a developer, you have undoubtedly used Microsoft or third-party controls to spice up the
presentation layer of your .NET applications. You can think of custom report items as the Re-
porting Services equivalent of .NET controls. Unlike .NET controls, however, Reporting Ser-
vices custom report items have some limitations.

First, custom report items can only render static, image-based content. Second, custom
report items support a subset of interaction features that provide simple navigation like click-
ing on an image area to jump to another report or a bookmark in the same report. As you
have probably guessed, the time for fully interactive AJAX or Silverlight report widgets is yet
to come.

IMPLEMENTING CUSTOM REPORT ITEMS 701

Despite its limitations, custom report items can be very useful. Given that most reports are
static, custom report items let you extend your reports to convey information in powerful
ways. For example, you may have used or seen demos of the Dundas Reporting Services com-
ponents, including the Dundas Chart, Gauge, Map, and Calendar. You will probably be sur-
prised to learn that these feature-rich components were implemented as custom report items.
And as you'll see, building a simple custom report item on your own is not all that difficult.

 Report item types
To understand how a custom report item works, it helps to revisit a few fundamentals about
Reporting Services report items. Recall that Reporting Services provides two types of report
items. First, there are regular report items that include text box, image, line, and rectangle
items. The most popular among these is the textbox report item, which can be used to display
a fixed or expression-based value.

Second, there are data regions, such as table, matrix, list, and chart. A data region can be
bound to a report dataset just like ASP.NET or Windows Forms data-bound controls can be
bound to ADO.NET datasets. While each of the data regions presents the underlying data in
different ways, they all act as repeaters of data. For example, a table region generates one table
row for each row in the underlying dataset.

Custom report items let you implement both regular report items and full-blown data re-
gions. The Progress Tracker sample included in this chapter walks you through the process of
building a regular custom report item that you can bind to a dataset field inside a table, ma-
trix, or list data region. Should your custom report item requirements call instead for the more
complex data region structures, you will be able to devise an appropriate strategy once you
grasp the concepts presented in the following sections.

 About the custom report item lifecycle
If you have ever built a Windows Forms or Web Forms custom control, you will find that im-
plementing a custom report item is not all that different. Similar to a control, a custom report
item has a dual life. At design time, the report author configures the custom report item in the
Report Designer. At run time, the report server passes properties to the control and requests
that the control be rendered on the page.

To meet the needs of both environments, a custom report item must include a design-time
component and a run-time component. These components are implemented as .NET Frame-
work assemblies and can be written in any CLS-compliant language. Let's discuss each com-
ponent in more detail.

21.1.2 Understanding the Design-Time Component
The design-time component enables the report author to create a custom report item in Re-
port Designer by providing various services for specifying report properties, handling verbs
and adornment features, using custom editors, and previewing the results. To provide these
services, the design-time component must inherit from the Reporting Services CustomReportI-
temDesigner class.

 Understanding design-time services
Deciding which design services you need to implement is a tradeoff between usability re-
quirements and the time it takes to implement your design. The more sophisticated the cus-
tom report item is, the more complex its design-time component is likely to be. Take for

CHAPTER 21 702

example the Reporting Services chart data region, which features the full-blown design-time
component shown in Figure 21.1.

Figure 21.1 The design-time
component can provide various
services for configuring custom
report items at design time.

As you select chart areas, the Properties window (not shown in the figure) shows the control
properties. Some properties, such as Font and Color, are standard. Others are control-specific,
such as CategoryAxes, ValueAxes, and so on. As you change the control properties, the chart
region updates its design-time appearance so that you can see the effect of changing a specific
value.

Simple custom report items are likely to support only the basics: control properties and
design-time rendering. More complex custom report items might provide adornment services,
verbs, and custom property editors.

 Adornment
When you click on the chart region at design time, the control draws an adornment area out-
side the main control window. This area has three frames (data fields, category fields, and se-
ries fields) that act as drop containers for dataset fields. Microsoft has added the adornment
services to the chart control to let the report author configure the chart grouping and data by
simply dragging dataset fields and dropping them in the appropriate frame. If you are familiar
with implementing Windows Forms controls, the Reporting Services adornment infrastructure
is essentially a pass-through implementation of the Windows Forms Adorner class.

As you can imagine, rendering the adornment frame and responding to user events can
get rather complex. The good news is that the adorner infrastructure is entirely optional. For
the sake of simplicity, Progress Tracker doesn’t implement adornment services. If you decide
to adorn, the Microsoft Polygon sample, which is one of the Reporting Services extensibility
samples, demonstrates how you can add adornment features to your custom report item.

 Verbs
Another nice feature you may want to implement is verbs. Designer verbs let you implement
custom actions that can be launched by right-clicking on the control design surface and
choosing the action from the context menu. For example, when you right-click the chart area,

IMPLEMENTING CUSTOM REPORT ITEMS 703

the context menu shows various verbs, such as Show Value Axis, Show Category Axes, and
Delete Chart Area, which allow the report author to carry out various actions.

You can implement verbs in custom report items by overriding the CustomReportItemDe-
signer Verbs property. Next, add a new verb to DesignerVerbCollection and specify the de-
sired caption and the callback event handler. When the user selects the action from the
context menu, CustomReportItemDesigner will invoke the callback event handler, where you
can execute whatever code is needed.

 Custom property editors
The Properties window can help the report author configure simple properties. More complex
properties, however, may require custom editors. For example, when you select the Chart
Area Properties context menu (see again Figure 21.1), the chart region opens a rather sophisti-
cated custom editor that lets you configure the appearance of the chart area, including 3D op-
tions and visibility properties.

Custom editors can be associated with the design-time component as a whole or with in-
dividual properties that may require more complex configuration and validation rules.
Progress Tracker demonstrates how you can implement property and component-based cus-
tom editors.

Figure 21.2 At run time,
the Report Processor
passes data and properties
to the custom report item.

21.1.3 Understanding the Run-Time Component
Implementing the run-time component for a custom report item is much simpler than imple-
menting its design-time counterpart. That’s because you only need to worry about drawing the
run-time image of the item—which after all is the main purpose of having a custom report
item. The run-time component must implement the Reporting Services ICustomReportItem
interface. Figure 21.2 shows the run-time interaction between the Report Processor and the
custom report item.

 Run-time interaction
When the report is requested, the Report Processor executes report queries and retrieves the
data. The Report Processor obtains the report definition (RDL) from the report server data-
base. Next, the report server creates (1) a rendering object model (ROM) by combining the
report data and definition.

When the Report Processor encounters a custom report item, it instantiates the run-time
component of the custom report item each time it needs to be rendered on the report. The

CHAPTER 21 704

Report Processor passes (2) the ROM object to each instance. The custom report item run-
time component traverses the object and generates an image and returns (3) the image back to
the ROM. Finally, the Report Processor passes (4) the ROM to the rendering extension asso-
ciated with the requested export format to render the final report.

 Run-time properties
When the Report Processor instantiates a custom report item, it passes to it a set of static or
expression-based properties that were defined at design time and saved in the report defini-
tion. Most property values are static. Common examples of static properties include values for
Color and Font. Interestingly, if the property value is expression-based, the Report Processor
evaluates and resolves the expression before passing the value to the custom report item.

For example, if the Value property is bound to a dataset field, the Report Processor re-
solves the property value from the underlying dataset field. Because the expression-based
property value is resolved in advance, your custom report item can handle static and dynamic
properties the same way (as name-value pairs), saving an enormous amount of plumbing work
on your part.

Now that you have a solid foundation of what a custom report item is, let me introduce
you to the Progress Tracker custom report item that I developed.

21.1.4 Introducing the Progress Tracker Custom Report Item
The Adventure Works Performance Report (KPIDemo.rdl) demonstrates the Progress Tracker
custom report item in action, as shown in Figure 21.3. This report queries the Adventure
Works Analysis Services cube and retrieves the Product Gross Profit Margin KPI that is de-
fined in the cube.

 The Adventure Works Performance report
KPIs can be implemented easily with Microsoft SQL Server Analysis Services. You can use
MDX expressions to derive the KPI value, goal, status, and trend properties. To facilitate que-
rying the KPI objects, Analysis Services provides four functions: KPIValue, KPIGoal, KPISta-
tus, and KPITrend, which you can use in the report query to retrieve the KPI properties and
display them on the report. As with regular measures, Analysis Services automatically calcu-

Figure 21.3 The Adven-
ture Works Performance
Report uses the Progress
Tracker custom report
item to show a KPI status
graphically.

IMPLEMENTING CUSTOM REPORT ITEMS 705

lates the KPI properties as the user slices the data. The abbreviated MDX query of the Adven-
ture Works Performance Report follows:
SELECT NON EMPTY { KPITrend("Product Gross Profit Margin"),
KPIStatus("Product Gross Profit Margin"),
KPIGoal("Product Gross Profit Margin") } ON COLUMNS,
NON EMPTY { ([Product].[Product Categories].[Category].ALLMEMBERS *
[Product].[Subcategory].[Subcategory].ALLMEMBERS) } ON ROWS
FROM (SELECT (STRTOSET(@ProductCategory, CONSTRAINED)) ON COLUMNS FROM [Adventure Works])
WHERE (IIF(STRTOSET(@ProductCategory, CONSTRAINED).Count = 1, STRTOSET(@ProductCategory, CONSTRAINED),
[Product].[Category].currentmember))

This query requests the Product Gross Profit Margin properties on columns and breaks them
down by product category and subcategory on rows. The query takes the product category as
a query parameter, which the user selects at run time.

The report shows both the actual KPI status value (Profit Margin Status column) and the
graphical value (Status column). Progress Tracker renders the graphical image in the Status
column. Progress Tracker is configured at design time for a minimum value of -1 and maxi-
mum value of 1. This range corresponds to the KPI range in Analysis Services, where -1 is un-
derperformance, 0 is acceptable performance, and 1 is good performance.

 Configuring the Progress Tracker
At design time, you can configure the Progress Tracker custom report item in the Report De-
signer, as shown in Figure 21.4.

Figure 21.4 At design time, the report author can configure the Progress Tracker in the Report Designer.

You can drag Progress Tracker from the report toolbox and drop it inside a report region just
as you would do with the standard report items. You can use the Properties window to set the
Progress Tracker properties, which are listed under the ProgressTracker category. Notice that
you can bind Progress Tracker to a dataset field by setting its Value property. Table 21.1 de-
scribes the Progress Tracker properties.

Besides the properties listed in Table 21.1, Progress Tracker re-uses some of the Reporting
Services standard properties. For example, the Color property sets the bar color while the
Font property defines the font of the bar text. The .NET designer host infrastructure provides
these properties automatically for you. If you overwrite the default value of a standard proper-
ty, Progress Tracker saves the new property value in the report definition.

CHAPTER 21 706

Table 21.1 Progress Tracker properties

Property Description Default Value

Alpha Specifies the value of the gradient alpha filter used to render the control. 255

Hyperlink Lets the end user jump to a Web page. http://www.prologika.com

Maximum Defines the maximum value of the progress bar. 1

Minimum Defines minimum value of the progress bar. -1

ShowValue When set to False, hides the numeric value inside the bar. True

Value Sets the progress value. This can be a static value or an expression,
such as a field reference.

0

Now that you are familiar with the Progress Tracker sample, let's drill down to the implemen-
tation details.

21.2 Implementing Custom Report Items
The Progress Tracker sample started as a personal quest to find the answer to an interesting
problem. I wanted to know what it would take to convert an existing .NET Windows Forms
control to a custom report item. My hypothesis was that any .NET control that uses GDI+ to
render an image could be converted to a custom report item. It turned out that not only was
this true, it was even simpler than I anticipated.

NOTE Windows Graphics Device Interface (GDI+) is an application programming interface (API) that lets you create
graphics, draw text, and manipulate graphical images as objects. The .NET Framework includes a GDI+ managed
class interface that abstracts the GDI+ API and lets .NET developers use managed code to add graphics, imaging,
and typography features to their applications.

21.2.1 Implementing the Windows Control
First, I had to find a suitable .NET control that comes with source code. Sieving through the
plethora of control samples out there, I decided to narrow my search to a simple progress bar
control that would graphically display a numeric value, such as a KPI value. Granted, the
built-in Gauge report item is designed to do exactly that, but for the purpose of my investiga-
tion the Gauge report item was overkill for the type of progress bar I wanted to use.

 About the CylinderTrackBar control
After some searching, I stumbled across an excellent CylinderTrackBar control by Mycos
Technology (see Resources) that was ideal for the Progress Tracker custom report item. This
control demonstrates advanced GDI+ capabilities, such as customizable gradient fill and ani-
mation. The original control supports interactive features. For example, a user can drag the fill
of the cylinder up and down to set its value. However, as I mentioned at the start of the chap-

TIP To minimize development and testing time, implement your custom report item as a Windows Forms control
first. This will let you conveniently test and debug the control rendering code inside the Visual Studio IDE. Once the
control is ready, converting it to a custom report item is easy.

IMPLEMENTING CUSTOM REPORT ITEMS 707

ter, custom report items are limited to static content. For this reason, I wasn't able to migrate
the control’s interactive features to Progress Tracker.

Figure 21.5 The Progress
Tracker Windows control
sited on a Windows Form.

Figure 21.5 shows the Progress Tracker Windows Forms control placed on a Windows Form.
You can find the control implementation in the ProgressTracker class library project, which is
included with the book source code. You can use the TestHarness Windows Forms project to
test the control. My humble contribution to the original control was rendering the control ho-
rizontally to minimize the real estate when the control is placed inside a report region.

 Implementing the control properties
The Progress Tracker control inherits from System.Windows.Forms.UserControl, which pro-
vides most of the plumbing required to implement a custom Windows Forms control. This
includes control positioning, resizing, and support for standard properties. For example, be-
cause Progress Tracker extends UserControl, it inherits standard properties like ForeColor,
BackColor, and so on. With so many of the basic properties already handled, all that’s left to
implement is custom properties and rendering the control image on the page.

In practice, it is not always possible to perfectly map a run-time control to the properties
of a custom report item in Report Designer. As Figure 21.5 shows, the Progress Tracker run-
time control supports the same properties as its custom report item counterpart, but with two
exceptions. First, the custom report item provides a BorderColor property (the run-time con-
trol does not support such a property). Second, the Progress Tracker run-time control does
not have a Hyperlink property. The Hyperlink property is a Reporting Services-specific im-
plementation detail that anticipates a drill through action. There is no equivalent counterpart
in the simple progress bar control that is the basis of Progress Tracker.

Setting control properties is straightforward. At design time, the developer can use the
Visual Studio Properties Window to change the custom properties and configure the control.
Alternatively, the properties can be set at run time through code. This is no different than inte-
racting with any of the standard Windows Forms Controls, such as TextBox or ComboBox.
Thanks to the Windows Forms hosting infrastructure, implementing the custom properties is
remarkably simple. The following example shows code that sets the Value property.
[Category("ProgressTracker"), DefaultValue(0f)]
public float Value {
 get {return this._value ;}
 set {
 if (this._value != value)
 {
 if (value < this._min || value > this._max)
 throw new ApplicationException("The progress value must be between the minimum and maximum values.");
 this._value = value; this.Invalidate();
 }
 }
}

CHAPTER 21 708

The Visual Studio Properties window will pick up any public custom property. You can deco-
rate the property with additional attributes to fine-tune its appearance. For example, the Cate-
gory attribute assigns the property to the ProgressTracker category and the DefaultValue
attribute assigns a default value of 0 to the Value property. If the user overwrites the property
value, the Properties window will show the changed value in bold to indicate that the new
value is different from the default value. If you need to validate the property, you can write
validation code inside the property set accessor. For example, the Value property verifies that
the user input falls within the range of valid values (as defined by minimum and maximum
values) and throws an exception if this rule is not met.

Each property stores the value in a class-level member. The Windows Forms designer in-
frastructure takes care of saving the property values when you close the form and restoring
them when you open the form in the Forms Designer.

 Understanding control rendering
When implementing a custom control, the bulk of the implementation effort goes into render-
ing the control. Progress Tracker overwrites the OnPaint event and renders the control image
on the graphics canvas, which the Windows Forms designer passes as an input argument.
protected override void OnPaint(PaintEventArgs pe)
{
 base.OnPaint(pe);
 Graphics g = pe.Graphics;
 g.SmoothingMode = SmoothingMode.AntiAlias;
 this.DrawControl(g, this.ForeColor);
}
private void DrawControl(Graphics g, Color foreColor) {
 bool outLine = this._borderColor != Color.Transparent;
 Rectangle bar = this.ClientRectangle;

 bar.Inflate(-20, -20);
 DrawingUtils.DrawBar(g, bar, Color.FromArgb(this.Alpha, foreColor), this.BorderColor, outLine);

 if (this.Value >= this.Minimum && this.Value <= this.Maximum)
 {
 float value = bar.Width * ((this.Value - this.Minimum) / (this.Maximum - this.Minimum));
 Rectangle progress = Rectangle.FromLTRB(bar.Left, bar.Top, bar.Left +
 (int)value, bar.Bottom);
 DrawingUtils.DrawBar(g, progress, Color.FromArgb(this.Alpha, this.ProgressColor), this.BorderColor, outLine);
 // Draw the progress text inside the control
 if (this._showValue && progress.Height > 10)
 {
 StringFormat format = new StringFormat();
 format.Alignment = StringAlignment.Center;
 format.LineAlignment = StringAlignment.Center;
 g.DrawString(this._value.ToString("F2"), this.Font, Brushes.Black, bar, format);
 format.Dispose();
 }
 }
}

The OnPaint event delegates the control rendering to the DrawControl helper method. This
method obtains the client area of the control from the base control's ClientRectangle property.
Then, it calls the Inflate method to decrease the rectangle area by 20 pixels. Next, it calls the
DrawBar helper method (not shown) in the DrawingUtilities class to render the control.

Without going into too much detail, the DrawBar method draws a cylinder on the GDI+
graphics canvas using the GDI+ primitives, starting with the left plane, right plane, and cy-
linder body. If you decide to experiment with the control, you might find it useful to place a
return statement at different points of the FillCylinder logic to watch what has been drawn on
the graphics canvas.

IMPLEMENTING CUSTOM REPORT ITEMS 709

Once the cylinder is drawn you can move on to the next step, which is to render the
progress bar as an inner cylinder. The DrawControl method uses the Value property to calcu-
late a new rectangle. Then, it calls the DrawBar method again to paint the progress cylinder.
Finally, if the ShowValue property is True, DrawBar renders the actual value as text inside the
control by calling the DrawString GDI+ method.

21.2.2 Implementing the Design-Time Component
Once you are sure that the Windows Forms control is correctly handling property settings and
render operations, you can promote it to a custom report item. The source code of the
Progress Tracker custom report item can be found in the ProgressTrackerCRI class library
project. In this section, we examine the design-time component that is used set properties on
the Progress Tracker custom report item and preview the results. As I mentioned earlier, a
custom report item consists of a design-time component and a run-time component that reads
properties and renders the control on the page.

During design-time, the report author configures the custom report item by setting its
properties. For the sake of convenience, the design-time component should also draw an im-
age so that the report author can see the effect of setting properties and make any necessary
adjustments without leaving the design environment. Although the Progress Tracker custom
report item doesn’t show it, your custom design-time component could also implement addi-
tional services, such as adornment, verbs, and custom editors.

In comparison to the code you will need to write for the run-time component, the design-
time component is by far more difficult to implement. The Progress Tracker design-time com-
ponent is implemented in the ProgressTrackerDesigner class (ProgressTrackerDesigner.cs
source file).

 About the CustomReportItemDesigner class
The design-time component must inherit from the Reporting Services CustomReportItemDe-
signer class. This class wraps the underlying Windows Forms host designer infrastructure and
provides the basic services that the design time component needs. See the article Create and
Host Custom Designers with The .NET Framework 2.0 in the Resources section if you want to
learn more about the .NET designer host architecture.
[LocalizedName("Progress Tracker")]
[ToolboxBitmap(typeof(ProgressTrackerDesigner), "ProgressTracker.ico")]
[CustomReportItem("ProgressTracker")]
[Editor(typeof(CustomEditor), typeof(ComponentEditor))]
public class ProgressTrackerDesigner : CustomReportItemDesigner {. . .}

The LocalizedName attribute specifies the name of the custom report item that the report au-
thor will see in the Report Designer toolbox. The ToolboxBitmap attribute references an icon
file that will be shown in the toolbox. The CustomReportItem attribute must correspond to
the name of the custom report item as defined in the rsreportserver.config file. The Editor
attribute associates the design-time component with a custom editor that the report author
can use to configure the component. I will discuss custom editors in more detail later on in
this section.

CHAPTER 21 710

 Initialization
When the user adds the custom report item to the report, the CustomReportItemDesigner
class fires the InitializeNewComponent event. This event gives the developer a chance to in-
itialize the design-time component for first use.
public override void InitializeNewComponent() {
 SetDefaults();
}
private void SetDefaults() {
 // custom properties
 this.Maximum = 1f;
 this.Minimum = -1f;
 this.Alpha = 255;
 this.Hyperlink = "http://www.prologika.com";
 this.ShowValue = true;

 // standard properties
 this.Style.Border.Color = new ReportExpression<ReportColor>(new ReportColor(Color.Black));
 this.Style.Border.Style = new ReportExpression<BorderStyles>(BorderStyles.Solid);
 this.Style.Color = new ReportExpression<ReportColor>(new ReportColor(Color.Gold));
 this.Style.FontSize = new ReportExpression<ReportSize>(new ReportSize(8.0, SizeTypes.Point));
 this.ChangeService().OnComponentChanged(this, null, null, null);
}
public IComponentChangeService ChangeService() {
 if (this._changeService == null)
 {
 this._changeService = (IComponentChangeService)Site.GetService(typeof(IComponentChangeService));
 _changeService.ComponentChanged += new ComponentChangedEventHandler(OnComponentChanged);
 }
 return this._changeService;
}
private void OnComponentChanged(object sender, ComponentChangedEventArgs ce)
{
 Invalidate();
}

The ProgressTrackerDesigner InitializeNewComponent event calls the SetDefaults helper me-
thod to initialize the properties of the design-time component. ProgressTrackerDesigner inhe-
rits standard properties from the CustomReportItemDesigner, such as Font-related properties,
which you can then access using CustomReportItemDesigner.Style.<PropertyName> syntax.
As it stands, the custom report item architecture provides no way of hiding the standard prop-
erties in case you don’t need them or they are redundant. For this reason, before introducing a
new custom property, check if you can reuse an existing standard property instead.

ProgressTrackerDesigner reuses several Reporting Services standard properties. For exam-
ple, it uses the Color property for the color of the progress bar and the Font property for the
text font. The SetDefaults method initializes both custom and standard properties to default
values.

NOTE Due to an unfortunate bug, the changes you've made to standard properties in InitializeNewComponent, such
as Style.Color, are not available in the Draw method. In other words, only the default values of the standard properties
are available when you add a new instance of the custom report item. This issue will most likely be fixed in a first
cumulative update package.

The .NET designer host infrastructure provides services for letting the host and the compo-
nent exchange information. For example, the IComponentChangeService service supports bi-
directional communication between the host and the design-time component. When the user
changes a property in the Report Designer Properties grid, the Report Designer fires the On-
ComponentChanged event to let the component know about the change by passing both the
old and new values in the ComponentChangedEventArgs argument. In our case, OnCompo-
nentChanged simply invalidates the design-time components to force it to repaint itself.

IMPLEMENTING CUSTOM REPORT ITEMS 711

Similarly, the design-time component can call the OnComponentChanged event to inform
the host that its internal state has changed. The SetDefaults method calls IComponentChange-
Service.OnComponentChanged to inform Report Designer that its properties have changed.
This causes a refresh of the Reporting Designer Properties window to synchronize the compo-
nent properties with their new values. Finally, SetDefaults calls the Invalidate method, which
triggers a call to its Draw event to redraw its image.

 Properties
Similar to its Windows Forms control counterpart, any public property of the design-time
component is automatically exposed in the Report Designer Properties window. Consequent-
ly, the implementation of the custom properties remains essentially the same with a few ex-
ceptions. The following code snippet demonstrates the changes to the Value property.
[Category("ProgressTracker"), DefaultValue("0"), Description("The actual value.")]
[Editor(typeof(CustomExpressionEditor), typeof(System.Drawing.Design.UITypeEditor))]
public string Value {
 get
 {
 string v = this.GetCustomProperty(Shared.PROP_VALUE);
 return string.IsNullOrEmpty(v) ? ((_progress.Maximum + _progress.Minimum)/2).ToString() : v;
 }
 set
 {
 float result;
 if (float.TryParse(value, out result))
 {
 if (result < _progress.Minimum || result > _progress.Maximum)
 throw new ArgumentException("The progress value must be between the minimum and maximum values.");
 else
 {
 _progress.Value = result;
 }
 }
 else
 {
 if (value.Trim() != String.Empty && !value.Trim().StartsWith("="))
 throw new ArgumentException("Expressions must start with an equal sign.");
 }
 SetCustomProperty(Shared.PROP_VALUE, value); // store in RDL
 this.ChangeService().OnComponentChanged(this, null, null, null);
 Invalidate();
 }
}

Unlike the Windows Forms control, whose designer manages property storage, the design-
time component is responsible for saving and restoring the property values to and from the
report definition. The set accessor calls the SetCustomProperty helper method to serialize the
property value to the report definition. Here is what a serialized instance of ProgressTracker
looks like:
<CustomReportItem Name="progressTracker1">
 <Type>ProgressTracker</Type>
 <Style>
 <Color>Gold</Color>
 <FontFamily>Arial Narrow</FontFamily>
 <FontSize>8pt</FontSize>
 </Style>
 <CustomProperties>
 <CustomProperty>
 <Name>Value</Name>
 <Value>=Fields!Value.Value</Value>
 </CustomProperty>
 <CustomProperty>
 <Name>ShowValue</Name>

CHAPTER 21 712

 <Value>True</Value>
 </CustomProperty>
 <CustomProperty>
 <Name>Hyperlink</Name>
 <Value>=Fields!Hyperlink.Value</Value>
 </CustomProperty>
 </CustomProperties>
</CustomReportItem>

When the value of a custom property is changed, the code calls the Invalidate method to force
the design-time component to repaint itself. To read the property value from the report defini-
tion when the control is instantiated, the get accessor calls the GetCustomProperty method.

 Design-time rendering
To help the user visualize the effect of setting the properties, ProgressTracker draws an image
at design time. More sophisticated custom report items, such as the Reporting Services chart,
may provide different visualization techniques to support design-time and run-time appear-
ances. In our case, ProgressTracker uses the same code to draw its image in both modes. The
Report Designer fires the Draw event each time the design-time component needs to be re-
painted.
public override void Draw(Graphics gr, ReportItemDrawParams dp)
{
 float value = 0f;
 _progress.Alpha = this.Alpha;
 _progress.ProgressColor = this.Style.Color.Value.Color;
 _progress.BorderColor = this.Style.Border.Color.Value.Color;
 _progress.ProgressColor = this.Style.Color.Value.Color;
 _progress.Maximum = this.Maximum;
 _progress.Minimum = this.Minimum;
 _progress.Value = float.TryParse(this.Value, out value) ? value :
 (_progress.Maximum + _progress.Minimum) / 2;
 _progress.ShowValue = this.ShowValue;
 _progress.Font = Shared.GetDrawingFontFromReportFont(this.Style.FontFamily.Value,
 this.Style.FontStyle.Value.ToString(), this.Style.FontWeight.Value.ToString(),
 (float) this.Style.FontSize.Value.Value);
 _progress.Height = (int) this.Height;
 _progress.Width = (int) this.Width;
 _progress.DrawControl(gr);
 this.ChangeService();
}

The Draw event configures the internal ProgressTracker class and calls its DrawControl me-
thod to draw the design-time image on the graphics canvas, which Windows passes as an in-
put argument. Because the rendering code remains practically unchanged from the original
Windows Forms control, no further discussion of it is necessary here.

 Drag and drop support
Recall that the Value and Hyperlink properties of the Progress Tracker custom report item can
be expression-based. For example, the expression =Fields!Value.Value binds the Value proper-
ty to a dataset field called Value. While the user can type the expression text directly in the
property grid, ProgressTrackerDesigner lets the user drop a dataset field onto the image, as
shown in Figure 21.6, and constructs the expression text automatically

IMPLEMENTING CUSTOM REPORT ITEMS 713

Behind the scenes, ProgressTrackerDesigner uses the CustomReportItemDesigner drag-and-
drop support. The drag-and-drop implementation is essentially the same as in Windows
Forms so I won’t spend much time discussing it. The only behavior difference that is worth
mentioning takes place in the OnDragEnter event handler, which causes the border area to be
drawn.
public override void OnDragEnter(DragEventArgs e) {
 IFieldsDataObject fieldsDataObject = e.Data.GetData (typeof(IReportItemDataObject)) as IFieldsDataObject;

 if (fieldsDataObject != null && fieldsDataObject.Fields != null && fieldsDataObject.Fields.Length > 0) BeginEdit();
}

In the absence of the adorner window, BeginEdit draws a selection border around the custom
report item when the dragged item is placed in the custom report item area. The net effect is
the same as when you drag a dataset field over a table cell of the standard table region. The
OnDragDrop event (not shown) constructs the expression and sets the Value property.

 Verbs
Another end-user feature that you might want to implement is verbs. Designer verbs let the
report author perform custom actions that can be launched by right-clicking the control de-
sign surface. ProgressTrackerDesigner implements a Reset Defaults verb that resets the proper-
ties of the design-time component to their default values, as shown in Figure 21.7.

Figure 21.7 The Reset Defaults verb
lets the report author reset the custom
report item to its default property values.

You implement a verb by overriding the CustomReportItemDesigner Verbs property. Next,
add a new verb to the DesignerVerbCollection collection and specify the desired caption and
the callback event handler. When the user selects the action from the context menu, Custo-
mReportItemDesigner will invoke the callback event handler where you can execute whatever
code is needed.

Figure 21.6 Progress Tracker lets
the user drags a dataset field to bind
the Value property to that field.

CHAPTER 21 714

public override DesignerVerbCollection Verbs {
 get {
 if (_verbs == null) {
 _verbs = new DesignerVerbCollection();
 _verbs.Add(new DesignerVerb("Reset Defaults", new EventHandler(OnCustomAction)));
 }
 return _verbs;
 }
}
private void OnCustomAction(object sender, EventArgs e) {
 switch (((System.ComponentModel.Design.DesignerVerb)sender).Text)
 {
 case "Reset Defaults": SetDefaults(); Invalidate(); break;
 default: MessageBox.Show("Not supported"); break;
 }
}

In our case, ProgressTrackerDesigner adds a Reset Defaults verb and specifies the OnCusto-
mAction method as a callback event handler. When the report author selects the Reset De-
faults context menu, the OnCustomAction fires and calls the SetDefaults method to reset the
property values.

 Custom editors
Some properties may have more advanced configuration requirements that are best addressed
through a custom property editor. For example, suppose you want to apply validation rules to
specific properties, or provide a property value from a drop-down list of choices. Or, how
about letting the user configure expression-based properties using the standard Reporting Ser-
vices expression editor? You can associate a property with a custom editor by decorating it
with the Editor attribute:
[Category("ProgressTracker"), DefaultValue("0"), Description("The actual value.")]
[Editor(typeof(CustomExpressionEditor), typeof(System.Drawing.Design.UITypeEditor))]
public string Hyperlink {}

In this example, the Hyperlink property is associated with a custom editor that I implemented.
Consequently, the PropertyGrid control will show a button when you click inside the proper-
ty, as shown in Figure 21.8.

Clicking the button will invoke the EditValue method in your custom editor class.
internal sealed class CustomExpressionEditor : System.Drawing.Design.UITypeEditor {
 public override System.Drawing.Design.UITypeEditorEditStyle GetEditStyle(ITypeDescriptorContext t)
 {
 return System.Drawing.Design.UITypeEditorEditStyle.Modal;
 }
public override object EditValue(ITypeDescriptorContext t,System.IServiceProvider s, object oldValue)
{
 ExpressionEditor editor = new ExpressionEditor();
 object newValue = editor.EditValue(null, ((Microsoft.ReportDesigner.CustomReportItemHost)(t.Instance)).
 CustomReportItemDesigner.Site, new ReportExpression(oldValue.ToString()));
 return newValue != null?newValue:oldValue ; }
}

Figure 21.8 You can asso-
ciate a custom property editor
with a property to support more
advanced configuration or eva-
luate business rules.

IMPLEMENTING CUSTOM REPORT ITEMS 715

This class both launches the standard expression editor and provides a way to validate the re-
turned expression. The ExpressionEditor.EditValue method launches the standard expression
editor, passing the old value. If the user cancels the expression editor, null will be returned, in
which case the custom editor returns the original property value.

Since the WindowsForms Property Grid control uses the same custom editor mechanism
as the design-time component, you may find the article Getting the Most Out of the .NET
Framework PropertyGrid (see Resources) helpful if you want to learn more about working
with custom property editors. Because the Progress Tracker custom report item does not re-
quire a custom editor, the ProgressTrackerDesigner class includes only stub code to show you
how you might implement a custom editor.
[Editor(typeof(CustomEditor), typeof(ComponentEditor))]
class ProgressTrackerDesigner : CustomReportItemDesigner {…}

internal sealed class CustomEditor : ComponentEditor {
 public override bool EditComponent(ITypeDescriptorContext context, object component)
{
 MessageBox.Show("Implement CRI Properties Window here!");
 return true;
}

Although I do not provide sample code that implements a custom editor, building a custom
editor is relatively easy if you follow these basic steps. First, implement a custom form that
will represent the user interface of the editor. Then, decorate the design-time component with
the Editor attribute, which references a class that inherits from ComponentEditor. When the
report author right-clicks the custom report item, the context menu will show a Properties
verb (see Figure 21.7). Selecting the Properties context menu will invoke the EditComponent
method, which can instantiate the form, collect the new property values, and apply them to
the design-time component. The Microsoft Polygons custom report item sample demonstrates
a working custom editor.

21.2.3 Implementing the Run-Time Component
Once you have met and mastered the challenge of creating the design-time component, you
will find implementing the run-time component to be simple by comparison. With the run-
time component, you only need to worry about drawing the runtime image of the custom re-
port item. To review the source code for the ProgressTracker run-time component, refer to the
ProgressTrackerRenderer class in the ProgressTrackerRenderer.cs source file.

Table 21.2 The Reporting Services ICustomReportItem interface

Members Type Description

GenerateReportItemDefinition Method Generates the definition of the custom report item. Called once per report execution.

EvaluateReportItemInstance Method Generates the instance of the custom report. Called for each CRI instance.

 About the ICustomReportItem interface
The run-time component of a custom report item must implement the ICustomReportItem
Reporting Services interface whose definition is shown in Table 21.2. Implementing Genera-
teReportItemDefinition is a matter of plugging in a few lines of boilerplate code. The Evalua-

CHAPTER 21 716

teReportItemInstance method is the workhorse of the run-time component. It is responsible
for rendering the run-time appearance of the custom report item.

 Initialization
When the report server executes the report and encounters a custom report item, it instan-
tiates the run-time component (ProgressTrackerRenderer in our case) as many times as the
custom report item needs to be rendered on the report. For example, if you have a tablix re-
gion bound to a dataset with three rows and place ProgressTracker in a detail cell, when the
report is run, the report server will instantiate three instances of its run-time component.
public void GenerateReportItemDefinition(CustomReportItem cri)
{
 cri.CreateCriImageDefinition();
 Image progressImage = (Image)cri.GeneratedReportItem;
}
public void EvaluateReportItemInstance(CustomReportItem cri)
{
 // Get the Image definition
 Image progressImage = (Image)cri.GeneratedReportItem;
 // Render the image for the custom report item
 progressImage.ImageInstance.ImageData = DrawImage(cri);
}
private void Initialize(CustomReportItem cri) {
 if (null == _progress)
 {
 _progress = new ProgressTracker();
 }
 _progress.Alpha = Int32.Parse(LookupCustomProperty(cri.CustomProperties,
 Shared.PROP_ALPHA, 255).ToString());
 _progress.ProgressColor = cri.Style.Color.Value.ToColor();
 _progress.BorderColor = cri.Style.Border.Color.Value.ToColor();
 _progress.Font = Shared.GetDrawingFontFromReportFont(cri.Style.FontFamily.Value,
 cri.Style.FontStyle.Value.ToString(), cri.Style.FontWeight.Value.ToString(),
 (float)(cri.Style.FontSize.Value.ToPoints()));
 _progress.Maximum = float.Parse(LookupCustomProperty(cri.CustomProperties,
 Shared.PROP_MAXIMUM, 1f).ToString());
 _progress.Minimum = float.Parse(LookupCustomProperty(cri.CustomProperties,
 Shared.PROP_MINIMUM, -1f).ToString());
 _progress.Value = float.Parse(LookupCustomProperty(cri.CustomProperties,
 Shared.PROP_VALUE, 0).ToString());
 _progress.ShowValue = bool.Parse(LookupCustomProperty(cri.CustomProperties,
 Shared.PROP_SHOW_VALUE, "true").ToString());
 _progress.Hyperlink = (string)LookupCustomProperty(cri.CustomProperties,
 Shared.PROP_HYPERLINK, String.Empty);
 // size the control
 _progress.Height = (int)(cri.Height.ToInches() * Shared.DPI);
 _progress.Width = (int)(cri.Width.ToInches() * Shared.DPI);
}

When the report is processed, the report server invokes the GenerateReportItemDefinition
method only once per report execution. This method returns the definition (template) of the
image that will be rendered in place of the custom report item. Then, for each CRI instance,
the report server calls EvaluateReportItemInstance, passing the image definition. The Evalua-
teReportItemInstance method is responsible for generating the actual image and setting the
ImageData property. If you think of GenerateReportItemDefinition producing a class then
EvaluateReportItemInstance provides the instances of this class.

 The Initialize method is called by the Draw method, which I will discuss next. The pur-
pose of the Initialize method is to read the custom report item properties. The CustomRepor-
tItem object contains the standard and custom properties that were set at design time.
Currently, it is not possible to reference other report items on the report or the report object
itself. It is important to note that if the property value is expression-based, it is evaluated and

IMPLEMENTING CUSTOM REPORT ITEMS 717

resolved by the report processor before the CustomReportItem object is passed to the run-
time component. For example, if the ProgressTracker component is bound to a dataset field
(its Value property is set to a Fields!<FieldName>.Value expression), the actual field value is
retrieved by the report processor and made available under the Value property.

 Run-time rendering
The EvaluateReportItemInstance method calls the DrawImage helper method to obtain the
run-time image of the custom report item.
private byte[] DrawImage(CustomReportItem cri)
{
 byte[] imageData;
 // initialize CRI from properies in RDL
 Initialize(cri);
 CreateAction(cri); // creates a hyperlink action

 Drawing.Bitmap image = new Drawing.Bitmap(_progress.Width,
 _progress.Height, PixelFormat.Format32bppArgb);
 System.Drawing.Graphics graphics = Drawing.Graphics.FromImage(image);
 Drawing.Color backgroundColor = cri.Style.BackgroundColor.Value.ToColor();
 if (backgroundColor.IsEmpty) backgroundColor = Drawing.Color.White;
 graphics.Clear(backgroundColor);

 _progress.DrawControl(graphics);
 // create a memory stream to save the image
 using (MemoryStream stream = new MemoryStream())
 {
 image.Save(stream, ImageFormat.Bmp);
 imageData = new byte[(int)stream.Length];
 stream.Seek(0, SeekOrigin.Begin);
 stream.Read(imageData, 0, (int)stream.Length);
 }
 return imageData;
}

The code starts by calling the Initialize method to initialize the custom report item using the
properties that are configured for it. Next, DrawImage calls the CreateAction helper method to
create a hyperlink action. After the hyperlink is created, the code creates a Graphics object
from a bitmap image. Finally, it calls the same DrawControl method that is used by the de-
sign-time component to render the design-time image.

Once the image is drawn, it is saved in a memory stream so it can be converted to a byte array.
DrawImage sets the image MIME type to image/bmp, but you can choose another standard
image format if needed.

 Report actions
A custom report item can support Reporting Services navigation actions, including bookmark,
hyperlink, and drillthrough actions. A bookmark action lets the report user jump to another
place on the report. A hyperlink action navigates the user to a Web page. A drillthrough action
opens another report.

Implementing an action requires creating an image map that will be imposed on the run-
time image. Progress Tracker implements a hyperlink action that uses the URL address from

TIP As it stands, Reporting Services supports rendering custom report items as raster images only. Vector formats,
such as EMF and SVG, are not supported. By default, the custom report item will be rendered with a resolution of 300
DPI. You can specify a custom resolution by calling the Drawing.Bitmap SetResolution method. You can also control the
image size by setting the CustomReportItem.GeneratedReportItem.Sizing property to one of the pre-defined settings,
such as FitProportional.

CHAPTER 21 718

the Hyperlink property. As a result, once the report is rendered, the report user can click on
the custom report item image to navigate to a web page, as shown in Figure 21.9.

Figure 21.9 The report user can click on
the custom report item image when the re-
port is rendered to navigate to a Web page.

The CreateAction method implements the action.
private void CreateAction () {
 if (!string.IsNullOrEmpty(_progress.Hyperlink))
 {
 Image progressImage = (Image)cri.GeneratedReportItem;
 ActionInfoWithDynamicImageMap imageMap =
 progressImage.ImageInstance.CreateActionInfoWithDynamicImageMap();
 Action action = imageMap.CreateHyperlinkAction();
 action.Instance.HyperlinkText = _progress.Hyperlink;
 // top left and bottom right coordinates (last two are in percentage points!)
 float[] coordinates = new float[] { 20, 5, 90, 90 };
 imageMap.CreateImageMapAreaInstance(ImageMapArea.ImageMapAreaShape.Rectangle, coordinates);
 }
}

First, the CreateAction method checks if the user has set the Hyperlink property. If this is the
case, CreateAction obtains the image map by calling CustomReportItem.ImageInstance.-
CreateActionInfoWithDynamicImageMap and calls CreateHyperlinkAction to obtain a refer-
ence to the Action object of the image map. Next, CreateAction sets the action target to the
value of the Hyperlink property.

CreateAction constructs the four map coordinates of a rectangle that will represent the
clickable area. The first two values define the upper left coordinates of the image map in pix-
els. I am offsetting the x-coordinate by 20 pixels and the y-coordinate by 5 pixels because the
custom report item doesn't occupy the entire containing cell. The last two coordinates specify
the width and height of the map area as percentage values. I am setting them to 90 percent of
the map area because there is a gap between the image and the right cell border when the cus-
tom report item is rendered inside a tablix cell. Finally, CreateAction calls CreateImageMapA-
reaInstance to create a rectangular image map area with these coordinates.

21.3 Working with Progress Tracker
Now that you've seen how the Progress Tracker custom report item is implemented, let's learn
how to use it. First, I will walk you through the steps to deploy and register Progress Tracker.
Next, I will show you how to use it on a report. Finally, I will demonstrate how you can de-
bug Progress Tracker to step through its code for troubleshooting purposes.

21.3.1 Deploying Progress Tracker
Before using Progress Tracker you need to deploy its binaries to the BIDS Report Designer and
report server binary folders. In addition, you need to make changes to the Reporting Services
configuration files. For your convenience, I enclosed my versions of the configuration files in

IMPLEMENTING CUSTOM REPORT ITEMS 719

the Config folder. Use them for reference only! Do not overwrite your configuration files with
mine.

 Deploying to Report Designer
To use Progress Tracker in the BIDS Report Designer, you need to deploy and register it as
follows:

1. Deploy the Prologika.ProgressTracker binaries (Prologika.ProgressTracker.dll and Prologi-
ka.ProgressTracker.pdb) to Visual Studio 2008 (\Program Files\Microsoft Visual Studio
9.0\Common7\IDE\PrivateAssemblies folder). For your convenience, I’ve created a post-build
script (see the Build Events tab in the project properties) that copies the binaries after the
project is built successfully.

2. To register Progress Tracker with Report Designer, add an entry for the Progress Tracker cus-
tom report item in the Report Designer configuration file (\Program Files\Microsoft Visual
Studio 9.0\Common7\IDE\PrivateAssemblies\RSReportDesigner.config), as follows:
<ReportItemDesigner>
 <ReportItem Name="ProgressTracker"
 Type="Prologika.RS.Extensibility.ProgressTrackerCRI.ProgressTrackerDesigner, Prologika.ProgressTracker"/>
</ReportItemDesigner>
<ReportItems>
<ReportItem Name="ProgressTracker"
 Type="Prologika.RS.Extensibility.ProgressTrackerCRI.ProgressTrackerRenderer, Prologika.ProgressTracker"/>
</ReportItems>

To elevate the Progress Tracker CAS security rights:
3. Open the Report Designer preview policy file (RSPreviewPolicy.config), which is located by

default in C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\PrivateAssemblies, and
add the following CodeGroup element:
<CodeGroup class="UnionCodeGroup" version="1" Name="CRICodeGroup"
 Description="Code group for the ProgressTracker CRI" PermissionSetName="FullTrust">
 <IMembershipCondition class="UrlMembershipCondition" version="1"
 Url="C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\PrivateAssemblies\
 Prologika.ProgressTracker.dll" />
 </CodeGroup>

The next steps add the Progress Tracker custom report item to the Reporting Services toolbox.
4. Open Business Intelligence Development Studio and create a Report Server project or open an

existing Report Server project.
5. Open a report in the Report Designer and switch to the Layout tab.
6. Right-click the Toolbox pane and select Choose Items.
7. In the Choose Toolbox Items dialog box that follows, leave the .Net Components tab selected.

Click the Browse button and navigate to the ProgressTracker assembly (\Program
Files\Microsoft Visual Studio 9.0\Common7\IDE\PrivateAssemblies\Prologika.Progress-
Tracker.dll).

If Progress Tracker doesn’t show up in the Preview tab of the Report Designer and there are no
errors, it is probably not registered properly. Double-check steps 1 and 2.

 Deploying to Report Server
Follow these steps to deploy the Progress Tracker custom report item to the report server:

1. Deploy the Prologika.ProgressTracker assembly to the report server binary folder (\Program
Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Services\ReportServer\bin).

CHAPTER 21 720

Because the Report Processor interacts with the run-time component only, it is sufficient to
just register the ReportItem element in the report server configuration file.

2. Add the ReportItem section to the report server configuration file (\Program Files\Microsoft
SQL Server\MSRS10.MSSQLSERVER\Reporting Services\ReportServer\rsreportserver.config).
<ReportItem Name="ProgressTracker"
 Type="Prologika.RS.Extensibility.ProgressTrackerCRI.ProgressTrackerRenderer,
 Prologika.ProgressTracker"/>
</ReportItems>

3. Elevate the security permissions of the custom report item assembly for run-time execution by
adding the following CodeGroup to the report server policy file (\Program Files\Microsoft SQL
Server\ MSRS10.MSSQLSERVER \Reporting Services\ReportServer\rssrvpolicy.config).
<CodeGroup class="UnionCodeGroup" version="1" Name="CRICodeGroup"
 Description="Code group for the ProgressTracker CRI" PermissionSetName="FullTrust">
 <IMembershipCondition class="UrlMembershipCondition" version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Services\
 ReportServer\bin\Prologika.ProgressTracker.dll"/>
</CodeGroup>

NOTE If your custom report item references dependent assemblies, you have to deploy these assemblies to the
Report Designer and report server as well.

 Testing Progress Tracker
The KPIDemo and ProgressTrackerDemo reports included in the Report Server Reports
project demonstrates the Progress Tracker custom report item. The ProgressTrackerDemo is
simpler because it doesn't connect to a data source. I followed these steps to author the Pro-
gressTrackerDemo report:

1. Create a report dataset that has the following query:
select 0.25 as Value, 'Positive Value' as Description, 'http://www.prologika.com' as Hyperlink
union
select -.25, 'Negative Value', 'http://www.contoso.com'
union
select 0, 'No Change', 'http://www.adventure-works.com'
order by 1 DESC

This query generates a static dataset without connecting to a data source.
2. While you can use Progress Tracker outside a report region and set its properties to static

values, it is most useful when it is bound to a dataset field. Switch to the Layout tab and drop
a table region into the report area.

3. Drag Progress Tracker from the Reporting Services Toolbox and drop it in a table detail field.
4. Drag a dataset field and drop it on Progress Tracker to bind it to the field. Alternatively, enter

the field expression in the Progress Tracker Value property or use the expression editor.
5. Right-click on the design-time image and test the Reset Default and Properties verbs.
6. Optionally, bind the Hyperlink property to a dataset field that contains URL addresses, such

as the Hyperlink field, if you used the above query.
7. Preview the report.

Test the hyperlink action by hovering on the Progress Tracker image. The mouse cursor
should change to a hand. When you click on the image, the report should redirect you to the
correct URL address.

IMPLEMENTING CUSTOM REPORT ITEMS 721

21.3.2 Debugging Progress Tracker
There are several techniques to debug a custom report item. If you just want to step through
the code, you'll probably find stand-alone preview most convenient, so let's start with it.

 Standalone preview
Debugging with stand-alone preview is easy to setup.

1. Add the report project and the CRI project to the same Visual Studio solution.
2. In the report project properties, set the StartItem property to the report that hosts the custom

report item, such as ProgressTrackerDemo.rdl.
3. In the Solution Explorer, right-click the report project and click Set as Startup Project.
4. Press F5.

The report will be loaded in the stand-alone preview window and you will be able to step
through the run-time component. However, you won't be able to debug the design-
component, nor you will be able to make code changes to the custom report item. This is be-
cause when custom code is loaded, the Report Designer locks the custom report item assem-
bly in the process space of the Visual Studio IDE that hosts the report project. Unfortunately,
the only way to re-deploy a new version of the assembly is to shut down the Visual Studio
instance. As you can imagine, this can be quite irritating during the implementation stage.

 Start external program
When stand-alone preview gets in the way, you can launch the report project in a separate
instance of Visual Studio.

1. Exclude the report project from your Visual Studio solution that contains the code projects.
2. Right-click on the ProgressTrackerCRI project in the Solution Explorer and select Set as Star-

tup Project.
3. Open the ProgressTrackerCRI project properties and switch to the Debug tab as shown in

Figure 21.10.
4. In the Start External Program field, enter the full path to the Visual Studio 9.0 executable,

such as C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\devenv.exe.
5. In the Command Line Arguments field, enter the path to the Report Server project that con-

tains a report that uses the custom report item.
6. Set breakpoints in your design-time and/or run-time components.
7. Press F5 to start debugging.

The Visual Studio debugger will load the Report Server project in another instance of Visual
Studio. The debug breakpoints inside the design-time component should be hit when you
work with the custom report item in the Design tab of the Report Designer. The debug break-
points inside the run-time component should be hit when you preview the report by clicking
the Preview tab.

CHAPTER 21 722

21.4 Understanding Custom Data Regions
Progress Tracker is implemented as a single-valued standard report item, not unlike a stan-
dard text box report item. But what if your requirements call for a full-blown report data re-
gion, such as a chart, that binds to a dataset and displays multiple values? The Microsoft
Polygons sample demonstrates how this can be done. In this section, we will take brief detour
from the Progress Tracker sample to discuss the changes that are required to develop a custom
data region. To do this, I will walk you through relevant portions of the Polygons sample
code.

21.4.1 Understanding the CustomData Object
The key to implementing a custom data region is in understanding how the Reporting Services
CustomData object encapsulates the data region groupings and data. Table 21.3 lists the most
interesting properties of the CustomData object.

Table 21.3 The CustomData object includes the following important properties

Members Description

RowCollection Contains the data values within each detail cell of the custom report item.

DataColumnHierarchy Represents the column groupings of the data region.

DataRowHierarchy Represents the row groupings of the data region.

21.4.2 Using CustomData at Design Time
The CustomData object is available both at design time and run time. At design time, the cus-
tom report item populates the CustomData object with the definitions of the data region col-

Figure 21.10 To facilitate
debugging your custom re-
port item, set up the project
debug setting to load the
external report project.

IMPLEMENTING CUSTOM REPORT ITEMS 723

umn and row groupings. At run time, the CustomData object provides the actual data cell
ues.

 Using CustomData at design time
Just like a tablix region, your custom data region can contain groups. The following abbre-
viated code from the InitializeNewComponent method in Polygons design-time component
(PolygonsDesigner) shows how the Polygons custom report item defines a row grouping.
public override void InitializeNewComponent() {
 CustomData = new CustomData();
 CustomData.DataRowHierarchy = new DataHierarchy();

 // Shape grouping
 CustomData.DataRowHierarchy.DataMembers.Add(new DataMember());
 CustomData.DataRowHierarchy.DataMembers[0].Group = new Group();
 CustomData.DataRowHierarchy.DataMembers[0].Group.Name = Name + "_Shape";
 CustomData.DataRowHierarchy.DataMembers[0].Group.GroupExpressions.Add(new ReportExpression());

Defining a new grouping involves specifying the group name, expression, and additional
properties that are available in the grouping dialog box in Report Designer, such as filters,
page breaks, and so on. Similarly, you can add column groupings to the CustomDa-
ta.ColumnHierarchy, such as when you want to implement matrix-style regions.

 Using CustomData at run time
At run time, you need more than the group definitions to render the data region. You need the
actual data cell values. Fortunately, the Report Processor passes the data in the RowCollection
object, as shown in Figure 21.11. To understand how this worked, I put a breakpoint in the
EvaluateReportItemInstance method. I highlighted the cri argument that represents the Cus-
tomReportItem object and pressed Ctrl-Alt-Q to inspect it in the Visual Studio QuickWatch
window.

Notice that the CustomData RowCollecton object gives you access to the data cell values.
You can think of the RowCollecton object as a two-dimension array where the first argument

Figure 21.11 The CustomReportItem object includes a CustomData object that provides the data cell values.

CHAPTER 21 724

specifies the row index, while the second specifies the column index. Thus, RowCollec-
tion[0,0].DataValues[0] returns the cell value in the first row and first column. Once you lo-
cate the value, you can use its IsExpression property to determine if it contains a static value
or an expression. In the latter case, call the Instance.Value property to obtain the actual value.
From here, your custom data region can loop through the data values to render the run-time
image, such as plotting the values on a chart as the Polygons custom report item does.

21.5 Summary
Custom report items let you extend report server presentation capabilities. Consider imple-
menting a custom report item when your reporting requirements go beyond what the stan-
dard report items can deliver. Custom report items help you convey information in the form
of graphics elements and images. Anything that can be rendered as an image with GDI+ can
be implemented as a custom report item and rendered on reports.

A custom report item has a design-time component and a run-time component. The de-
sign-time component provides a user interface for specifying custom properties, adornment,
and verbs, as well as launching custom editors for advanced configuration scenarios. At ru
time, the report server interacts with the run-time component to render the custom report
item in the report.

21.6 Resources
Mycostech's CylinderTrackBar Sample

(http://tinyurl.com/35qpmc or http://tinyurl.com/2qlj2n)—The Mycostech's Cylin-
derTrackBar sample on which the Progress Tracker was built.

Create And Host Custom Designers with The .NET Framework 2.0
(http://tinyurl.com/qfj5m)—Learn about the .NET designer host infrastructure and
services.

Getting the Most Out of the .NET Framework PropertyGrid Control
(http://tinyurl.com/ymvep3)—Shows you how to customize the Windows Forms
PropertyGrid control and implement custom property editors.

725

CChhaapptteerr 2222

Customizing Report Definitions

22.1 Understanding Report Definition
Customization Extensions 725

22.2 Working with the Extension Sample 728
22.3 Summary 735

Recall from part 1 of this book that expressions let you customize the report presentation,
such as hiding a column at run time based on a parameter value. Sometimes, however, your
customization requirements may go beyond what expressions and conditional visibility can
deliver. For example, you may need to add new columns to a tablix or generate an entirely
new section based on certain conditions. This is where report definition customization exten-
sions can help.

In this chapter, I will introduce you to this extensibility area. After laying down the fun-
damentals, I'll walk you through the steps of implementing a report definition customization
extension that varies the report presentation per user. Finally, I will show you how to deploy
and test the sample extension.

22.1 Understanding Report Definition Customization Extensions
Report definition customization extensions are an entirely new extensibility feature in Report-
ing Services 2008. They were introduced to meet the needs of Microsoft Dynamics, which re-
quired more flexible ways for customizing reports. The Reporting Services team addressed this
requirement elegantly by introducing a new extension type and making its interface publicly
available. Report definition customization extensions are supported in Standard and Enter-
prise editions of SQL Server 2008 only.

22.1.1 What is a Report Definition Customization Extension?
As its name suggests, a report definition customization extension lets you customize the report
definition at run time. As a developer, it is up to you to decide what level of customization the
extension would provide. This can range from changing a few report properties to replacing
the entire report with a completely new report definition. Once the report is configured for
customization, you have complete control over its definition and you can apply dynamically
whatever modifications are needed to the original report.

 When to use report definition customization extensions
Here are a few scenarios where report definition customization extensions could be useful:
 Personalizing the report content—You can modify the report definition at run time based

on certain conditions. For example, you can add or remove report sections based on pa-
rameter values.

CHAPTER 22 726

 Localizing reports—You can replace the original report definition with a localized (trans-
lated) report definition based on the user culture.

 Simplifying the report presentation for handheld devices—You could use a parameter to
collect a user preference for viewing a full or partial report, and then swap out the full re-
port when user specifies a preference for viewing the partial report.

I am sure you will find many other practical usage scenarios that may benefit from report de-
finition customization extensions. As you can imagine, this extensibility mechanism brings a
lot of flexibility. On the downside, it requires additional development and configuration effort.

NOTE Personally, instead of a new extensibility mechanism, I'd prefer server-side events, such as OnPrint, Before-
ReportProcess, and so on, that would provide access to the report object model. Events would allow developers to
change the report definition dynamically in expression or custom code. This will reduce development and manage-
ment effort as you don't have to implement and configure an extension. However, as its stands, Reporting Services
doesn't support events. While waiting for this enhancement, consider report definition customized extensions for ad-
dressing more advanced customization requirements.

 Understanding run-time interaction
From a Reporting Services perspective, interacting with a report definition customization ex-
tension is simple. The report server hands the extension a stream containing the published
report definition and expects a revised RDL stream in return. Figure 22.1 shows the run-time
interaction between the report server and the extension.

Figure 22.1 At run time,
the report server gets the
updated report RDL from
the report definition custo-
mization extension.

When the end user submits a report request, the report server checks if the requested report is
configured for customization. If it is, the report server calls the report definition customization
extension for every incoming request to that report. The report server executes the extension
code before it processes the report definition but after query and report parameters are already
evaluated. This is important because it lets you evaluate the report execution context to decide
how to customize the report definition.

Specifically, the report server invokes the ProcessReportDefinition method of the IReport-
DefinitionCustomizationExtension interface and passes the original (published) report defini-
tion, the report context, and user context. Next, it is up to you to decide how to customize the
report definition. If needed, you can load an entirely new report definition from disk and re-
turn it to the report server. For example, if you have different presentation requirements for
different groups of users, you could load an entirely new report definition from disk depend-
ing on the user's group membership. Or, you can make more granular changes by loading the

CUSTOMIZING REPORT DEFINITIONS 727

report definition in the RDL Object Model (discussed in chapter 7), manipulating the model
in an object-oriented way, including changing properties, adding columns, and so on.

Once the report server receives the customized report definition, it publishes it internally
to replace the original report definition. However, the customized report definition doesn't
permanently replace the original definition. Instead, its lifetime is bound to the user report
execution session only. This lets you implement user-specific customization features. Once
published, the customized report is processed and rendered just like any other report.

Report definition customization extensions are exclusive to live reports. Because report de-
finition customizations are user-specific, you cannot configure a customized report for snap-
shot execution. Another important consideration to keep in mind is that the report definition
customization extensions are a server-only feature. Consequently, you cannot test the exten-
sion in the report design tools. Once the extension is ready, you must configure it on the serv-
er. As a part of the configuration process, you must configure each customizable report to
reference a report definition customization extension. You can implement one extension that
customizes several reports or you can have report-specific extensions. A report can be asso-
ciated with only one report definition customization extension.

22.1.2 Understanding Programming Interfaces
As with the other Reporting Services custom extensions, the report definition customization
extension must implement standard interfaces. Specifically, it must implement the IReportDe-
finitionCustomizationExtension and IExtension interfaces.

 Understanding the IReportDefinitionCustomizationExtension interface
The IReportDefinitionCustomizationExtension interface is included in the Micro-
soft.ReportingServices.Interfaces assembly. The default location of this assembly is C:\Program
Files\Microsoft SQL Server\100\SDK\Assemblies. The IReportDefinitionCustomizationExten-
sion interface defines a single ProcessReportDefinition method whose arguments are described
in Table 22.1.

Table 22.1 The IReportDefinitionCustomizationExtension.ProcessReportDefinition method arguments

Argument Type Description

reportDefinition byte[] Contains the original report definition.

reportContext IReportContext Exposes the report context, such as parameter values.

userContext IUserContext Provides the user context, including the user login.

reportDefinitionProcessed out byte[] Contains the customized report definition.

customizedElementIds out IEnumerable<RdceCustomizableElementId> Describes which elements are customized.

The report server passes the published report definition to the report definition argument as a
byte array. It also passes the report context to the reportContext argument. The report context
includes configuration information about the requested report, including the report type
(linked report or subreport), report parameters and their run-time values, the report name and
path.

The userContext class contains the user name and authentication type. For example, if the
report server is configured for Windows authentication and the report server belongs to an

CHAPTER 22 728

Active Directory domain, the userContext.AuthenticationType property returns "Windows"
and the userContext.UserName property returns the Windows identify of the interactive user
in the format domain\login. Unfortunately, as it stands, the report server doesn't pass the se-
curity policies defined in the Report Manager for the user. If this is required, consider integrat-
ing the extension with the Report Server Web service. For example, the extension can call the
GetPermissions API to obtain and evaluate the security policies associated with the user.

Your report definition customization extension can examine the report context and user con-
text to determine if report customization is necessary. If you decide to customize, you must
return the new definition as a byte array by setting the reportDefinitionProcessed argument.
You need to inform the server which elements have been customized by setting the customi-
zedElementIds argument. For example, if you've made changes to the report body only, add
RdceCustomizableElementId.Body to the customizedElementIds collection. If you set custo-
mizedElementIds to null, the report server will not change the report definition although the
reportDefinitionProcessed argument may return a customized version. If customizedElemen-
tIds is not null, the report server will merge the original report definition with your changes as
specified by the RdceCustomizableElementId argument and publish the merged definition.

The ProcessReportDefinition method returns a Boolean value that indicates if the report
definition needs to be changed. If you decide to customize the report definition, set the return
value to True to let the report server know about the change so it can publish the new report
definition. If ProcessReportDefinition returns False, the report server will not merge the
processed definition with the original report definition. Instead, it will use the original report
definition.

 Understanding the IExtension interface
The IReportDefinitionCustomizationExtension interface implements the IExtension interface,
which you are already familiar with as you used it to implement the custom extensions dis-
cussed in the preceding chapters. Recall that the IExtension interface defines two methods:
LocalizedName and SetConfiguration.

You can use the LocalizedName property to return a localized name of the extension
based on the culture settings of the interactive user. However, since the report definition cus-
tomization extensions are not displayed in Report Manager, our implementation of Localized-
Name returns a static label.

You can use the SetConfiguration method to initialize the extension from a custom confi-
guration section. For example, if you want to show content for specific users, you can enume-
rate the user logins in the configuration section. With each report request, even if it originates
from the same user, the report server will call SetConfiguration before calling ProcessReport-
Definition.

22.2 Working with the Extension Sample
Suppose that you want to vary the report content based on the interactive user. For example,
you may want the report to show sensitive information only to privileged users. One imple-

TIP The userContext argument doesn't include the user language (User!Language), which you will need if you want
to provide a culture-specific report customization. However, you can set up a hidden report parameter with the default
value of =User!Language. At run time, the report server will pass all report parameter values to your extension and
you can obtain the user language from the hidden parameter.

CUSTOMIZING REPORT DEFINITIONS 729

mentation approach could be to hide report content conditionally using expressions. Howev-
er, suppose that strict security or operational requirements dictate that the report cannot re-
trieve and process sensitive information if the user is not authorized. This scenario is ideal for
considering a custom report definition extension.

My RDCE sample extension shows how you can leverage this new extensibility mechan-
ism to implement such requirements. The source code is provided in the Visual Studio RCDE
solution file. This solution includes the code of the report definition customization extension
and a sample report to test it. You will need Visual Studio to work with the source code.

22.2.1 Implementing a Report Definition Customization Solution
Implementing a report definition customization extension involves several steps, including:
 Authoring the report(s) that users the customization extension
 Implementing the extension
 Deploying and testing the extension

Let's start by understanding the sample report that our extension will customize.

 About the Sales Persons report
We will use the Sales Persons report, shown in Figure 22.2, to demonstrate customizing the
report definition dynamically. This report shows a list of all Adventure Works sales people. By
default, the report doesn't retrieve, process, or display the sales person's base rate. If you ex-
amine the report dataset, you would notice that its query requests only FirstName, LastName,
HireDate, and LoginID columns from the DimEmployee table in the Adventure-
WorksDW2008 database.

Figure 22.2 This report
retrieves and displays the
sales person rate only if the
user is authorized to see it.

The dataset query doesn't request the BaseRate column. Consequently, the dataset doesn't in-
clude a BaseRate field and the table region doesn't define this column. So how does BaseRate
get added to the report? Thanks to a report definition customization extension, the BaseRate

CHAPTER 22 730

column shows up at run time when the Sales Persons report is requested by a user who is au-
thorized to view BaseRate information. The extension starts by examining the identity of the
interactive user. If the user is privileged, the extension changes the report definition on the fly.
Specifically, the extension customizes the report definition by dynamically adding the follow-
ing elements:
 A new BaseRate column to the report query
 A new BaseRate dataset field that references the BaseRate query column
 A new Base Rate column to the table region

For the sake of simplicity, the extension supports only a single privileged user whose identity
you can specify when you configure the extension. A real-life solution would probably require
more involved authorization process, such as querying a database profile store or integrating
with a custom security service.

 Implementing IExtension
To implement a report definition customization extension, I wrote a ReportDefinitionCusto-
mizationExtension class that implements the IReportDefinitionCustomizationExtension inter-
face. Recall that IExtension is a common interface available to all custom extensions. You can
use its methods to localize the extension name and perform initializing tasks. For our purpos-
es, we will use IExtension to get the identity of the privileged user from the extension configu-
ration section.
public string LocalizedName
{
 get { return "Prologika Report Definition Customization Extension Sample"; }
}

public void SetConfiguration(string configuration) {
 // Retrieve the identity of the privileged user who is authorized to see sensitive data
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(configuration);
 if (doc.DocumentElement.Name == "RDCEConfiguration")
 {
 foreach (XmlNode child in doc.DocumentElement.ChildNodes)
 {
 switch (child.Name)
 {
 case PRIVILEGED_USER: _user = child.InnerText; break;
 default: throw new Exception("Unrecognized configuration element.");
 }
 }
 }
 else throw new Exception("Loading config data.");
}

The report server invokes the SetConfiguration method with each report request and passes
the extension configuration section as specified in the report server configuration file (rsre-
portserver.config). Here is what the configuration section looks like:
<ReportDefinitionCustomization>
 <Extension Name="PrologikaRDCE"
 Type="Prologika.RS.Extensibility.ReportDefinitionCustomizationExtension,
 Prologika.ReportDefinitionCustomizationExtension">
 <Configuration>
 <RDCEConfiguration>
 <PrivilegedUser>nw8000\teo</PrivilegedUser>
 </RDCEConfiguration>
 </Configuration>
 </Extension>
</ReportDefinitionCustomization>

CUSTOMIZING REPORT DEFINITIONS 731

SetConfiguration loads the configuration section in an XmlDocument object and navigates its
elements in an attempt to find a PrivilegedUser element that specifies the Windows identity of
the privileged user (nw8000\teo in my case). SetConfiguration stores the Windows logon in
the _user class-level member.

 Implementing ProcessReportDefinition
The ProcessReportDefinition method is the workhorse of the custom extension.
public class ReportDefinitionCustomizationExtension : IReportDefinitionCustomizationExtension {
 internal const string PRIVILEGED_USER = "PrivilegedUser";
 private string _user = null;
 Microsoft.ReportingServices.RdlObjectModel.Report _report = null;
 RdlSerializer _serializer = new RdlSerializer();

 public bool ProcessReportDefinition(
 byte[] reportDefinition,
 IReportContext reportContext,
 IUserContext userContext,
 out byte[] reportDefinitionProcessed,
 out IEnumerable<RdceCustomizableElementId> customizedElementIds) {

 MemoryStream mstream = null;
 if (String.Compare(_user, userContext.UserName, StringComparison.OrdinalIgnoreCase) != 0)
 {
 // not the right user so return the original RDL without any changes
 reportDefinitionProcessed = null;
 customizedElementIds = null;
 return false;
 }
 // use RDLOM to deserialize the original RDL as a report object
 using (mstream = new MemoryStream(reportDefinition))
 {
 mstream.Position = 0;
 _report = _serializer.Deserialize(mstream);
 }

 AddQueryFields(); // add query fields
 AddDatasetFields(); // add dataset fields
 AddColumns(); // add tablix columns

 // serialize the report payload to byte array
 using (mstream = new MemoryStream())
 {
 _serializer.Serialize(mstream, _report);
 reportDefinitionProcessed = mstream.ToArray();
 }
 // let RS know what's been changed
 List<RdceCustomizableElementId> ids = new List<RdceCustomizableElementId>();
 ids.Add(RdceCustomizableElementId.Body);
 ids.Add(RdceCustomizableElementId.DataSets);
 customizedElementIds = ids;

 return true; // RDL is customized
 }

ProcessReportDefinition starts by checking the identity of the interactive user. If it doesn't
match the identity of the privileged user, ProcessReportDefinition exits and returns false to tell
the report server that no changes have been made. Otherwise, ProcessReportDefinition
proceeds with customizing the report definition.

As noted in chapter 7, Reporting Services now includes an unsupported RDL Object Mod-
el (RDLOM) that lets you access the report definition as an object. ProcessReportDefinition
uses RDLOM to load the original report definition and make changes. ProcessReportDefinition
instantiates a .NET MemoryStream object to load the original report definition in memory.
Then, it uses the RDLOM Serializer object to deserialize the report definition. Next, it calls the

CHAPTER 22 732

AddQueryFields, AddDatasetFields, and AddColumns helper methods to customize the report
definition. These methods use RDLOM to perform similar changes as the ones described in
the RDLOM sample in chapter 7, so discussing them here will be redundant.

Once the RDL changes have been made, we need to serialize the report definition back to
a byte array because this is what the report server expects as an output from ProcessReportDe-
finition. ProcessReportDefinition uses a memory stream to deserialize the RDL object model to
memory. Then, it calls the MemoryStream ToArray method to obtain the report payload as a
byte array. Next, ProcessReportDefinition constructs a list of RdceCustomizableElementId
elements to tell the report server what changes have been made. The RdceCustomizableEle-
mentId enumeration supports changes in five types of elements (Body, DataSets, Page, Page-
Header, and PageFooter). Since the extension performs data and layout changes only, it adds
only the Body and DataSets items to inform the server only these elements have changed. Fi-
nally, ProcessReportDefinition returns True to inform the report server that the report defini-
tion has been changed.

22.2.2 Deploying and Testing
Recall that the report definition customization extensions are a server only feature. Conse-
quently, you cannot test the extension in Report Designer. Instead, you must deploy the ex-
tension to the report server first and use Report Manager to view the customized report.
Deploying the custom extension requires that you change the report server configuration files.
Included with the source code for this chapter, you will find my version of the affected files.
Use these files for your reference only. Do not replace your configuration files with mine.

 Deploying the extension binaries
Start by deploying the (Prologika.ReportDefinitionCustomizationExtension assembly to the
report server.

1. Copy the Prologika.ReportDefinitionCustomizationExtension.dll and Prologi-
ka.ReportDefinitionCustomizationExtension.pdb binaries from the project output folder.

2. Paste them in the report server bin folder whose default location is C:\Program Files\Microsoft
SQL Server\MSRS10.MSSQLSERVER\Reporting Services\ReportServer\bin.

For your convenience, I have defined a post-build script in the RDCE project properties that
copies the binaries automatically to the report server bin folder after a successful build.

 Registering the extension with the report server
By default, the report server doesn't allow executing report definition customization exten-
sions for security reasons. Follow these steps to enable their execution:

1. Open the report server configuration file (rsreportserver.config) in your favorite text editor.
The default location of this file is C:\Program Files\Microsoft SQL Serv-
er\MSRS10.MSSQLSERVER\Reporting Services\ReportServer.

2. Locate the <Service> element and add the IsRdceEnabled setting as follows:
 < IsRdceEnabled>True</IsRdceEnabled>
</Service> <!—for reference only -->

3. Scroll down to the end of the file and locate the </Extensions> element. Add a new Extension
section just before the </Extensions> element as follows:

CUSTOMIZING REPORT DEFINITIONS 733

<Extension Name="PrologikaRDCE"
 Type="Prologika.RS.Extensibility.ReportDefinitionCustomizationExtension,
 Prologika.ReportDefinitionCustomizationExtension">
 <Configuration>
 <RDCEConfiguration>
 <PrivilegedUser>< login></PrivilegedUser>
 < /RDCEConfiguration>
 < /Configuration>
 </Extension>
</ReportDefinitionCustomization>
</Extensions> <!—for reference only -->

Replace the <login> token with the Windows identity of the privileged user in the format do-
main\login, such as adventure-works\bob. Only this user will be able to see the Base Rate col-
umn.

 Configuring code access security
As with any external custom code, you need elevate the CAS security for the extension assem-
bly. Failure to do so will result in the following error when the report is executed:
An error occurred during client rendering. An internal error occurred on the report server.

If you inspect the report server log files, you will see the following error:
System.Security.SecurityException: That assembly does not allow partially trusted callers.

To configure the code access security for the custom extension:
1. Open the report server security policy file (rssrvpolicy.config) whose default location is

C:\Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Servic-
es\ReportServer.

2. Scroll to the end of the file and add a new CodeGroup element as follows:
<CodeGroup class="UnionCodeGroup" version="1" Name="Prologika RDCE"
 Description="Code group for the Report Definition Customization Extension"
 PermissionSetName="FullTrust">
 < IMembershipCondition class="UrlMembershipCondition" version="1"

Url= "C:\Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting
Services\ReportServer\bin\Prologika.ReportDefinitionCustomizationExtension.dll"/>

</CodeGroup>
 </CodeGroup> <!—for reference only -->
</CodeGroup> <!—for reference only -->

Make sure that the path to the extension assembly is correct.

 Enabling the extension per report
Finally, you need to reconfigure each report that requires customization. This requires chang-
ing a special RDCE report property. The code that accompanies this chapter includes a sample
script (EnableRDCE.rss) that automates this procedure.

1. Deploy the Sales Persons report to the ARMS report folder on the report server. Use Report
Manager to run the report to make sure it's operational.

2. Open the Windows command prompt and navigate to the Script folder in the book source
code.

3. Execute the following command:
"C:\Program Files\Microsoft SQL Server\100\Tools\Binn\rs.exe" -i enablerdce.rss -s http://localhost/reportserver

Alternatively, double-click the ExecuteScript.cmd file which includes the command. This
command uses the Reporting Services rs.exe utility. The –i switch specifies the script file and

CHAPTER 22 734

the –s switch specifies the report server URL. The enablerdce.rss script includes the following
Visual Basic code:
Public Sub Main()
 Dim props(0) As [Property]
 Dim SetProps As New [Property]
 SetProps.Name ="RDCE"
 SetProps.Value = "PrologikaRDCE"
 props(0) = SetProps
 rs.SetProperties("/AMRS/Sales Persons", props)
End Sub

The script creates a new property with a name of RDCE and a value of PrologikaRDCE. The
property value must match the name of the extension as registered in rsreportserver.config.
The script calls the SetProperties API to apply the property to the Sales Persons report. You
need to execute this script only once. Subsequent redeployments of the report definition don't
affect the property settings. However, if you delete the report definition and deploy it again,
you need to rerun the script.

The RDCE property gets added to the custom properties of the report (Property column in
the Catalog table in ReportServer database). If you want to find what reports are enabled for
customization, call the GetChildren API to obtain the list of reports, followed by calling the
GetProperties API for each report to retrieve the report properties.

 Testing the Extension
Because report definition customization extensions are a server only feature, you can test the
extension only after you publish an RDCE-enabled report to the report server. This compli-
cates somewhat the testing process. Follow these steps to debug the extension:

1. Make sure that you have deployed the latest code to the report server bin folder.
2. In Visual Studio, open the extension code and put breakpoints in the extension code as

needed, such as at the beginning of the ProcessReportDefinition method.

3. Click Debug Attach to Process and attach to the ReportingServicesService.exe process.
4. Run the report in Report Manager.

Figure 22.3 Attach to the ReportingServicesService.exe process to debug the extension code.

CUSTOMIZING REPORT DEFINITIONS 735

The report server will discover that the report is enabled for customization and will invoke the
extension. At this point, your breakpoints should be hit. For example, Figure 22.3 shows that
use the Visual Studio Quick Watch window (Ctrl+Alt+Q) to inspect the reportContext argu-
ment.

You may need to obtain some performance statistics about your report definition customi-
zation extension, such as how long it took the server to invoke it. It turns out that the report
server logs additional entries per report execution in the ExecutionLogStorage table in the Re-
portServer database. An example follows:
<AdditionalInfo>
 <RdcePreparationTime>184</RdcePreparationTime>
 <RdceInvocationTime>184</RdceInvocationTime> <!—-time spent in ProcessReportDefinition-->
 <RdceSnapshotGenerationTime>7972</RdceSnapshotGenerationTime> <!—-time spent updating RDL-->
...
</AdditionalInfo>

22.3 Summary
Report definition customization extensions are a new extensibility feature in Reporting Servic-
es. A report definition customization extension can dynamically change a report definition
before it is passed to the processing engine. This lets you customize a report before it is
processed based on factors like report parameter values or user identity.

To implement a report definition customization extension, you write code that includes a
class that implements the standard IReportDefinitionCustomizationExtension interface. At run
time, the report server passes the report context and user context to the extension. Because
report definition customization extensions are a server-side feature, testing them requires that
you first deploy the extension to the server and debug the extension code by attaching to the
report server process.

With this chapter we have reached the last stop of our Reporting Services journey. I sin-
cerely hope that this book has helped you gain deep insight into how Reporting Services can
be a powerful platform for delivering a rich reporting experience. If it has inspired you to use
Reporting Services in your real-life projects, all the better. Got spinny?

 Report is being generated…

736

master resource list
This book is intended to serve as a comprehensive resource for building practical solutions
with Reporting Services. Although I sincerely hope that this book is the only resource you
need to master this technology, I know that this is an ambitious goal for the ever-changing
and rapidly evolving world of the Microsoft business intelligence. Besides this book, you may
find the following resources useful to take the most out of Reporting Services and stay up-to-
date with the latest developments.

Books
Microsoft SQL Server 2008 Reporting Services by Brian Larson

http://tinyurl.com/4dvabr
Professional SQL Server 2008 Reporting Services by Paul Turley et al.

http://tinyurl.com/4jep8q
Pro SQL Server 2008 Reporting Services by Rodney Landrum et al.

http://tinyurl.com/4bjqnd
Microsoft SQL Server 2008 Reporting Services Unleashed by Michael Lisin et al.

http://tinyurl.com/59dn5b

Websites
Reporting Services Official Website

(http://www.microsoft.com/sqlserver/2008/en/us/reporting.aspx)—Product information,
white papers, videos, and more.

SQL Server 2008 Books Online
(http://technet.microsoft.com/en-us/library/bb418491.aspx)—The SQL Server 2008
product documentation and articles.

Prologika website
(http://www.prologika.com)—My website includes a webpage with links to book re-
sources and a web forum where you can post book-related questions.

Newsgroups
SQL Server Reporting Services MSDN Forum

(http://forums.microsoft.com/msdn/showforum.aspx?siteid=1&forumid=82)—Ask ques-
tions about Report Server, Report Designer, and Report Builder.

Reporting Services Public Newsgroup
(microsoft.public.sqlserver.reportingsvcs)—The Reporting Services Usenet newsgroup.

MASTER RESOURCE LIST 737

Blogs
Bob Meyers' Blog

(http://blogs.msdn.com/bobmeyers)—Bob M eyer is a Program Manager on the Reporting
Services team who is responsible for Report Builder 1.0.

Brian Welcker's Blog
(http://blogs.msdn.com/bwelcker)—Brian Welcker is a former Group Program Manager
on the Reporting Services team.

Chris Baldwin's Blog
(http://blogs.msdn.com/chrisbal)—Chris Baldwin is a Program Manager on the Reporting
Services team who oversees the report rendering area.

Chris Hays's
(http://blogs.msdn.com/chrishays)—Chris Hays is an architect on the Reporting Services
team and oversees the Report Definition Language.

John Gallardo's Blog
(http://blogs.msdn.com/jgalla)—John Gallardo is a Software Development Engineer on the
Reporting Services team who is responsible for the report server.

Lukasz Pawlowski's Blog
(http://blogs.msdn.com/lukaszp)—Lukasz Pawlowski is a Program Manager on the Re-
porting Services team who is primarily responsible for the management feature of the
product.

Russell Christopher's Blog
(http://blogs.msdn.com/bimusings)—Russell Christopher is a Business Intelligence con-
sultant with Microsoft who posts great insights about working with Reporting Services.

Reporting Services Team Blog
(http://blogs.msdn.com/sqlrsteamblog/)—A collective blog of the Reporting Services team.

Reporting Services User Education Blog
(http://blogs.msdn.com/rosettaue)—From the user documentation team which is respon-
sible for creating all the documentation that ships with the product.

Teo Lachev
(http://www.prologika.com/blog)—My blog which covers Reporting Services, Analysis
Services, and Microsoft Business Intelligence news.

738

index

Symbols
#Error 187, 277
#PERCENT keyword 222
#TOTAL keyword 222
%Processor Time counter 479
(local) server name 127
* operator 562
.data file 113
: operator 584
@ExecutionTime variable 449
@ReportName variable 449
3-D bubble charts 237
3D charts 228
3D clustered variation 231
3D cylinder chart 231
3D effects 228

A
Accept-Language header 506
actions 555

defined 589
types of 589

active group indicator 168
ActiveViews 9, 299
ActiveX print control 9
ad hoc reporting 5, 32, 299, 343
AddYears method 147
adjacent columns 183, 189
administrator access 424
ADO.NET datasets

binding to reports 639
ADO.NET Entity Framework 123
ADOMD.NET 561
adorner frames 36, 357
adornment 703
Adventure Works Cycles 30
Adventure Works Intelligent

Reporter 31
AdventureWorks2008 database 31
AdventureWorksDW database 304
aggregate functions

and Report Builder 1.0 316
aggregate variations 323
aggregated values 209
aggregates over aggregates 189

aggregating data 189
AJAX 539
All member 561, 578
AllowQueryExecution property

505, 521
Analysis Services 15

and security 563
connecting to 565
Excel 2007 practice 557
integration options 560
metadata 558
Report Builder limitations 337,360
understanding 552
why use 555

Analysis Services data provider
introduced 125
using 561

Analysis Services project 84
Anonymous access 657
Anonymous authentication 68
application domain 27
area charts 234, 235
artboard in Expresion Blend 545
ASP.NET cache object 676
asserting permissions 278
asynchronous mode 534
asynchronous service calls 548
AsyncRendering property 534
attaching to report server 654
attribute hierarchies 559, 567
AttributeReference editor 319
attributes

defined 303
expression-based 316
text-based 316

authentication 658
authentication extensions

implementing custom 662
authentication ticket 657, 678
AuthenticationTypes 668
authorization 658
authorization extensions

implementing custom 664
auto-generating reports 117
AutoRefresh property 262
auto-scale mode 217
available values 146, 152, 156

AverageOfChildren function 577
Avg function 189

B
background images 100, 177
Background Processor

28, 70, 405, 689, 444
BackgroundColor 587
BackgroundGradientEndColor 223
BackgroundGradientType 223
banded reports 97
bar charts 230
bar pointer 250
Basic authentication 68

and ReportViewer 521
BasicHttpBinding 548
BatchHeader object 467
batching 467
BeginEdit method 714
Begins With filter 570
BI See Business Intelligence
BIDS Report Designer 20, 81
Biz# 16
body width 91
bookmark actions 203
bookmark links 199
Bookmark property 234
boxplot charts 236
breaking changes 53
browser privacy settings 681
Browser role 427
bubble charts 237
building projects 85
built-in functions 105
Business Data Catalog 603
Business Intelligence 3
Business Intelligence Development

Studio 16, 33
introduced 10
vs. Visual Studio 83

Business Intelligence projects 16
business objects 120

used as data sources 527
Business Scorecard Manager 16

INDEX 739

C
cache snapshots

and authentication 437
defined 434
practice 436

CacheDataForPreview setting 113
calculated dataset fields 170
calculated fields 141
calculated members 563, 575
CancelBatch API 467
candlestick chart 236
CanGrow property 175
cardinality 317
Cartesian join 347
cascading parameters 153, 573

used for OLAP reports 579
catalog items

hiding 413
requesting by URL 494

CELL PROPERTIES clause 568
cell scope 168
cellset 561
Certificate Creation Tool 65
Certificates snap-in 65
Change Data Capture 14
charts

defined 213
how to choose 215

chart areas 216, 223
chart axes 217
chart category group 216
chart data point 216
chart groups 218
chart keywords 222
chart labels 220
chart legend 11, 37, 223
chart of accounts 181
chart region

anatomy 215
basic report 36
custom colors 269
new features 214
understanding 213
upgrading 214

chart reports with Report Builder
1.0 356

chart series 224
chart series group 216
chart sparkline 250
chart types 215
chart values 216
CheckAccess method 660, 664
CheckOperations method 664
child gauges 242, 245

child groups
creating 186
defined 183

ClearSession command 434
ClickOnce deployment 341, 380
clickthrough 301
Client Certificates 27
clients 17, 19
CLR stored procedures 145, 638
Code Access Security 275, 280, 649
Code Document Object Model 695
code group 275
Code keyword 273
Code tab 188
CodeDOM See Code Document

Object Model
collation type 51
column charts 11, 218
column selector 169
column visibility 168
COLUMNS axis 582
command object 647
compact devices 8
conditional column visibility 182
configuration files 28
Configuration Manager 87
ConfigurationInfo table 408
connectable web parts 606, 633
Connection Manager 306
connection pooling 126, 129
CONSTRAINED flag 572
Contains filter 570
content approval 624
Content Manager role 373, 426
content navigation 411
content types 411
ContextualName property 329
control properties 708
Count property 104, 155
CountDistinct function 185, 189
CountRows function 185
CreateBatch API 467
CreateFolder API 458
CreateReport API 623
CreateReportHistorySnapshot API

465
CreateTemporaryStream 540
Credentials property 465, 521
CredentialsRequired property 505
cross-domain communication 681
cross-joining dimensions 562
cross-measure group reporting 338
crosstab reports 10, 167, 182
Crystal reports 120

CSV renderer 13, 260, 501
cubes 555
culture-neutral format strings 290
currency conversion 304
custom code 385

and service account 46
debugging 280
understanding 266
securing 275

custom data processing extensions
debugging 653
defined 637
deploying 652
when to use 639

custom data regions 723
custom delivery extensions 25

debugging 698
defined 686
deploying 697
for delivering to Web service 688
implementing 692

custom editors 704
custom formatting 271
custom gauge labels 246
custom operators 181
custom pallette 240
custom property editors 715
custom query designers 639, 649
custom rendering extensions 54
custom report items 99

debugging 722
defined 701
design-time components 702, 710
drag and drop 713
limitations 701
practice 707
run-tme components 704

custom security 68
and ReportViewer 522
and Web applications 677
troubleshooting 680
when to use 656

custom security extensions 18
defined 657
deploying 667
practice 671
runtime interaction 659
understanding 658

custom toolbars 651
CustomInnerPlotPosition 229
CustomizeChart event 214
CustomPosition 229
CustomReportItemDesigner 702
CylinderTrackBar control 707

INDEX 740

D
dashboard pages 6, 627
data architecture 122
data compression 14
data dictionary 300
data extensions 637
data flow pipeline 14
data integration options 638
data mart 555
data mining 15, 146, 304, 556
Data Mining Designer 597
Data Mining EXtensions 597
data mining model 597
data mining reports 595
data point 216
data point markers 221
Data property 695
data providers 123
data regions 702

defined 98
selecting 112
nesting 248
placing side-by-side 99

data relations 639
data retrieval 134
data security

and Report Builder 1.0 375
Data Source Configuration Wizard

526
data source properties 415
data source reference 93
data source view 301

and multiple data sources 302
creating 308
explained 302
table relationships 310

Data Source View Designer 309
Data Source Wizard 308
data sources

introduced 33
explained 123
authentication modes 128
and Report Builder 1.0 375
and ReportViewer 525
broken references 415
disabling 415
requesting by URL 495
synchronizing in local reports 530

Data Sources window 525
Data tab 90
data visualization 9, 11
data warehouse 555
Database Engine 14
database images 194

Data-driven Subscription Wizard
453

data-driven subscriptions 690
introduced 25
defined 445
practice 452

DataElementName property 263
DataElementOutput property 263
DataElementStyle property 263
DataGrid control 549
DataReader 649
DataSchema property 263
Dataset Designer 527
dataset fields

changing 141
rearranging 141
renaming 141

dataset filter
creating 142
understanding 142

dataset filters
used with snapshots 435

Dataset Query Designer 642
DataSetName property 113
datasets

defined 94
explained 123
definitions 137
filters 142
using multiple 123
workarounds for joining 150
working with 136

DataSets collection 104
DataSources collection 104
date variations 317, 350
Date/Time parameters 146
DatePart function 219
DateTime format strings 350
DateTime parameters 497
DateTime structure 147
db_datareader role 129
debugging code 280
DebugView 460, 476
Decision Tree mining model 595
Deep Zoom Composer 543
defaul credentials 521
default credentials 465, 504
default instance 45, 50
default parameter values 154
DefaultAggregateAttribute 317
DefaultDetailAttributes 351
DefaultDetailAttributes 318, 346
DefaultHostName setting 447
defaultProxy setting 72
DefaultTraceSwitch setting 475

Define Formula dialog 331
delegation 43
Deliver method 687, 694
DeliverReport method 695
denial-of-service attacks 411
denormalization techniques 329
denormalizing 554
Dependency Network 596
dependent services 405
deploying projects 86
deployment

legacy report definitions 54
multiple servers 43
scaleout 44
single server 43

deployment topology 42
Descendants function 579
Design tab 33, 89
DesignerVerbCollection 704, 714
detailed reports 579
details group 112, 168, 192
DetailsGroup 172
device information settings

and URL access 497
DeviceInfo setting 506
Diagram Organizer pane 310
Diagram pane 310
diagrams 313
Digest Authentication 27
digital dashboard 6
digital dashboards 626
dimension attributes 559
dimension hierarchies 559
DIMENSION PROPERTIES

clause 568
dimensional modeling 303, 554
dimensions 15
display folders

and Report Builder 1.0 321
DisplayMemberBinding 547
division by zero error 187
DMX See Data Mining Extensions
DocMap setting 498
document maps

defined 199
implementing 212
understanding 211

Document Object Model 541, 550
DOM See Document Object Model
domain account 46
double hop 129, 130
doughnut charts 232
DPE See data processing extension
Dr. Watson 475

INDEX 741

DrawingStyle property 229, 231
drilldown reports 119
drillthrough 230
drillthrough 201
drillthrough actions 204, 589
Drillthrough event 532, 539
drillthrough links 199
drillthrough reports 204

and Report Builder 1.0 351
custom 368
external 369

DrillthroughContext element 368
DrillthroughSourceQuery 368
dsp prefix 494
dsu prefix 494
DSV See Data Source View
Dundas 9, 31
Dundas Calendar 12
Dundas Chart 214
Dundas Map 12
dynamic column groups 10, 183,
dynamic columns 167
dynamic group subtotals 184
dynamic members 177
Dynamic Proxy Factory sample 695
dynamic query schemas 561
dynamic schemas 582

E
EditComponent method 716
Editor attribute 716
EffectiveUserName setting 564
e-mail delivery 446
e-mail delivery extension 449
e-mail subscription delivery 70
embedded code 188

defined 266
practice 267

embedded credentials 496
embedded images 98, 111
embedded reporting 8, 513
EmbeddedRenderFormats 450
EmptyPointValue property 235
EnableClientPrinting property 419
EnableDrillthrough 351, 368
EnableLoadReportDefinition 374
encrypted content 404, 485
encryption keys 482

backing up 67
explained 67
restoring 67

Enterprise edition 44
enterprise reporting 6
entities

defined 302
adding new 332
auto-generating 333

entity groups 345, 353
entity inheritance 326
entity navigation 347
EnvironmentPermission 278, 287
Equal filter 570
EquallySpacedItems property 223
error bar charts 236
Error List pane 85
ETL See Extracting, Transforming,

and Loading
ETL processes 555
Event table 444
evidence 275
Excel renderer 261, 499
Excel Services 603
ExcelMode device setting 501
Execute Report Definition role 372
ExecuteBatch API 467
execution log

analyzing 473
configuring 472
viewing 473

Execution permissions 276
execution sessions 432, 504

timeout 433
cookieless 434
defined 432
restarting 434
session identifier 434

execution snapshots 432, 521
and parameters 152
and subscriptions 450
defined 439
limitations 439
practice 440
programming 464

ExecutionInfo object 520
ExecutionInfo2 object 504
ExecutionLogStorage table 70, 473
Exists function 579, 581
Expanded Formula pane 331
ExpandInline property 327
ExpandToggles 263, 500
expired sessions 433
explicit wildcard 62
ExportContentDisposition 538
Express edition 40, 45
Expression Blend 543, 544
expression context 106
Expression Designer 543
Expression dialog 100
expression host assembly 131, 278

Expression Media 543
expression scope 106

inner 106
null 106

expression-based connections 131,
133

expression-based properties 100
expression-based queries 146
expressions

authoring 100
syntax 100

expresson scope 106
extended properties 586, 588
extensibility 18
Extensible Application Markup

Language 541
Extensible Stylesheet Language

Transformations 263, 411
extensions 18
ExtensionSettings method 687, 693
external code

defined 267
deploying 274
practice 271
referencing 272

external functions 105
external images 9, 177, 285

and local processing mode 529
defined 98

Extracting, Transforming, and
Loading 14

F
Field Selector 112
FieldDelimiter 260, 501
Fields collection 102
Fields tab 141
File Share Data Processing 655
FileExtension device setting 265
FileIOPermission 278, 530
FileName setting 475
file-only installation 52
FileSizeLimitMb setting 475
Filter Data dialog 331
filter web parts 603, 630
filter, Report Builder 1.0 303
filtering reports 350
Filters tab 142
financial reports 180
FireEvent API 444, 469
firewall 71
fixed column marker 346
fixed headers 210
FlushCache API 435

INDEX 742

folders
creating 414
requesting by URL 495
Report Builder 1.0 303

Format command 497
Format function 110
FORMAT_STRING 588
Forms Authentication 18, 657

and SharePoint 611
Forms Authentication settings 678
formulas

and Report Builder 1.0 client 360
Fully Qualified Domain Name 60
FrameShape property 243
freeform layout 193
free-form layout 121
free-form reports 98, 191
FullTrust permissions 277, 280
functions

default namespaces 105
defined 105

funnel charts 232

G
gauge data regon 11, 99, 241
gauge data groups 246
gauge range 244
gauge scale 244
gauge sparkline 251
gauge types 243
GDI renderer 200
GDI+ See Graphics Device

Interface
GenerateModel API 314
generic query designer 94, 124, 139,

393, 642
GetChildren API 735
GetDataSetNames method 532
GetExecutionInfo API 433
GetExecutionInfo2 API 506
GetExecutionOptions API 465
GetFormsCredentials method 522,

679
GetInstances method 471
GetParameters method 520
GetPermissions API 462, 665, 676
GetProperties API 429, 735
GetReportDefinition API 523
GetReportHistoryOptions API 465
GetReportParameters API 465, 549
GetReportServerUrl method 471
GetReportServerUrls method 471
GetResourceContents 495
GetUserInfo method 664

GetUserModel API 345
GetXml method 645
Global Assembly Cache 272
global collections 101
Globals collection 103
graphical query designer 95,124,140
Graphics Device Interface 516, 709
green bar 392
green triangle 10
group divider 114
group indicators 168, 173, 187
group subtotals 115, 184, 188
Grouping pane 11, 89, 90, 185
growth expressions 187

H
HangingIndent property 107
hardware recommendations 41
hardware requirements 41
heuristic rules 320
hidden parameters 151, 420, 644
Hidden setting 151
HiddenFields property 328
histogram charts 226
HistogramSegmentIntervalWidth 226
historical reporting 15, 31
history snapshots 521
Home folder 412
host headers 64
hosting environment 81
hosting model 12, 25, 28, 61
HTML formatting 12
HTML formatting tags 254
HTML renderer 261, 499
HTML Viewer 22, 291, 419, 490
HTMLFragment 499, 510, 550
HtmlViewer.css 419, 498
HTMLViewerStyleSheet 499
HTTP 17
HTTP Configuration Utility 66
HTTP GET 490
HTTP log

configuring 477
viewing 477

HTTP module 460
HTTP POST 490
HTTP.SYS 26, 61, 490
httpcfg.exe utility 66
HTTPLogFileName setting 477
HttpTraceSwitches setting 477
Hyperion Essbase data provider 126
hyperlink actions 199, 202
Hyperlink event 532, 539
hyperlink schema 532

I
IAuthenticationExtension 658
IAuthorizationExtension 658
IComponentChangeService 711
ICustomReportItem 704, 717
IDataParameter interface 647
IDataReader interface 647
IDbCommandAnalysis 648
IDbConnection interface 647
IDeliveryExtension interface 686
IdentifyingAttributes property 319
ieHttpHeaders utility 682
IExtension 647, 658, 686, 729
IF operator 334
IFilterValues interface 629
Iif function 187, 205, 397, 581
IIS See Internet Information Services
Image renderer 500
image report item 98
image streams 510
impersonation 43, 416
ImpersonationUser property 521
Import Query dialog 139
importing reports 86
In filter 570
Indented device setting 501
indirect inheritance roles 345
infinite drillthrough 352
Inheritance property 326
InRange filter 572
InScope function 10, 106, 184, 205
Install SQL Server 2008 Wizard 48
installation, troubleshooting 59
instance identifier 50
instance methods 273
instances, discovery 50
InstanceSelection property 320,

321, 350, 362
integration options 490
Integration Services 14, 45
Integration Services project 84
interactive features 493
interactive reports 199
interactive sorting 349

defined 199
implementing 207

InteractiveSize property 258
intermediate format 29
Internal option 152
internal parameters 152
Internet deployment 71
Internet Information Services 12, 54
Internet reporting 657

INDEX 743

Interval property 217, 229
IPv4 address 61
IPv6 address 61
IQueryDesigner interface 650
IReportDefinitionCustomizationEx

tension 727
IReportServerConnection 535
IReportServerConnection2 535
IReportServerCredentials 535, 679
IReportViewerMessages 524
IReportViewerMessages2 524
IRowConsumer interface 629
IRowProvider interface 629
IsEventService setting 70
IsLookup property 328
IsMissing property 102, 583
IsMultiValue property 104, 155
IsNothing function 188
IsNotificationService setting 70
isnull setting 497
isolated storage 550
IsPrivilegedUser method 687, 692
IsQueryExecutionAllowed 521
IsReportManagerEnabled 70, 72
IsSchedulingService setting 70
ISubscriptionBaseUIUserControl

686, 696
IsValidPrincipalName 663, 671, 673
IsWebServiceEnabled 70, 71
item-level roles 423, 609
item-level tasks 423
ITemporaryStorage 535, 540

J
JavaScript 207
jobs 409
Join function 155, 505

K
KeepFilesForDays setting 475
KeepTogether property 180
KeepWithGroup property 178
Kerberos 44, 47, 130, 407, 416,

563, 611
key performance indicators 16,

242, 304, 556, 705
KeyColumns property 319
KPI See key performance indicators
KPIGoal 242, 705
KPIStatus 242, 705
KPITrend 242, 705
KPIValue 242, 705

L
LabelsFormat property 231
language packs

and ReportViewer 523
Language property 290
large reports 13
LastNonEmpty function 577
Layout toolbar 90
LayoutDirection property 191
LeftIndent property 107
legends 217
Level function 585
LevelNumber property 587
licensing 41, 45
line charts 223
line report item 97
linear gauges 241, 246
linked reports 420
LinkTarget device setting 499
list data regions 99, 192
ListChildren API 424, 548, 509
ListChildren command 495
ListExtensions API 689
ListLevel property 107
ListRenderingExtensions API 508
ListReportHistory API 465
ListSecureMethods API 462
ListStyle property 107
ListSubscriptions API 469
load-balanced cluster 44, 68
LoadReport API 520
LoadReport2 API 504, 509
LoadReportDefinition API 340, 523
local processing mode 517, 525
local report processing 529, 638
localized reports 289, 591
LocalizedName method 659, 687
localizing data 292
LocalReport object 520
log files 472
logical page breaks 179, 261

and multicolumn reports 197
logical primary keys 311
LogonUser API 375, 412, 522, 659,

661, 666, 681
LogonUser method 663
lookup entities 328, 345
lookup queries 580

M
MachineKey Generator Tool 69
mail merge reports 255
major intervals 217

makecert.exe 65
management tools 401
mandatory filters 320
marker pointers 245, 250
master reports 196, 420
matrix data region 99, 183
maxRequestLength setting 411
MDSCHEMA_CUBES 594
MDSCHEMA_HIERARCHIES

594
MDSCHEMA_MEASURES 594
MDX 555
MDX filters 570, 574
MDX Query Designer 305,386,560

auto-executing queries 567
design mode 566
Filter pane 36
filters 570
Metadata pane 35
query mode 568, 580
understanding 562

MDX query translator 338
Me keyword 103
measure groups 558
measures 15
median value 267
MEMBER_CAPTION 568, 587
MEMBER_UNIQUE_NAME 568
MemberName property 585
Members group 608, 625
memory utilization 480
memory-bound reports 29
MemorySafetyMargin setting 481
MemoryThreshold setting 480, 481
merging cells 175, 191
MHTML 449
MHTML renderer 262
Microsoft Access 157

importing reports from 120
Microsoft Business Intelligence

Platform 13, 30
Microsoft Dynamics CRM 19
Microsoft Excel 31
Microsoft Jet OLEDB provider 158
Microsoft Office 2007 9
Microsoft Office SharePoint Server

6, 16, 18, 602
workflows 624

Microsoft Operations Manager 19
Microsoft SQL Server 13
MIME 506
MIMEType device setting 265
MIMEType property 286
minidump files 475

INDEX 744

MinimumRelativePieSize 233
minor intervals 217
missing data with charts 234
mixed authentication mode 52
mock-up tokens 79
Model Designer 300
model item security 374
model statistics 315, 333
MOSS See Microsoft Office

SharePoint Server
MSBuild deployment 88
MSRS 2008 Web Service

performance object 479
multicolumn reports 197
multiple rowsets 143
MultipleActiveResultSets 135
multivalued parameters 155, 572

and Report Builder 1.0 355
passing to stored procedure 288
practice 288

MustUsePerspective setting 330
My Reports 353, 411
MyComputer zone 276

N
named calculations 302, 312
named instance 45, 50, 61
named queries 302, 310
named query parameter 151
named sets 563
NameMatchingCriteria 310
NaN 187
native integration mode 18, 22, 42,

52, 459, 685
navigation actions

and custom report items 718
and local reports 530

navigation features 230
nested groups 183
nested regions 119
NET designer host 706
NET Framework 2.0 Configuration

tool 278
NET Framework data provider 163
Network Load Balancing 44
NetworkCredentials property 522
NLB See Network Load Balancing

services
No Credentials option 130
NoHeader device setting 260
NON EMPTY keyword 568
normalized schema 303
NoRowsMessage property 145, 397
Northwind database 158

Not Equal filter 570
Not In filter 570
notification events 687
notification object 695
notification record 444
Notification Services 15
Notifications table 444, 689
NT Authority\Local Service 46
NT Authority \Local Service 46
NT Authority\Network Service 46
NT Authority\Network Service 51
NT Authority\System account 46
NTLM 43, 67, 416
NULL delivery provider 435, 444
null values and parameters 497
Nullable property 334
NumeralLanguage property 290
NumeralVariant property 290
numeric indicators 241

O
Object Role Modeling 302
ODBC data provider 125
Office 2007 ribbon 20
Office Data Connection 631
OfficeWriter 9
OLAP 15, See On-Line Analytical

Processing
OLAP reports

and Report Builder 2.0 383
and Report Builder 1.0 358
practice 564

OLE DB data provider 125
OLE DB Provider for Analysis

Services
parent-child hierarchies 585
configuring 582
defined 581
practice 582
used for advanced parameters 583

OLTP See On-Line Transactional
Processing

OmitDrillthroughs 500
OmitHyperlinks 63, 500
OmitSchema 501
on-demand report processing 13, 28
on-demand report delivery19,431,489
on-demand report processing 28, 29
OnDragDrop event 714
OnInit method 270
On-Line Analytical Processing 553
On-Line Transactional Processing

defined 552
pros and cons 553

systems 552
OnPaint event 709
OPENROWSET 302, 311
operational requirements 79
operations 422
OptionalMany cardinality 320
Oracle data provider 125
OracleClient provider 307
OutOfMemoryException error 480
Output window 86
OutputFormat 262, 500
OverrideNames element 259
OverwriteDataSources 87, 130
Owners group 608, 624

P
page breaks

and conditional visibility 92
between group instances 194
conditional 92
logical 92, 115

page count estimate vs. actual 506
page footer 90, 117
page header 90
page layout 90
page margins 91
page size 91
PageBreak property 179
PageHeight device setting 500
PageWidth device setting 500
pagination 91, 179
paragraphs 107
ParallelPeriod function 576, 584
parameter association 96
parameter label 104, 153
parameter prompt 151
parameter types 148, 149
parameter value 104, 153
ParameterLanguage command 497
parameters

changing order 153
passing in URL 494

Parameters collection 97, 104, 149
Parameters device setting 498
ParameterValue object 505
Parent function 576
parent groups 183
parent-child hierarchies 304,325,584
ParentName property 585
ParentUniqueName property 587
pareto charts 227
Pareto charts 227
PassThroughCookies collection 681
PDF format 515

INDEX 745

PDF renderer 262, 500
percent stacked area charts 234
percent stacked bar 230
performance 13
performance counters 478
PerformancePoint 16, 19, 31
permission set 275
PermittedHosts setting 447
perspectives 329, 557
physical page breaks 257
pie charts 232
PieDrawingStyle property 233
PieLabelStyle property 233
PivotTable 15, 558, 603
placeholders 108, 255
Plain Old XML services 542
plain range charts 236
Pocket PC 7
pointer styles 241
polar charts 239
PollingInterval setting 444
positioning items 92
PostInitialize event 214
PredictProbability function 598
Prefix setting 475
Preview tab 33, 89
previewing reports 113
Previous function 106, 187
primary axes 217
principal name 429
print layout 114
print layout preview mode 179
Printer delivery extension 692
printing reports

in Report Manager 419
ProcessReportDefinition 727
ProClarity 16
project configurations 87
project properties 87
project tasks 85
prompting for credentials 130
Properties pane 385
publishing reports

from Report Builder 2.0 391
pyramid charts 232

Q
queries

executing sequentially 134
and Report Builder 1.0 370

query execution 135
query parameters 96, 139, 148
query translators 301
query types 139

R
radar charts 239
RadarDrawingStyle property 240
radial gauges 241
ragged hierarchies 304
range charts 236
Range filter 570
rc prefix 494
rd:UseGenericDesigner 650
RDBMS 14
RDCE See report definition

customization extension
RDL Object Model 293, 728, 732
RDLC 528, 538
RDLOM See RDL Object Model
recipient list 455
rectangle report items 97, 192
refreshing reports 113
RefreshReport method 521, 530
regional settings 271
regular actions 589
relative dates 355
relaying e-mail 447
Reliability and Performance

Monitor 479
remote processing mode 516
Render API 349, 522, 645, 695
Render command 496
Render2 API 506
RenderedOutputFile object 695
renderers

and interactive features 200
data 258
defined 257
disabling 259
hard page breaks 257
hiding 259
soft page break 258

rendering extensions 30
Rendering Object Model 29,55,704
RenderingComplete event 531
repeated matrix headers 191
repeating column headers 178
RepeatOnNewPage 178, 179
Replication Services 15
reports

adding new in Report Designer 89
creating basic 89
defined 4

report anatomy 90
report authoring 19
report authoring cycle 78
report body 89, 90
Report Builder 1.0 9, 20, 378

and SharePoint 623
and SQL Server editions 299
architecture 299
dealing with schema changes 332
defined 299
denormalization techniques 326
introduced 5
limitations 82
performance 304
supported data sources 301
when to use 304

Report Builder 1.0 client
features 297
defined 301
deploying 341
features 339
introduced 339
parameters 342
URLs 342
when to use 341

Report Builder 1.0 model
vs. UDM 303

Report Builder 2.0 20, 81, 299
understanding 379
vs. Report Builder 1.0 381
when to use 382

Report Builder Users role 372
report catalog 18, 22
report client 3
report content, managing 410
Report Data window 11, 90
report definition customization

extension 726
debugging 735
deploying 733

Report Definition Language
19, 38, 54, 85

report definitions
embedded as resources 528
upgrading 54

report delivery 23
report designers

chosing 82
defined 20

Report Designer 89
report execution 431
report execution options 431
Report Explorer webpart 9, 4, 604
report footer 90, 167, 173
report header 90
report history 465
report items 97, 702
report lifecycle 19, 77
report localization 290
report management 21

INDEX 746

Report Manager 19, 21, 661
changes in 2008 403
configuring for SSL 65
defined 401
domain 27
relaying cookies 681
uploading reports 38
verifying it works 59
viewing reports 38

Report Manager URL 27
report metadata 418
report mock-up 78
Report Model project 84, 306
Report Model Wizard 300, 313, 333
report models

auto-generating 313
auto-generating from cubes 336
building 325
components 301
connecting to 366
defined 300
deploying 335
refining 318
securing 372
used as data sources 365

Report object 695
report package 420
Report Page Layout 30
report parameters

auto-detecting 152
and ReportViewer 534
and security 147, 156
configuring 151
creating 96
and query parameters 149
managing 419
passing by URL 496
programming 505
setting up 149
when to use 148

report processing
how does it work 29
understanding 29

Report Processor 17, 29
Report Scripter utility 469
report server

activating 484
defined 28
intoduced 17
starting and stopping 406

report server applications 404
report server database 44, 54, 55, 70

defined 18
managing 482

Report Server Database
Configuration Wizard 484

report server port 62
Report Server project 33

adding to source control 86
creating 84
explained 83
understanding 84

Report Server Service 405
report server URL 27, 58
Report Server Web Service 23, 24,

402, 404
disabling 71
domain 28, 133
endpoints 28

report template 89
Report Viewer webpart 54, 9, 604,

606, 628
Report Wizard 117, 526
ReportBuilderLaunchURL 380
ReportDesigner.config 381
ReportEmbeddedResource 529
ReportExecution2005 endpoint 28,

458, 491, 502
reporting actions 561, 589
reporting engine 13
reporting requirements 78
Reporting Services

applications 61
architecture 25
components 17
configuring 52
defined 3
history 8
hosting model 25
initial configuration 58
installing 47
licensing 41
monitoring 472
network interfaces 26
overview 17
pricing 41
testing initial configuration 58
turning features off 70
upgrading 53
version 2000 9
what's new 9
why use 4

Reporting Services 2000 endpoint
28, 54

Reporting Services Configuration
Manager 21, 71, 403

Reporting Services content types
617

Reporting Services for SharePoint
add-in 54, 615

Reporting Services Script Host 404

Report Server Web service 8,17
programming 502

Reporting Services Windows service
26, 59

ReportingServices.css 402
ReportingServicesService.exe 405
ReportItems collection 102
ReportParameter object 505
reports

exporting 497
exporting by URL 497
requesting by URL 496
viewing in Report Manager 419

ReportServer database 18
ReportServerCredentials 679
ReportServerInfo event 687
ReportServerInformation 687, 693
ReportServerTempDB database 18,

432, 435
ReportServerUrl setting 70, 71, 671
ReportService2005 endpoint 28,

459, 463, 491, 612
ReportService2006 endpoint 28,

459, 491, 609, 612
ReportServiceAuthentication

endpoint 491
report-specific data sources 415

definition 131
introduced 93
pros and cons 131

report-specific schedules 690
ReportViewer 9, 24, 30, 71, 502,

512
customizing 522
events 531
localizing 523
subclassing 523
temporary storage 535

ReportViewer ASPX page 498
ReportViewer controls 8, 54, 82, 638

differences 514
installing 515
processing modes 516
redistributing 515
similarities 514
upgrading from VS 2005 515

ReportViewer HTTP Handler 534
ReportViewer webpart 608
ReportViewer Web server control

introduced 491
and custom security 677
configuring 536
and custom security 679
handling events 538
handling external images 538

INDEX 747

in Report Manager 419
practice 535
temporary stream storage 539

ReportViewer Web Server control
and ViewState 535
explained 533
rendering mode 534

ReportViewer WinForms control
configuring 519
explained 518
practice 518
remote processing mode 520
securing 521

ReportViewer.aspx page 493
Representational State Transfer

services 542
Reset method 520
resource content type 411
resource management 480, 495
ReturnCellProperties setting 588
reverse roles 345
RGDI renderer 516
RIA See Rich Internet Applications
Ribbon and Report Builder 2.0 379
rich clients 518
rich formatting 12, 254
Rich Internet Applications 540
RightIndent property 107
role assignments 422, 423, 427
role definitions 427
role expansion 327
role membership

and custom security 672
caching roles 675
schema 673
understanding 672

roles 423
roles, Report Builder 1.0 303
ROM See Rendering Object Model
root entities 360
Rosetta 9
row groups 10, 114, 168
Row Groups pane 172
row-level data security 103, 157
RowNumber function 106
ROWS axis 577
rowset 561
RPL 30
RPL renderer 517
RS Explorer 404
rs prefix 494
rs.exe See Script Host utility, See

Reporting Services Scrpt Host
RSClientPrint control 419, 514
Rsconfig utility 404

rsExecutionNotFound error 433
RSkeymgmt 404
RSkeymgmt utility 482
RSpreviewpolicy.config 276, 381
rsreportserver.config 28, 276
rsReportServerNotActivated 485
RsRequestViewer sample 460
rsRuntimeErrorInExpression 276
rssrvpolicy.config 276
RStrace setting 370
rsUnknownReportParameter 494
RSWindowsNegotiate 47, 60
RTF 254
ruler 89
rules, for model generation 314
runas utility 427
RunningJobs table 409
RunningRequestsAge setting 409
RunningRequestsDbCycle 09
RunningValue 106

S
sales forecasting 556, 599
SAP NetWeaver data provider 125
scalability 13
scale break 11, 37, 217, 220
ScaleBreakStyle property 221
scale-out deployment 68

configuring virtual address 69
testing 70

scatter charts 237
schema changes

and Report Builder 1.0 313
breaking vs. non-breaking 334

scorecards 16
script files 404
Script Host utility 468
scripting 403, 467
secondary axes 11, 217, 224
securable items 423
Secure Socket Layer 64, 71, 667
SecureConnectionLevel 65, 670
security 422
security filters 375
security inheritance 424, 428
security policies 428
SecurityPermission 277
Select All parameter value 155
semantic model 301
Semantic Model Definition

Language 302
semantic queries 370
semantic query engine 301, 337
SendEmailToUserAlias setting 447

server aggregates
defined 577
requesting 577
viewing 578

server certificates, installing 64
server nodes 44
server properties 403, 408
ServerInfoHeader object 466
ServerReport object 519
ServerSettings property 696
service account

changing 407
system accounts 46

service accounts
configuring 51
custom accounts 46
domain account 47
planning 45

Service Network Interface 490
Service Principle Names 47
service startup type 51
session identifier 505
SessionID command 434
SessionTimeout property 433
SET FMTONLY OFF 136
SET NOCOUNT ON 136
SetConfiguration method 658, 662,

686, 692, 696, 731
SetExecutionCredentials API 505
SetExecutionParameters2 API 505,

506
SetParameters method 521
SetProperties API 408
SetReportParameters API 462, 465
SetReportParameters2 API 505
SetSubscriptionProperties API 697
SETUSER 416
shape charts 232
shared assemblies 272
shared data sources 415

advantages 126
creating 127
definition 126
deploying 130
introduced 93

Shared Documents webpart 630
shared layout surface 10, 81
shared schedules 447
SharePoint 6, 9, 13, 16, 18

deployment 619
security 609
versioning 624

SharePoint Designer 603
SharePoint document library

extension 451

INDEX 748

SharePoint full integration 607
architecture 608
configuring 612
pros and cons 611
security 608
understanding 601

SharePoint integration mode 18,
23, 42, 52, 399, 401, 459, 685

SharePoint partial integration
installing 604
pros and cons 607

SharePoint Products and
Technologies 601

SharePoint site 602, 615
SharePoint user groups 610
SharePoint web application 602,614
shelling out 511
ShowColumnAs property 226, 227
ShowFindControls property 523
ShowParameterPrompts 520
side-by-side data regions 149
Silverlight

creating project 544
defined 541
developer tools 542
history 541
hosting pages 547
practice 543

Silverlight applications
explained 542
maintaining state 550
report enabling 547

Silverlight plug-in 544
SimplePageHeaders 261, 499
single transaction 136
site collections 614
site settings 412
smart tag panel 519
SMDL See Semantic Model

Definition Language
smooth area charts 234
SMTP server 446
SMTPServerPickupDirectory 446
snapshot history

defined 441
retention policy 441

SnapshotUpdated event type 469
snowflake schema 328, 554
SOAP 17, 161, 491

ReportViewer 517
SOAP faults 493
soft page breaks 258
SoftArtisans 9
software requirements 41
Solution Explorer 33

rsOperationNotSupportedNativeM
ode 459

Sort API 493
sorting

across regions 210
and Report Builder 1.0 349
by aggregates 209
groups 207
interactive 207
withing groups 209

sorting data 176
source control 86
SpaceAfter property 107
SpaceBefore property 107
sparklines 249
Split function 155
splitting cells 175
SQL Client permission 275
SQL CLR 27
SQL Network Interface 27
SQL OS 27
SQL Server 2005 9
SQL Server 2008 Installation

Wizard 57
SQL Server 2008 Upgrade Advisor 55
SQL Server Agent 405, 444
SQL Server Agent Service 688
SQL Server Analysis Services Filter

webpart 631
SQL Server Browser 51
SQL Server data provider 124
SQL Server editions 40
SQL Server instance 44
SQL Server Management Studio

19, 21, 403
changes 403

SQL Server Profiler 135, 437, 559
used to watch queries 371

SQL Server Upgrade Advisor 54
SQLClient provider 307
SqlClientPermission 278
SQLServerReportServerUser

Windows group 407
SSIS data provider

connecting to package 162
enabling 162
introduced 126

SSL See Secured Socket Layer
stacked area charts 234
stacked bar charts 230
stacked column 218
standalone preview 280
standard authentication 58
Standard edition 40

standard reporting 5, 32
standard security

pros and cons 129
standard subscriptions

introduced 25
defined 444
practice 448
customizing 690

Standard toolbar 90
star schema 554
StartItem project property 87
state indicators 241
static groups 186
static members 177
static methods 273
static query schemas 561
static variables 273
stepped layout 169
stock charts 236
stored credentials 129, 416, 564
stored procedures 143
streaming reports 511
StreamRoot device setting 510
strong reservation 62
strong wildcard 62
StrToSet function 572
Stylesheet device setting 499
subcube 571
sub-gauges 242
subreport 150
subreport report item 98
subreports

explained 195
limitations 195

subscribed report delivery 19, 25,
405, 685

subscription events 444
subscription processing 456
subscription report delivery 431
subscription status 691
subscription types 444
subscriptions 25

defined 443
limitations 445
triggering programmatically 468

sweep angle 241
Switch function 324
synchronous mode 534
System Administrator role 426, 469
system jobs 409
System User role 469
System.Convert namespace 105
System.Math namespace 105
system-level roles 423

INDEX 749

T
table data regions

adding groups 172
defined 99
static columns 168

table headers 169, 174
TableAdapter Configuration Wizard

527
Tables pane 310
table-valued parameters 288
tablix data region 10, 99

visual cues 168
tablix group headers 193

introduced 114
pros and cons 170

tablix headers 396
tablix visual cues 114
tabular reports 167
TargetDataSourceFolder 87, 413
TargetDataSources setting 619
TargetModelFolder setting 335
TargetReportFolder 87, 619
TargetServerURL 87, 335, 619
tasks 423
Team Site template 614
temporary tables 134, 136
textbox report item

defined 97
edit mode 107

textruns 107
TextWrapThreshold property 223
TFP 30
tick marks 217, 220
TimedSubscription 450, 469
timeout 442
Timeout property 521
TLP 30
Today function 147
toggled visibility

and drillthrough 202
defined 199
mplementing 200

ToggleItem API 493
toolbar 113
Toolbar device setting 498
Toolbox window 90
TOPCOUNT function 574
totals 10
trace events 135
trace log

configuring 474
used for logging queries 371
viewing 475

trace log file 59

tracing calls 460
transactions 134
translations 556

defined 591
practice 592
understanding 591

trend reporting 15, 31
trusted account 416, 564

and SharePoint 611
trusted subsystem

pros and cons 678
understanding 677

typed datasets 526

U
UDM See Unified Dimensional

Model
unattended execution account 130

configuring 68
explained 68

UnderDebugger setting 655
Unified Dimension Model 31, 303,

360, 555
UniqueName property 587
unit testing 80
UpdateReportExecutionSnapshot

API 439, 465
Upgrade Advisor Analysis Wizard 55
upgrade rules 58
upgrade scenarios 53
upload content 414
URL 7
URL access 17, 71, 402

defined 490
programming 510
ReportViewer 517

URL actions 206
URL configuration 66
URL encoding 494
URL endpoints

advanced configuration 63
multiple 64

URL Escaper utility 494, 501
URL links 199
URL munging 434
URL registration 61
URL reservation 61
URL syntax 493
UrlRoot setting 70, 450
usability testing 80
UseFormattedValues 260
User collection 103
user culture 272
user identity 664

user jobs 409
User!Language 292, 445
User!UserID 270, 435, 445, 611,

661, 678
UserData method 688
user-defined hierarchies 559, 567
UserID property 103
UseSSL setting 670

V
ValidateUserData method 688, 693
value groups 345, 353
Value(n) property 155
Values property 237
ValueSelection property 321, 350
variables

defined 282
limitations 283
practice 283

Variables collection 104
VariationOf property 316
verbs 703, 714
Verbs property 704, 714
ViewState and scaling out 69
virtual directories 62
Vista User Account Control 58
visual cues 116
Visual Studio 16, 19, 83
Visual Studio Dataset Designer 21,

82, 160, 517, 528
Visual Studio solution 83
Visual Studio Tools for

Applications 15
VSTA See Visual Studio Tools for

Applications

W
W3C extended format 478
WCF See Windows Communication

Foundation
weak reservation 62
weak wildcard 62
web clients

report-enabling 533
web farm 18, 44
web part pages 626
Web reference 502
Web Service delivery extension 689
Web service endpoints 458
Web service proxy 463, 503
Web services 491

reporting from 159

INDEX 750

Web Services Description Language
502

web-based portal 6
web-based reporting 7
WebBrowser control 507, 511
WebPermission 278, 287
WebRequest object 512, 550
WebResponse object 512
Windows authentication 422

and data sources 93
and SharePoint 610
enabling in browser 60
pros and cons 128
testing 59
troubleshooting 59

Windows Communication
Foundation 463, 542
compared to .NET 2.0 466
impersonating users 466

Windows File Share extension 451
Windows Firewall 60
Windows Integrated security 48,

128, 307, 521
Windows Management

Instrumentation 403

Windows Management
Instrumentation provider 666

Windows Presentation Foundation
541

Windows security 18, 67, 656
Windows Server 2003 27, 58
Windows Server 2008 13
Windows SharePoint Services 602

installing 613
Windows Vista 13, 27, 58

prompting for credentials 60
Windows Workflow Foundation 541
Windows XP 58
WMI See Windows Management

Instrumentation
WMI provider 469
Word renderer 262, 500
WorkingSetMaximum setting 481
WorkingSetMinimum setting 481
writeback 206
WriteXml method 641
WriteXmlSchema method 641
WSDL See Web Services

Description Language
WSDL contract 459

WSS See Windows SharePoint
Services

WSS object model 613
WSS_Content database 614
WYSIWYG 81, 301, 340, 545

X
XAML See Extensible Application

Markup Language
XML data provider 159, 429, 638

syntax 161
XML renderer 263, 501, 695
XmlDocument 274, 293
XPath 159
XSLT See Extensible Stylesheet

Language Transformations

Y
Year function 147
Yukon 9

Z
ZIndex property 92
Zoom device setting 498
zooming 385

Also by Teo Lachev

Applied Microsoft Analysis Services 2005
 and Microsoft Business Intelligence Platform

Written for database administrators and develop-
ers, this book is a guide to leveraging the innova-
tive Unified Dimensional Model (UDM) to design
and manage sophisticated OLAP cubes that pro-
vide rich data analytics and data mining services.
The necessary background to extend UDM with
MDX expressions, scripts, and .NET code is pro-
vided. Also covered is how to implement a wide
range of reporting applications that integrate with
Analysis Services, Reporting Services, Microsoft
Office, and third-party tools.

The book doesn’t assume any prior experience
with OLAP and Microsoft Analysis Services. It is
designed as an easy-to-follow guide where each
chapter builds upon the previous to implement the
components of the innovative Unified Dimensional
Model (UDM) in a chronological order. New con-
cepts are introduced with step-by-step instructions
and hands-on demos.

ISBN 978-0976635307
Publisher website: http://tinyurl.com/6q7xr
Amazon: http://tinyurl.com/6mtkyk
B&N: http://tinyurl.com/5rg8hp

The book is available in bookstores worldwide.
Prices and availability may be subject to change.

Also by Teo Lachev

Microsoft SQL Server 2005
Business Intelligence Implementation and Maintenance
 with Erik Veerman, Dejan Sarka, and Javier Loria

Ace your preparation for the skills measured by
MCTS Exam 70-445—and on the job. Work at
your own pace through a series of lessons and
reviews that fully cover each exam objective.
Then, reinforce what you’ve learned by applying
your knowledge to real-world case scenarios
and practice exercises. This official Microsoft
study guide is designed to help you make the
most of your study time.

Assess your skills with practice tests on CD.
You can work through hundreds of questions
using multiple testing modes to meet your spe-
cific learning needs. You get detailed explana-
tions for right and wrong answers—including a
customized learning path that describes how
and where to focus your studies..

ISBN 978-0735623415
Publisher website: http://tinyurl.com/5ffm5k
Amazon: http://tinyurl.com/6b6vp3
B&N: http://tinyurl.com/5d8nwy

The book is available in bookstores worldwide.
Prices and availability may be subject to change.

	Cover
	contents
	preface
	acknowledgements
	about the book
	source code
	about the author
	PART 1: INTRODUCTION
	Chapter 1: Introducing Reporting Services
	1.1 Understanding Reporting Services
	1.1.1 Understanding Reporting Services Reports
	1.1.2 Why Use Reporting Services?
	1.1.3 A Short History of Reporting Services
	1.1.4 What's New in Reporting Services 2008
	1.1.5 Reporting Services and the Microsoft Business Intelligence Platform

	1.2 Overview of Reporting Services
	1.2.1 Understanding the Reporting Services Components
	1.2.2 Report Authoring
	1.2.3 Report Management
	1.2.4 Report Delivery

	1.3 The Reporting Services Architecture
	1.3.1 Understanding the Report Server Hosting Model
	1.3.2 Understanding the Reporting Services Applications
	1.3.3 Understanding Report Processing

	1.4 Applied Reporting Services
	1.4.1 Introducing Adventure Works Sales Reporting System
	1.4.2 Your First Report (Demo)

	1.5 Summary
	1.6 Resources

	Chapter 2: Installing Reporting Services
	2.1 Planning for a Reporting Services Installation
	2.1.1 Planning Hardware and Software
	2.1.2 Planning a Deployment Topology
	2.1.3 Planning Service Accounts

	2.2 Performing a New Installation
	2.2.1 Performing Initial Setup Steps
	2.2.2 Installing a New SQL Server Installation

	2.3 Upgrading Reporting Services
	2.3.1 Planning the Upgrade Process
	2.3.2 Working with the SQL Server 2008 Upgrade Advisor
	2.3.3 Upgrading a Reporting Services Installation

	2.4 Performing Initial Configuration
	2.4.1 Testing the Reporting Services Installation
	2.4.2 Configuring Reporting Services URLs
	2.4.3 Performing Additional Configuration Steps

	2.5 Summary
	2.6 Resources

	PART 2: THE REPORT DESIGNER
	Chapter 3: Report Design Fundamentals
	3.1 Designing for Report Design
	3.1.1 Understanding the Report Authoring Cycle
	3.1.2 Understanding Report Designers

	3.2 Working with Report Server Projects
	3.2.1 Business Intelligence Development Studio vs. Visual Studio
	3.2.2 Performing Project Tasks

	3.3 Authoring a Basic Report
	3.3.1 Getting Started in Report Designer
	3.3.2 Working with Data (Demo)
	3.3.3 Working with Report Parameters (Demo)
	3.3.4 Understanding Report Items
	3.3.5 Understanding Expressions
	3.3.6 Understanding Collections
	3.3.7 Understanding Functions
	3.3.8 The Anatomy of a Textbox
	3.3.9 Designing the Report Layout (Demo)

	3.4 Auto-generating Report Definitions
	3.4.1 Using the Report Wizard (Demo)
	3.4.2 Importing Reports from Microsoft Access

	3.5 Summary
	3.6 Resources

	Chapter 4: Designing Data Access
	4.1 Understanding Data Access
	4.1.1 Understanding Data Architecture
	4.1.2 Understanding Data Providers

	4.2 Connecting to Data
	4.2.1 Working with Shared Data Sources
	4.2.2 Working with Report-Specific Data Sources
	4.2.3 Using Transactions

	4.3 Working with Datasets
	4.3.1 Understanding the Dataset Definition
	4.3.2 Using the Generic Query Designer
	4.3.3 Using the Graphical Query Designer
	4.3.4 Filtering Datasets
	4.3.5 Working with Stored Procedures

	4.4 Working with Report Parameters
	4.4.1 Understanding Report Parameters
	4.4.2 Designing a Parameterized Report
	4.4.3 Securing Reports with Parameters

	4.5 Working with Other Data Sources
	4.5.1 Using Microsoft Access Databases
	4.5.2 Working with XML Data
	4.5.3 Retrieving Data from Integration Services
	4.5.4 Using a .NET Framework Data Provider

	4.6 Summary
	4.7 Resources

	Chapter 5: Designing Tablix Reports
	5.1 Designing Tabular Reports
	5.1.1 The Anatomy of a Table Region
	5.1.2 Designing a Stepped Report (Demo)
	5.1.3 Working with Advanced Grouping Options
	5.1.4 Implementing a Balance Sheet Report

	5.2 Designing Crosstab Reports
	5.2.1 The Anatomy of the Matrix Region
	5.2.2 Working with Dynamic Column Groups (Demo)
	5.2.3 Working with Static Groups and Totals (Demo)
	5.2.4 Implementing Adjacent Groups (Demo)

	5.3 Designing Freeform Reports
	5.3.1 The Anatomy of the List Region
	5.3.2 Designing a Freeform Layout (Demo)
	5.3.3 Working with Subreports
	5.3.4 Implementing Multicolumn Reports

	5.4 Implementing Interactive Reports
	5.4.1 Understanding Report Interactivity
	5.4.2 Implementing Toggled Visibility
	5.4.3 Implementing Hyperlink Actions
	5.4.4 Implementing Interactive Sorting
	5.4.5 Implementing a Document Map

	5.5 Summary
	5.6 Resources

	Chapter 6: Designing for Data Visualization
	6.1 Designing Chart Reports
	6.1.1 Understanding the Chart Region
	6.1.2 The Anatomy of a Chart Region
	6.1.3 Designing a Column Chart (Demo)
	6.1.4 Designing a Line Chart (Demo)

	6.2 Working with Chart Types
	6.2.1 Histogram Charts
	6.2.2 Pareto Charts
	6.2.3 Three-Dimensional Column Charts
	6.2.4 Bar Charts
	6.2.5 Shape Charts
	6.2.6 Area Charts
	6.2.7 Range Charts
	6.2.8 Scatter Charts
	6.2.9 Polar Charts

	6.3 Designing Gauge Reports
	6.3.1 Understanding the Gauge Region
	6.3.2 Implementing a Radial Gauge (Demo)
	6.3.3 Implementing a Linear Gauge
	6.3.4 Combining Charts and Gauges
	6.3.5 Implementing Sparklines

	6.4 Summary
	6.5 Resources

	Chapter 7: Advanced Report Design
	7.1 Designing For Rich Formatting
	7.1.1 Understanding Rich Formatting
	7.1.2 Implementing Mail Merge Reports

	7.2 Designing For Report Output
	7.2.1 Understanding Report Renderers
	7.2.2 Working with Report Renderers

	7.3 Extending Reports with Custom Code
	7.3.1 Understanding Custom Code
	7.3.2 Working with Embedded Code
	7.3.3 Working with External Code
	7.3.4 Securing Custom Code
	7.3.5 Debugging Custom Code

	7.4 Report Design Challenges and Solutions
	7.4.1 Working with Variables
	7.4.2 Working with External Images
	7.4.3 Passing Multivalued Parameters to Stored Procedures
	7.4.4 Localizing Reports
	7.4.5 Generating RDL Programmatically

	7.5 Summary
	7.6 Resources

	PART 3: THE REPORT BUILDER
	Chapter 8: Building Report Models
	8.1 Understanding Report Builder 1.0
	8.1.1 The Report Builder Architecture
	8.1.2 Understanding Report Models
	8.1.3 Comparing Report Models and UDM

	8.2 Implementing Report Models
	8.2.1 Working with Data
	8.2.2 Generating the Raw Model

	8.3 Refining Report Models
	8.3.1 Working with Entities and Fields
	8.3.2 Advanced Report Modeling
	8.3.3 Dealing with Changes
	8.3.4 Deploying Report Models

	8.4 Working with Analysis Services Models
	8.4.1 Generating Report Models from Analysis Services
	8.4.2 Understanding Analysis Services Limitations

	8.5 Summary
	8.6 Resources

	Chapter 9: Authoring Ad Hoc Reports
	9.1 Understanding Report Builder 1.0 Client
	9.1.1 Understanding Features
	9.1.2 Deploying Report Builder 1.0 Client

	9.2 Designing Ad Hoc Reports
	9.2.1 Authoring Table Reports
	9.2.2 Authoring Matrix Reports
	9.2.3 Designing Chart Reports
	9.2.4 Authoring OLAP Reports

	9.3 Advanced Ad Hoc Reporting
	9.3.1 Working with Filters and Formulas
	9.3.2 Working with Report Model Data Sources
	9.3.3 Implementing Custom Drillthrough Reports
	9.3.4 Capturing Native Queries

	9.4 Securing Report Builder Models
	9.4.1 Granting Report Builder Access
	9.4.2 Implementing Model Item Security
	9.4.3 Implementing Data Security

	9.5 Summary
	9.6 Resources

	Chapter 10: Previewing Report Builder 2.0
	10.1 Understanding Report Builder 2.0
	10.1.1 Introducing Report Builder 2.0 Environment
	10.1.2 Understanding Report Builder 2.0 Features

	10.2 Authoring an OLAP Report
	10.2.1 Getting Started with Report Builder 2.0
	10.2.2 Configuring the Report Data
	10.2.3 Designing the Report

	10.3 Authoring a Relational Report
	10.3.1 Configuring the Report Data
	10.3.2 Designing the Report Layout

	10.4 Summary
	10.5 Resources

	PART 4: MANAGEMENT
	Chapter 11: Management Fundamentals
	11.1 Understanding Report Management
	11.1.1 Understanding Report Management Tools
	11.1.2 Understanding the Report Server Service
	11.1.3 Managing the Report Server

	11.2 Managing Report Server Content
	11.2.1 Understanding Report Server Content
	11.2.2 Managing Folders
	11.2.3 Managing Data Sources
	11.2.4 Managing Reports

	11.3 Managing Security
	11.3.1 Understanding Report Server Security
	11.3.2 Granting Administrator Access
	11.3.3 Granting User Access
	11.3.4 Viewing Security Policies

	11.4 Summary
	11.5 Resources

	Chapter 12: Managing Report Execution and Subscriptions
	12.1 Managing Report Execution
	12.1.1 Understanding Report Execution Options
	12.1.2 Managing Execution Sessions
	12.1.3 Managing Cache Snapshots
	12.1.4 Managing Execution Snapshots
	12.1.5 Managing Report Execution Timeouts

	12.2 Managing Subscriptions
	12.2.1 Understanding Subscriptions
	12.2.2 Managing Standard Subscriptions
	12.2.3 Managing Data-Driven Subscriptions

	12.3 Summary
	12.4 Resources

	Chapter 13: Advanced Report Management
	13.1 Programming Report Management
	13.1.1 Understanding the Management API
	13.1.2 Tracing Web Methods
	13.1.3 Programming Management Tasks
	13.1.4 Scripting Management Tasks
	13.1.5 Using the WMI Provider

	13.2 Monitoring Reporting Services
	13.2.1 Understanding the Reporting Services Log Files
	13.2.2 Working with the Execution Log
	13.2.3 Working with the Trace Log
	13.2.4 Working with the HTTP Log
	13.2.5 Monitoring Server Performance

	13.3 Configuring Memory Utilization
	13.3.1 Understanding Memory Zones
	13.3.2 Understanding Memory Configuration Settings

	13.4 Managing the Report Server Database
	13.4.1 Installing the Source Database
	13.4.2 Changing the Report Server Catalog

	13.5 Summary
	13.6 Resources

	PART 5: INTEGRATION
	Chapter 14: Integration Fundamentals
	14.1 Understanding Reporting Services Integration
	14.1.1 Understanding Integration Options
	14.1.2 Choosing an Integration Approach

	14.2 Working with URL Access
	14.2.1 Understanding URL Syntax
	14.2.2 Requesting Catalog Items
	14.2.3 Requesting Reports
	14.2.4 Working with Device Information Settings

	14.3 Working with the Report Server Web Service
	14.3.1 Getting Started in Report Server Web service
	14.3.2 Rendering Reports

	14.4 Putting It All Together
	14.4.1 Programming Report Server Web service
	14.4.2 Programming URL Access

	14.5 Summary
	14.6 Resources

	Chapter 15: Reporting For .NET Clients
	15.1 Understanding Embedded Reporting
	15.1.1 Understanding the ReportViewer Controls
	15.1.2 Understanding Report Processing Modes

	15.2 Reporting for Windows Forms Clients
	15.2.1 Getting Started with the ReportViewer Windows Forms Control
	15.2.2 Working with Remote Processing Mode
	15.2.3 Working with Local Processing Mode

	15.3 Reporting for Web Clients
	15.3.1 Understanding the ReportViewer Web Server Control
	15.3.2 Embedding Reports in Web Applications

	15.4 Reporting for Rich Internet Applications
	15.4.1 Understanding Microsoft Silverlight
	15.4.2 Implementing the User Interface
	15.4.3 Report-enabling Silverlight Applications

	15.5 Summary
	15.6 Resources

	Chapter 16: Integrating with Analysis Services
	16.1 Understanding Analysis Services
	16.1.1 Understanding OLAP
	16.1.2 Understanding Data Mining
	16.1.3 Historical and Trend Reporting
	16.1.4 Introducing Analysis Services and Reporting Services Integration

	16.2 Authoring OLAP Reports
	16.2.1 Authoring a Basic Report
	16.2.2 Working with Filters and Parameters
	16.2.3 Working with Calculated Members
	16.2.4 Working with Server Aggregates
	16.2.5 Implementing Detailed Reports
	16.2.6 Working with the OLE DB Provider for Analysis Services
	16.2.7 Working with Parent-Child Hierarchies

	16.3 Extending Reports with End-User Features
	16.3.1 Working with Extended Properties
	16.3.2 Working with Reporting Actions
	16.3.3 Localizing Reports with Translations

	16.4 Authoring Data Mining Reports
	16.4.1 Understanding the Targeted Mailing Data Mining Model
	16.4.2 Implementing "Smart" Reports

	16.5 Summary
	16.6 Resources

	Chapter 17: Integrating with SharePoint
	17.1 Understanding SharePoint Integration
	17.1.1 Understanding SharePoint Products and Technologies
	17.1.2 Understanding Partial Integration
	17.1.3 Understanding Full Integration

	17.2 Configuring SharePoint Integration
	17.2.1 Performing Initial Installation
	17.2.2 Configuring Reporting Services Integration Settings

	17.3 Managing Report Content
	17.3.1 Uploading Reports
	17.3.2 Viewing Reports
	17.3.3 Working with SharePoint Document Management Features

	17.4 Implementing Web Part Pages
	17.4.1 Implementing Dashboard Pages
	17.4.2 Implementing Report Navigation
	17.4.3 Working with Filter Web Parts

	17.5 Summary
	17.6 Resources

	PART 6: EXTENSIBILITY
	Chapter 18: Extending Data Access
	18.1 Understanding Custom Data Processing Extensions
	18.1.1 Choosing a Data Integration Approach
	18.1.2 Introducing the Dataset Custom Data Processing Extension

	18.2 Using Custom Dataset Extensions with Reports
	18.2.1 Using the Extension at Design Time
	18.2.2 Understanding Runtime Interaction

	18.3 Implementing Custom Data Processing Extensions
	18.3.1 Understanding the Classes and Interfaces
	18.3.2 Implementing the Dataset Query Designer

	18.4 Deploying and Debugging
	18.4.1 Design-time Deployment
	18.4.2 Report Server Deployment
	18.4.3 Debugging Custom Data Processing Extensions

	18.5 Summary
	18.6 Resources

	Chapter 19: Customizing Security
	19.1 Introducing Custom Security
	19.1.1 When to Use Custom Security
	19.1.2 Understanding Custom Security Extensions
	19.1.3 Understanding Runtime Interaction

	19.2 Implementing Custom Security Extensions
	19.2.1 Introducing the Adventure Works Web Reporter
	19.2.2 Implementing the Authentication Extension
	19.2.3 Implementing Authorization Extension
	19.2.4 Implementing Logon Pages
	19.2.5 Deploying Custom Security Extensions
	19.2.6 Working with the Custom Security Extension

	19.3 Implementing Role Membership
	19.3.1 Understanding Role Membership
	19.3.2 Implementing Database Schema
	19.3.3 Implementing Role Authentication
	19.3.4 Implementing Role Authorization

	19.4 Integrating Custom Security
	19.4.1 Custom Security vs. Trusted Subsystem
	19.4.2 Integrating Custom Security

	19.5 Troubleshooting Custom Security
	19.5.1 Debugging the Custom Security Extension
	19.5.2 Troubleshooting Tips

	19.6 Summary
	19.7 Resources

	Chapter 20: Extending Report Delivery
	20.1 Understanding Custom Subscription Delivery
	20.1.1 Understanding Custom Delivery Extensions
	20.1.2 Introducing the Web Service Delivery Extension

	20.2 Implementing Custom Report Delivery
	20.2.1 Implementing the Custom Delivery Extension
	20.2.2 Implementing the Web Control

	20.3 Deploying Custom Delivery Extensions
	20.3.1 Deploying to the Report Server
	20.3.2 Deploying to Report Manager
	20.3.3 Debugging Custom Delivery Extensions

	20.4 Summary
	20.5 Resources

	Chapter 21: Implementing Custom Report Items
	21.1 Understanding Custom Report Items
	21.1.1 What is a Custom Report Item?
	21.1.2 Understanding the Design-Time Component
	21.1.3 Understanding the Run-Time Component
	21.1.4 Introducing the Progress Tracker Custom Report Item

	21.2 Implementing Custom Report Items
	21.2.1 Implementing the Windows Control
	21.2.2 Implementing the Design-Time Component
	21.2.3 Implementing the Run-Time Component

	21.3 Working with Progress Tracker
	21.3.1 Deploying Progress Tracker
	21.3.2 Debugging Progress Tracker

	21.4 Understanding Custom Data Regions
	21.4.1 Understanding the CustomData Object
	21.4.2 Using CustomData at Design Time

	21.5 Summary
	21.6 Resources

	Chapter 22: Customizing Report Definitions
	22.1 Understanding Report Definition Customization Extensions
	22.1.1 What is a Report Definition Customization Extension?
	22.1.2 Understanding Programming Interfaces

	22.2 Working with the Extension Sample
	22.2.1 Implementing a Report Definition Customization Solution
	22.2.2 Deploying and Testing

	22.3 Summary

	master resource list
	index

